1
|
Laurén I, Farzan A, Teotia A, Lindfors NC, Seppälä J. Direct ink writing of biocompatible chitosan/non-isocyanate polyurethane/cellulose nanofiber hydrogels for wound-healing applications. Int J Biol Macromol 2024; 259:129321. [PMID: 38218294 DOI: 10.1016/j.ijbiomac.2024.129321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
The demand for new biocompatible and 3D printable materials for biomedical applications is on the rise. Ideally, such materials should exhibit either biodegradability or recyclability, possess antibacterial properties, and demonstrate remarkable biocompatibility with no cytotoxic effects. In this research, we synthesized biocompatible and 3D printable hydrogels tailored for biomedical applications, such as wound healing films, by combining antibacterial double-quaternized chitosan (DQC) with cystamine-based non-isocyanate polyurethane (NIPU-Cys) - a material renowned for enhancing both the flexibility and mechanical properties of the hydrogels. To improve the rheological behavior, swelling attributes, and printability, cellulose nanofibrils were introduced into the matrix. We investigated the impact of DQC on degradability, swelling capacity, rheological behavior, printability, and cell biocompatibility. The slightly cytotoxic nature associated with quaternary chitosan was evaluated, and the optimal concentration of DQC in the hydrogel was determined to ensure biocompatibility. The resulting hydrogels were found to be suitable materials for 3D printing via a direct ink writing technique (DIW), producing porous, biocompatible hydrogels endowed with valuable attributes suitable for various wound-healing applications.
Collapse
Affiliation(s)
- Isabella Laurén
- Polymer Technology, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Afsoon Farzan
- Polymer Technology, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Arun Teotia
- Polymer Technology, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Nina C Lindfors
- Department of Hand Surgery, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland.
| |
Collapse
|
2
|
Feng Z, Zhao W, Jin L, Zhang J, Xue B, Ni Y. Environmentally friendly strategy to access self-healable, reprocessable and recyclable chitin, chitosan, and sodium alginate based polysaccharide-vitrimer hybrid materials. Int J Biol Macromol 2023; 240:124531. [PMID: 37085067 DOI: 10.1016/j.ijbiomac.2023.124531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Abstract
Natural polysaccharides show enviable advantages for preparation of sustainable hybrid materials. However, in most cases, complex chemical modifications of natural polysaccharides are required, which not only causes changes of the inherent properties of polysaccharides, but also increases the manufacturing costs of the final materials. Therefore, it is highly desired to develop efficient and low-cost ways to access polysaccharides-containing hybrid materials. In this work, we report the environmentally friendly preparation of a new kind of polysaccharide-based materials, called polysaccharide-vitrimer hybrid materials, for the first time. The vitrimer synthesis and hybridization with polysaccharides can be achieved via a convenient one-pot method in absence of solvent and catalyst. In addition, time-consuming and labor-intensive physical/chemical modifications of natural polysaccharides are completely avoided. The resultant hybrid materials show good mechanical performance (tensile toughness is up to 13.7 MJ/m3), high thermal stability (Td,max is up to 457 °C), fast self-healing ability (self-healing efficiency is up to 99 % within 20s at 80 °C) and excellent reprocessability and recyclability (at least three cycles). Especially, conductive polysaccharide-vitrimer hybrid materials could be readily prepared from the resultant materials, exhibiting novel applications as flexible sensors and electromagnetic shielding materials (the EMI SE is up to 24.93 dB).
Collapse
Affiliation(s)
- Zihao Feng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Key Laboratory of Paper Based Functional Materials, China National Light Industry, Xi'an 710021, PR China; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an 710021, PR China
| | - Wei Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Key Laboratory of Paper Based Functional Materials, China National Light Industry, Xi'an 710021, PR China; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an 710021, PR China.
| | - Liuping Jin
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Key Laboratory of Paper Based Functional Materials, China National Light Industry, Xi'an 710021, PR China; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an 710021, PR China
| | - Jiarong Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Bailiang Xue
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Key Laboratory of Paper Based Functional Materials, China National Light Industry, Xi'an 710021, PR China; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an 710021, PR China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, New Brunswick, Canada; Department of Chemical and biomedical Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
3
|
Polyols and Polyurethane Foams Based on Water-Soluble Chitosan. Polymers (Basel) 2023; 15:polym15061488. [PMID: 36987267 PMCID: PMC10054696 DOI: 10.3390/polym15061488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
At present, majority of polyols used in the synthesis of polyurethane foams are of petrochemical origin. The decreasing availability of crude oil imposes the necessity to convert other naturally existing resources, such as plant oils, carbohydrates, starch, or cellulose, as substrates for polyols. Within these natural resources, chitosan is a promising candidate. In this paper, we have attempted to use biopolymeric chitosan to obtain polyols and rigid polyurethane foams. Four methods of polyol synthesis from water-soluble chitosan functionalized by reactions of hydroxyalkylation with glycidol and ethylene carbonate with variable environment were elaborated. The chitosan-derived polyols can be obtained in water in the presence of glycerol or in no-solvent conditions. The products were characterized by IR, 1H-NMR, and MALDI-TOF methods. Their properties, such as density, viscosity, surface tension, and hydroxyl numbers, were determined. Polyurethane foams were obtained from hydroxyalkylated chitosan. The foaming of hydroxyalkylated chitosan with 4,4′-diphenylmethane diisocyanate, water, and triethylamine as catalysts was optimized. The four types of foams obtained were characterized by physical parameters such as apparent density, water uptake, dimension stability, thermal conductivity coefficient, compressive strength, and heat resistance at 150 and 175 °C. It has been found that the obtained materials had most of the properties similar to those of classic rigid polyurethane foams, except for an increased thermal resistance up to 175 °C. The chitosan-based polyols and polyurethane foams obtained from them are biodegradable: the polyol is completely biodegraded, while the PUF obtained thereof is 52% biodegradable within 28 days in the soil biodegradation oxygen demand test.
