• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4616374)   Today's Articles (3149)   Subscriber (49396)
For: Peng S, Zheng Y, Wu J, Wu Y, Ma Y, Song W, Xi T. Preparation and characterization of degradable oxidized bacterial cellulose reacted with nitrogen dioxide. Polym Bull (Berl) 2011. [DOI: 10.1007/s00289-011-0550-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Number Cited by Other Article(s)
1
Liu G, Zou F, He W, Li J, Xie Y, Ma M, Zheng Y. The controlled degradation of bacterial cellulose in simulated physiological environment by immobilization and release of cellulase. Carbohydr Polym 2023;314:120906. [PMID: 37173043 DOI: 10.1016/j.carbpol.2023.120906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
2
Gomes RJ, Ida EI, Spinosa WA. Bacterial cellulose production by Komagataeibacter hansenii can be improved by successive batch culture. Braz J Microbiol 2023;54:703-713. [PMID: 36800074 PMCID: PMC10235299 DOI: 10.1007/s42770-023-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023]  Open
3
Gomes RJ, Ida EI, Spinosa WA. Nutritional Supplementation with Amino Acids on Bacterial Cellulose Production by Komagataeibacter intermedius: Effect Analysis and Application of Response Surface Methodology. Appl Biochem Biotechnol 2022;194:5017-5036. [PMID: 35687307 DOI: 10.1007/s12010-022-04013-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
4
Nitro-Oxidation Process for Fabrication of Efficient Bioadsorbent from Lignocellulosic Biomass by Combined Liquid-Gas Phase Treatment. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]  Open
5
Chen C, Ding W, Zhang H, Zhang L, Huang Y, Fan M, Yang J, Sun D. Bacterial cellulose-based biomaterials: From fabrication to application. Carbohydr Polym 2022;278:118995. [PMID: 34973797 DOI: 10.1016/j.carbpol.2021.118995] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
6
Hasan N, Lee J, Ahn HJ, Hwang WR, Bahar MA, Habibie H, Amir MN, Lallo S, Son HJ, Yoo JW. Nitric Oxide-Releasing Bacterial Cellulose/Chitosan Crosslinked Hydrogels for the Treatment of Polymicrobial Wound Infections. Pharmaceutics 2021;14:22. [PMID: 35056917 PMCID: PMC8779945 DOI: 10.3390/pharmaceutics14010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 01/15/2023]  Open
7
Hemostatic Dressings Made of Oxidized Bacterial Nanocellulose Membranes. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]  Open
8
Solomevich SO, Dmitruk EI, Bychkovsky PM, Nebytov AE, Yurkshtovich TL, Golub NV. Fabrication of oxidized bacterial cellulose by nitrogen dioxide in chloroform/cyclohexane as a highly loaded drug carrier for sustained release of cisplatin. Carbohydr Polym 2020;248:116745. [PMID: 32919553 DOI: 10.1016/j.carbpol.2020.116745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/28/2023]
9
Gedarawatte STG, Ravensdale JT, Johns ML, Azizi A, Al-Salami H, Dykes GA, Coorey R. Effectiveness of bacterial cellulose in controlling purge accumulation and improving physicochemical, microbiological, and sensorial properties of vacuum-packaged beef. J Food Sci 2020;85:2153-2163. [PMID: 32572986 DOI: 10.1111/1750-3841.15178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/23/2020] [Indexed: 01/15/2023]
10
Luz EPCG, das Chagas BS, de Almeida NT, de Fátima Borges M, Andrade FK, Muniz CR, Castro-Silva II, Teixeira EH, Popat K, de Freitas Rosa M, Vieira RS. Resorbable bacterial cellulose membranes with strontium release for guided bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020;116:111175. [PMID: 32806235 DOI: 10.1016/j.msec.2020.111175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
11
Bacterial Cellulose as a Versatile Platform for Research and Development of Biomedical Materials. Processes (Basel) 2020. [DOI: 10.3390/pr8050624] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]  Open
12
C. L, Zhang SJ, Sheng LY, Xi TF. Comparative evaluation of the biocompatible and physical–chemical properties of poly(lactide-co-glycolide) and polydopamine as coating materials for bacterial cellulose. J Mater Chem B 2019;7:630-639. [DOI: 10.1039/c8tb02456a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
13
Isogai A, Hänninen T, Fujisawa S, Saito T. Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
14
Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials 2018;171:118-132. [PMID: 29684676 DOI: 10.1016/j.biomaterials.2018.04.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 01/08/2023]
15
Hou Y, Wang X, Yang J, Zhu R, Zhang Z, Li Y. Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J Biomed Mater Res A 2018;106:1288-1298. [DOI: 10.1002/jbm.a.36330] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/16/2017] [Accepted: 01/05/2018] [Indexed: 11/09/2022]
16
Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: A review of recent advances. Carbohydr Polym 2017;157:447-467. [DOI: 10.1016/j.carbpol.2016.09.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 12/26/2022]
17
Cacicedo ML, Castro MC, Servetas I, Bosnea L, Boura K, Tsafrakidou P, Dima A, Terpou A, Koutinas A, Castro GR. Progress in bacterial cellulose matrices for biotechnological applications. BIORESOURCE TECHNOLOGY 2016;213:172-180. [PMID: 26927233 DOI: 10.1016/j.biortech.2016.02.071] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/14/2016] [Accepted: 02/17/2016] [Indexed: 05/24/2023]
18
Shi X, Cui Q, Zheng Y, Peng S, Wang G, Xie Y. Effect of selective oxidation of bacterial cellulose on degradability in phosphate buffer solution and their affinity for epidermal cell attachment. RSC Adv 2014. [DOI: 10.1039/c4ra10226f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
19
Cui Q, Zheng Y, Lin Q, Song W, Qiao K, Liu S. Selective oxidation of bacterial cellulose by NO2–HNO3. RSC Adv 2014. [DOI: 10.1039/c3ra44516j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
20
Lai C, Sheng L, Liao S, Xi T, Zhang Z. Surface characterization of TEMPO-oxidized bacterial cellulose. SURF INTERFACE ANAL 2013. [DOI: 10.1002/sia.5306] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
21
Song J, Tang A, Liu T, Wang J. Fast and continuous preparation of high polymerization degree cellulose nanofibrils and their three-dimensional macroporous scaffold fabrication. NANOSCALE 2013;5:2482-2490. [PMID: 23412536 DOI: 10.1039/c3nr33615h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
22
Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D. The Biopolymer Bacterial Nanocellulose as Drug Delivery System: Investigation of Drug Loading and Release using the Model Protein Albumin. J Pharm Sci 2013. [DOI: 10.1002/jps.23385] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA