1
|
Watanabe K, Sato K, Komatsu S, Sugiyama K, Kumano M, Fujimura T. FAB-MS Measurement of 2-Hydroxyestrone and Monosaccharides Assisted by 4-Pyridineboronic Ester Derivatization. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Sato K, Watanabe K, Sugiyama K, Komatsu S, Fujimura T. Electrochemical Cleavage of the Carbon-Boron Bond in p-Acetamidophenylboronic Acid at Neutral pH Conditions. Chem Pharm Bull (Tokyo) 2021; 69:1206-1208. [PMID: 34853288 DOI: 10.1248/cpb.c21-00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herein, it is reported that p-acetamidophenylboronic acid can be electrolytic cleavage of the carbon-boron bond to p-acetamidophenol at an electric potential of 1.2 V vs. Ag/AgCl in 100 mM phosphate buffer of pH 7.4 (containing 10% acetonirile). The electrochemical reaction was investigated by HPLC, LC with tandem mass spectrometry, and cyclic voltammetry. This electrochemical reaction could be useful in the development of electrical controlled drug delivery systems under neutral pH conditions.
Collapse
Affiliation(s)
- Katsuhiko Sato
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University.,Department of Creative Engineering, National Institute of Technology, Tsuruoka College
| | - Kazuhiro Watanabe
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | - Kyoko Sugiyama
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | - Sachiko Komatsu
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | - Tsutomu Fujimura
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
3
|
Li L, Li Y, Qin W, Qian Y. Potentiometric detection of glucose based on oligomerization with a diboronic acid using polycation as an indicator. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4422-4428. [PMID: 32924037 DOI: 10.1039/d0ay01399d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel potentiometric sensor for d-glucose (Glu) using 4,4'-biphenyldiboronic acid as a receptor and polyion (poly-N-(3-aminopropyl)methacrylamide, PAPMA) as an indicator is described. The diboronic acid condenses with Glu via its two cis-diol units to form cyclic or linear oligomeric polyanions which can interact electrostatically with PAPMA, thus efficiently decreasing its potentiometric response on a polycation-sensitive membrane electrode. Although d-fructose (Fru), d-galactose (Gal) and d-mannose (Man) show even higher binding affinities to the diboronic acid as compared to Glu, these monosaccharides with only one cis-diol unit cannot oligomerize with the receptor, which efficiently excludes the interferences from the Glu's stereoisomers. The results obtained from blood sample analysis indicate that the proposed sensor is promising for detection of Glu in real-world applications.
Collapse
Affiliation(s)
- Long Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | |
Collapse
|
4
|
Dehghani B, Salami Hosseini M, Salami-Kalajahi M. Neutral pH monosaccharide receptor based on boronic acid decorated poly(2-hydroxyethyl methacrylate): Spectral Methods for determination of glucose-binding and ionization constants. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105112] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Electrochemical Oxidation of Amines Using a Nitroxyl Radical Catalyst and the Electroanalysis of Lidocaine. Catalysts 2018. [DOI: 10.3390/catal8120649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The nitroxyl radical of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) can electro-oxidize not only alcohols but also amines. However, TEMPO has low activity in a neutral aqueous solution due to the large steric hindrance around the nitroxyl radical, which is the active site. Therefore, nortropine N-oxyl (NNO) was synthesized to improve the catalytic ability of TEMPO and to investigate the electrolytic oxidation effect on amines from anodic current changes. Ethylamine, diethylamine, triethylamine, tetraethylamine, isopropylamine, and tert-butylamine were investigated. The results indicated that TEMPO produced no response current for any of the amines under physiological conditions; however, NNO did function as an electrolytic oxidation catalyst for diethylamine, triethylamine, and isopropylamine. The anodic current depended on amine concentration, which suggests that NNO can be used as an electrochemical sensor for amine compounds. In addition, electrochemical detection of lidocaine, a local anesthetic containing a tertiary amine structure, was demonstrated using NNO with a calibration curve of 0.1–10 mM.
Collapse
|
6
|
Kong TT, Zhao Z, Li Y, Wu F, Jin T, Tang BZ. Detecting live bacteria instantly utilizing AIE strategies. J Mater Chem B 2018; 6:5986-5991. [PMID: 32254718 DOI: 10.1039/c8tb01390j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of biosensor molecules evoking fluorescent emission by rotation-restricted binding with bacteria was examined for its applicability in detecting live bacteria instantly. The fluorogens possessed multiple tetraphenylethene (TPE)-cored boronic acids to oligomerize through complexation with cis-diols on bacterial surfaces, resulting in aggregation-induced emission (AIE). The fluorogen having two boronic acid units discriminated between live and dead bacteria by showing AIE activity only with the latter. Live bacteria were instantly detected by consequent treatment with reagents of three and four di-boronates (which showed AIE activity with both live and dead bacteria). This phenomenon may lead to a practical method for live bacteria detection.
Collapse
Affiliation(s)
- Ting Ting Kong
- Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | |
Collapse
|
7
|
Mohsin MA, Haik Y, Abdulrehman T. Glucose-Mediated Insulin Release Carrier. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18050097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Preparation of a PVA/PBA dispersion and its response to glucose, fructose, and hydrogen peroxide. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4135-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Sato K. [Development of Functional Multilayer Nanofilms and Microcapsules Based on Layer-by-Layer Deposition Techniques]. YAKUGAKU ZASSHI 2016; 135:1029-35. [PMID: 26329548 DOI: 10.1248/yakushi.15-00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional multilayer thin films have been prepared by layer-by-layer (LbL) deposition for the development of sensors, separators, and drug delivery systems. In particular, glucose-sensitive LbL films have been widely studied for use as glucose sensors and in glucose-triggered drug delivery systems. In this work, I report on glucose-sensitive LbL films that consist of concanavalin A (ConA), phenylboronic acid (PBA), and glucose oxidase (GOx). ConA/glycogen LbL films were prepared by LbL deposition of ConA and glycogen through a lectin-sugar interaction. Similarly, PBA-modified poly(amidoamine) dendrimer/poly(vinyl alcohol) (PVA) LbL films were prepared through cyclic boronate ester bonds. Both types of films decomposed in the presence of glucose, by the competitive binding of glucose, although these LbL films did not show a satisfactory response to millimolar concentrations of glucose under physiological conditions. PBA-modified poly(allylamine hydrochloride) and PVA films were prepared on a GOx-modified quartz slide. The LbL film was stable over a wide pH range, from 3.0 to 9.0, in the absence of glucose. In contrast, the film decomposed upon exposure to 0.1-10 mM glucose solutions for 60 min at pH 7.4. The glucose-induced decomposition of the film can be explained by the scission of the carbon-boron bond of the PBA residues by hydrogen peroxide, which was produced through the GOx-catalyzed oxidation of glucose. These results suggest this multilayer film may be useful for the development of glucose-sensitive drug delivery systems.
Collapse
Affiliation(s)
- Katsuhiko Sato
- Graduate School of Pharmaceutical Sciences, Tohoku Unicersity
| |
Collapse
|
10
|
Sato K, Nakajima T, Anzai JI. Preparation of poly(methyl methacrylate) microcapsules by in situ polymerization on the surface of calcium carbonate particles. J Colloid Interface Sci 2012; 387:123-6. [DOI: 10.1016/j.jcis.2012.07.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/29/2012] [Indexed: 11/28/2022]
|
11
|
Liu Y, Deng C, Tang L, Qin A, Hu R, Sun JZ, Tang BZ. Specific Detection of d-Glucose by a Tetraphenylethene-Based Fluorescent Sensor. J Am Chem Soc 2010; 133:660-3. [DOI: 10.1021/ja107086y] [Citation(s) in RCA: 524] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Liu
- Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, MoE Key Laboratory of Macromolecule Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Chunmei Deng
- Department of Chemistry, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Li Tang
- Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, MoE Key Laboratory of Macromolecule Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Anjun Qin
- Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, MoE Key Laboratory of Macromolecule Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Rongrong Hu
- Department of Chemistry, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing Zhi Sun
- Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, MoE Key Laboratory of Macromolecule Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
| | - Ben Zhong Tang
- Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, MoE Key Laboratory of Macromolecule Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|