1
|
Margarita V, Pau MC, Carboni G, Mannu F, Turrini F, Rappelli P, Pantaleo A, Dessì D, Zinellu E, Piras B, Fois AG, Rubino S, Pirina P, Fiori PL. Comparison of microbiological and molecular diagnosis for identification of respiratory secondary infections in COVID-19 patients and their antimicrobial resistance patterns. Diagn Microbiol Infect Dis 2024; 110:116479. [PMID: 39116653 DOI: 10.1016/j.diagmicrobio.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
We report the use of a new multiplex Real-Time PCR platform to simultaneously identify 24 pathogens and 3 antimicrobial-resistance genes directly from respiratory samples of COVID-19 patients. Results were compared to culture-based diagnosis. Secondary infections were detected in 60% of COVID-19 patients by molecular analysis and 73% by microbiological assays, with no significant differences in accuracy, indicating Gram-negative bacteria as the predominant species. Among fungal superinfections, Aspergillus spp. were detected by both methods in more than 7% of COVID-19 patients. Oxacillin-resistant S. aureus and carbapenem-resistant K. pneumoniae were highlighted by both methods. Secondary microbial infections in SARS-CoV-2 patients are associated with poor outcomes and an increased risk of death. Since PCR-based tests significantly reduce the turnaround time to 4 hours and 30 minutes (compared to 48 hours for microbial culture), we strongly support the routine use of molecular techniques, in conjunction with microbiological analysis, to identify co/secondary infections.
Collapse
Affiliation(s)
- Valentina Margarita
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Maria Carmina Pau
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Gavino Carboni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | | | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Azienda Ospedaliero Università (AOU), Sassari, 07100 Sassari, Italy
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Daniele Dessì
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Barbara Piras
- Azienda Ospedaliero Università (AOU), Sassari, 07100 Sassari, Italy
| | - Alessandro G Fois
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; Azienda Ospedaliero Università (AOU), Sassari, 07100 Sassari, Italy
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Azienda Ospedaliero Università (AOU), Sassari, 07100 Sassari, Italy
| | - Pietro Pirina
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; Azienda Ospedaliero Università (AOU), Sassari, 07100 Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Azienda Ospedaliero Università (AOU), Sassari, 07100 Sassari, Italy
| |
Collapse
|
2
|
Zhong Q, Lin QM, Long HB, Liao CX, Sun XX, Yang MD, Zhang ZH, Huang YH, Wang SM, Yang ZS. Bacterial pneumonia patients with elevated globulin levels did not get infected with SARS-CoV-2: two case reports. Front Immunol 2024; 15:1404542. [PMID: 39267743 PMCID: PMC11390513 DOI: 10.3389/fimmu.2024.1404542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Background COVID-19 began in December 2019, rapidly spreading worldwide. China implemented a dynamic zero-COVID strategy and strict control measures after the outbreak. However, Guangzhou city ended closed-off management by the end of November 2022, leading to exposure to SARS-CoV-2. Despite most hospitalized patients being infected or co-infected with SARS-CoV-2, some remained uninfected. We report two cases of bacterial pneumonia with elevated globulin levels not infected with SARS-CoV-2, aiming to identify protection factors of SARS-CoV-2 infection and provide a scientific basis for SARS-CoV-2 prevention. Case presentation Case 1, a 92-year-old male, admitted on October 21, 2022, developed worsening cough and sputum after aspiration, diagnosed with bacterial pneumonia with Pseudomonas aeruginosa, Escherichia coli (CRE) and carbapenem-resistant Acinetobacter baumannii (CRAB) infections. He was treated with imipenem anti-infective therapy and mechanical ventilation, then switched to a combination of meropenem, voriconazole and amikacin anti-infective therapy due to recurrent infections and septic shock, and died of sepsis on 8 January 2023. Case 2 is an 82-year-old male admitted on 30 September 2022, with recurrent cough, sputum, and shortness of breath, diagnosed with bacterial pneumonia with carbapenem-resistant Klebsiella pneumoniae (CRKP) and Mycobacterium pneumoniae infections. He was treated with ventilator-assisted ventilation, meropenem, amikacin, tigecycline and mucomycin nebulization and discharged with improvement on 26 October. He was readmitted on 21 November 2022 and diagnosed with bacterial pneumonia. He was treated with cefoperazone sulbactam, amikacin, meropenem and fluconazole and discharged on 31 December. Neither patient was infected with SARS-CoV-2 during hospitalization. Notably, their globulin levels were elevated before SARS-CoV-2 exposure, gradually decreasing afterward. Conclusions Patients with bacterial pneumonia with high globulin levels likely have large amounts of immunoglobulin, and that immunoglobulin cross-reactivity causes this protein to be involved in clearing SARS-CoV-2 and preventing infection. Therefore, bacterial pneumonia patients with high globulin levels included in this study were not infected with SARS-CoV-2. After exposure to SARS-CoV-2, the amount of globulin in the patient's body was reduced because it was used to clear SARS-CoV-2. The results of this study are expected to provide a theoretical basis for the study of the mechanism of prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Qi Zhong
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qiu-Mei Lin