Collapse
|
4
|
Piotrowska-Kirschling A, Brzeska J. The Effect of Chitosan on the Chemical Structure, Morphology, and Selected Properties of Polyurethane/Chitosan Composites. Polymers (Basel) 2020; 12:polym12051205. [PMID: 32466336 PMCID: PMC7285005 DOI: 10.3390/polym12051205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 01/30/2023] Open
Abstract
Materials science is an interdisciplinary area of studies. This science focuses on the influence of the physico-chemical properties of materials on their application in human everyday lives. The materials’ synthesis should be developed in accordance with sustainable development. Polyurethanes (PUR) represent a significant consumption of plastic in the world. Modification of PUR, e.g., with polysaccharide of natural origin (chitosan, Chit), should have a positive effect on their functional properties and degradability in the natural environment. The basic parameters affecting the scope and direction of changes are the size and quantity of the chitosan particles. The impact assessment of chitosan on the chemical structure, morphology, thermal properties, crystallinity, mechanical properties, flammability, water sorption, adsorption properties, degradability, and biological activity of PUR/Chit composites (without other additives) is discussed in this article. To the best of our knowledge, recent literature does not contain a study discussing the direct impact of the presence of chitosan in the structure of PUR/Chit composite on its properties, regardless of the intended uses. This paper provides an overview of publications, which presents the results of a study on the effect of adding chitosan in polyurethane/chitosan composites without other additives on the properties of polyurethane.
Collapse
|
5
|
Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. Int J Biol Macromol 2018; 111:485-492. [DOI: 10.1016/j.ijbiomac.2018.01.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/27/2017] [Accepted: 01/05/2018] [Indexed: 11/20/2022]
|
6
|
Muzaffar S, Bhatti IA, Zuber M, Bhatti HN, Shahid M. Synthesis, characterization and efficiency evaluation of chitosan-polyurethane based textile finishes. Int J Biol Macromol 2016; 93:145-155. [DOI: 10.1016/j.ijbiomac.2016.08.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
|
7
|
Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int J Biol Macromol 2016; 86:630-45. [DOI: 10.1016/j.ijbiomac.2016.02.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 01/30/2023]
|
8
|
Longfang R, Na W, Xuechuan W. Study on the preparation of PU/HBP-NH2blend film and its properties. J Appl Polym Sci 2014. [DOI: 10.1002/app.41383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ren Longfang
- Key Laboratory of Chemistry and Technology for Light Chemical Industry; Ministry of Education, Shaanxi University of Science and Technology; 710021 Shaanxi Xi'an China
| | - Wang Na
- Key Laboratory of Chemistry and Technology for Light Chemical Industry; Ministry of Education, Shaanxi University of Science and Technology; 710021 Shaanxi Xi'an China
| | - Wang Xuechuan
- Key Laboratory of Chemistry and Technology for Light Chemical Industry; Ministry of Education, Shaanxi University of Science and Technology; 710021 Shaanxi Xi'an China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Shaanxi University of Science and Technology; 710021 Shaanxi Xi'an China
| |
Collapse
|
9
|
INFLUENCES OF THERMODYNAMIC PROPERFIES OF BPU/PLLA/DO BLENDS ON FORMATION AND STRUCTURE OF THEIR MEMBRANES. ACTA POLYM SIN 2012. [DOI: 10.3724/sp.j.1105.2012.11122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zuo DY, Yan-Wang, Xu WL, Liu HT. Effects of Polyvinylpyrrolidone on Structure and Performance of Composite Scaffold of Chitosan Superfine Powder and Polyurethane. ADVANCES IN POLYMER TECHNOLOGY 2011. [DOI: 10.1002/adv.20254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Singh J, Dutta PK. Antibacterial and Physiochemical Behavior of Prepared Chitosan/pyridine-3,5-di-carboxylic Acid Complex for Biomedical Applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2011. [DOI: 10.1080/10601325.2011.544959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|