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Hong-Bin Long
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Cai-Xia Liao
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiao-Xiao Sun
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Miao-du Yang
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zhi-Hao Zhang
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yi-Hua Huang
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shi-Min Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhao-Shou Yang
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Giugliano R, Ferraro V, Chianese A, Della Marca R, Zannella C, Galdiero F, Fasciana TMA, Giammanco A, Salerno A, Cannillo J, Rotondo NP, Lentini G, Cavalluzzi MM, De Filippis A, Galdiero M. Antiviral Properties of Moringa oleifera Leaf Extracts against Respiratory Viruses. Viruses 2024; 16:1199. [PMID: 39205173 PMCID: PMC11359668 DOI: 10.3390/v16081199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Moringa oleifera (M. oleifera) is a plant widely used for its beneficial properties both in medical and non-medical fields. Because they produce bioactive metabolites, plants are a major resource for drug discovery. In this study, two different cultivars of leaves of M. oleifera (Salento and Barletta) were obtained by maceration or microwave-assisted extraction (MAE). We demonstrated that extracts obtained by MAE exhibited a lower cytotoxic profile compared to those obtained by maceration at concentrations ranged from 25 to 400 µg/mL, on both Vero CCL-81 and Vero/SLAM cells. We examined their antiviral properties against two viruses, i.e., the human coronavirus 229E (HCoV-229E) and measles virus (MeV), which are both responsible for respiratory infections. The extracts were able to inhibit the infection of both viruses and strongly prevented their attack and entry into the cells in a range of concentrations from 50 to 12 µg/mL. Particularly active was the variety of Salento that registered a 50% inhibitory concentration (IC50) at 21 µg/mL for HCoV-229E and at 6 µg/mL for MeV. We identified the presence of several compounds through high performance liquid chromatography (HPLC); in particular, chlorogenic and neochlorogenic acids, quercetin 3-O-β-d-glucopyranoside (QGP), and glucomoringin (GM) were mainly observed. In the end, M. oleifera can be considered a promising candidate for combating viral infections with a very strong action in the early stages of viral life cycle, probably by destructuring the viral particles blocking the virus-cell fusion.
Collapse
Affiliation(s)
- Rosa Giugliano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Valeria Ferraro
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Francesca Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Teresa M. A. Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (T.M.A.F.); (A.G.)
| | - Anna Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (T.M.A.F.); (A.G.)
| | - Antonio Salerno
- Forza Vitale, Via Castel del Monte, 194/C, 70033 Corato, Italy; (A.S.); (J.C.)
| | - Joseph Cannillo
- Forza Vitale, Via Castel del Monte, 194/C, 70033 Corato, Italy; (A.S.); (J.C.)
| | - Natalie Paola Rotondo
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Giovanni Lentini
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| |
Collapse
|
4
|
Piazzesi A, Pane S, Del Chierico F, Romani L, Campana A, Palma P, Putignani L. The pediatric gut bacteriome and virome in response to SARS-CoV-2 infection. Front Cell Infect Microbiol 2024; 14:1335450. [PMID: 38318164 PMCID: PMC10839054 DOI: 10.3389/fcimb.2024.1335450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Since the beginning of the SARS-CoV-2 pandemic in early 2020, it has been apparent that children were partially protected from both infection and the more severe forms of the disease. Many different mechanisms have been proposed to explain this phenomenon, including children's frequent exposure to other upper respiratory infections and vaccines, and which inflammatory cytokines they are more likely to produce in response to infection. Furthermore, given the presence of SARS-CoV-2 in the intestine and its ability to infect enterocytes, combined with the well described immunomodulatory capabilities of the microbiome, another potential contributing factor may be the presence of certain protective microbial members of the gut microbiota (GM). Methods We performed shotgun metagenomic sequencing and profiled both the bacteriome and virome of the GM of pediatric SARS-CoV-2 patients compared to healthy, age-matched subjects. Results We found that, while pediatric patients do share some pro-inflammatory microbial signatures with adult patients, they also possess a distinct microbial signature of protective bacteria previously found to be negatively correlated with SARS-CoV-2 infectivity and COVID-19 severity. COVID-19 was also associated with higher fecal Cytomegalovirus load, and with shifts in the relative abundances of bacteriophages in the GM. Furthermore, we address how the preventative treatment of COVID-19 patients with antibiotics, a common practice especially in the early days of the pandemic, affected the bacteriome and virome, as well as the abundances of antimicrobial resistance and virulence genes in these patients. Discussion To our knowledge, this is the first study to address the bacteriome, virome, and resistome of pediatric patients in response to COVID-19 and to preventative antibiotics use.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Lorenza Romani
- Infectious Diseases Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Palma
- Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|