1
|
Han H, Tang L, Li Y, Li Y, Bi M, Wang J, Wang F, Wang L, Mao J. A multifunctional surgical suture with electroactivity assisted by oligochitosan/gelatin-tannic acid for promoting skin wound healing and controlling scar proliferation. Carbohydr Polym 2023; 320:121236. [PMID: 37659821 DOI: 10.1016/j.carbpol.2023.121236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 09/04/2023]
Abstract
Surgical wound closure is accomplished most frequently with sutures, optimally proceeding rapidly and without complication. However, surgical sutures can trigger foreign body reactions and incite abnormal collagen deposition. Sustained inflammation can result in abnormal wound healing with hypertrophic scar formation. Therefore, evolution of suture material to inhibit inflammation and scar formation is of great clinical significance. In the present study, commercial 3-0 PPDO [poly(p-dioxanone)] suture was used as the base material and modified by adding two layers: a drug-loaded layer and an electroactive layer. The former layer was curcumin (Cur) encapsulated by PLGA [poly (lactic-co-glycolic acid)] and the latter layer was composed of oligochitosan-gelatin/tannic acid/polypyrrole (OCS-GE/TA/PPy). The multifunctional sutures, named S@LC@CGTP, had desirable sustained-drug release properties in vitro where Cur could be released for 8 days due to the action of PLGA. The three-dimensional network structure of OCS-GE/TA ensured S@LC@CGTP against surface cracking and maintained electrical. Furthermore, using an in vivo experiment, S@LC@CGTP could attenuate inflammation and promote scar-free wound healing according to suppression of infiltrating inflammatory cells, down-regulation of TGF-β1 and collagen type I expression, and improved collagen arrangement. Cumulatively, we indicated that S@LC@CGTP suture material has great potential to facilitate optimal, nearly scarless healing of surgical incisions.
Collapse
Affiliation(s)
- Hui Han
- Thyroid Surgery Department, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Liqin Tang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yong Li
- Thyroid Surgery Department, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ming Bi
- General department, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China.
| | - Jun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Li Y, Meng Q, Chen S, Ling P, Kuss MA, Duan B, Wu S. Advances, challenges, and prospects for surgical suture materials. Acta Biomater 2023; 168:78-112. [PMID: 37516417 DOI: 10.1016/j.actbio.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
As one of the long-established and necessary medical devices, surgical sutures play an essentially important role in the closing and healing of damaged tissues and organs postoperatively. The recent advances in multiple disciplines, like materials science, engineering technology, and biomedicine, have facilitated the generation of various innovative surgical sutures with humanization and multi-functionalization. For instance, the application of numerous absorbable materials is assuredly a marvelous progression in terms of surgical sutures. Moreover, some fantastic results from recent laboratory research cannot be ignored either, ranging from the fiber generation to the suture structure, as well as the suture modification, functionalization, and even intellectualization. In this review, the suture materials, including natural or synthetic polymers, absorbable or non-absorbable polymers, and metal materials, were first introduced, and then their advantages and disadvantages were summarized. Then we introduced and discussed various fiber fabrication strategies for the production of surgical sutures. Noticeably, advanced nanofiber generation strategies were highlighted. This review further summarized a wide and diverse variety of suture structures and further discussed their different features. After that, we covered the advanced design and development of surgical sutures with multiple functionalizations, which mainly included surface coating technologies and direct drug-loading technologies. Meanwhile, the review highlighted some smart and intelligent sutures that can monitor the wound status in a real-time manner and provide on-demand therapies accordingly. Furthermore, some representative commercial sutures were also introduced and summarized. At the end of this review, we discussed the challenges and future prospects in the field of surgical sutures in depth. This review aims to provide a meaningful reference and guidance for the future design and fabrication of innovative surgical sutures. STATEMENT OF SIGNIFICANCE: This review article introduces the recent advances of surgical sutures, including material selection, fiber morphology, suture structure and construction, as well as suture modification, functionalization, and even intellectualization. Importantly, some innovative strategies for the construction of multifunctional sutures with predetermined biological properties are highlighted. Moreover, some important commercial suture products are systematically summarized and compared. This review also discusses the challenges and future prospects of advanced sutures in a deep manner. In all, this review is expected to arouse great interest from a broad group of readers in the fields of multifunctional biomaterials and regenerative medicine.
Collapse
Affiliation(s)
- Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Qi Meng
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China; Shandong Academy of Pharmaceutical Science, Jinan, 250101, China.
| |
Collapse
|
3
|
Rivera P, Villegas C, Cabezas R, Pérez B, Torres A, de Dicastillo CL, Garrido L, Galvez P, Araya C, Romero J. Development of PLA suture materials by extrusion, electrospinning and supercritical CO2 impregnation of ibuprofen and naproxen. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
de la Harpe KM, Marimuthu T, Kondiah PPD, Kumar P, Ubanako P, Choonara YE. Synthesis of a novel monofilament bioabsorbable suture for biomedical applications. J Biomed Mater Res B Appl Biomater 2022; 110:2189-2210. [PMID: 35373911 PMCID: PMC9546231 DOI: 10.1002/jbm.b.35069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/07/2022]
Abstract
In this research, a novel bioabsorbable suture that is, monofilament and capable of localized drug delivery, was developed from a combination of natural biopolymers that where not previously applied for this purpose. The optimized suture formulation comprised of sodium alginate (6% wt/vol), pectin (0.1% wt/vol), and gelatin (3% wt/vol), in the presence of glycerol (4% vol/vol) which served as a plasticizer. The monofilament bioabsorbable sutures where synthesized via in situ ionic crosslinking in a barium chloride solution (2% wt/vol). The resulting suture was characterized in terms of mechanical properties, morphology, swelling, degradation, drug release, and biocompatibility, in addition to Fourier-transform infrared (FTIR) spectroscopy, Powder X-ray Diffraction (PXRD) and Differential Scanning Calorimetry (DSC) analysis. The drug loaded and non-drug loaded sutures had a maximum breaking strength of 4.18 and 4.08 N, in the straight configuration and 2.44 N and 2.59 N in the knot configuration, respectively. FTIR spectrum of crosslinked sutures depicted Δ9 cm-1 downward shift for the carboxyl stretching band which was indicative of ionic interactions between barium ions and sodium alginate. In vitro analysis revealed continued drug release for 7 days and gradual degradation by means of surface erosion, which was completed by day 28. Biocompatibility studies revealed excellent hemocompatibility and no cytotoxicity. These results suggest that the newly developed bioabsorbable suture meets the basic requirements of a suture material and provides a viable alternative to the synthetic polymer sutures that are currently on the market.
Collapse
Affiliation(s)
- Kara M. de la Harpe
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Pierre P. D. Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| |
Collapse
|
5
|
Xu L, Liu Y, Zhou W, Yu D. Electrospun Medical Sutures for Wound Healing: A Review. Polymers (Basel) 2022; 14:1637. [PMID: 35566807 PMCID: PMC9105379 DOI: 10.3390/polym14091637] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
With the increasing demand for wound healing around the world, the level of medical equipment is also increasing, but sutures are still the preferred medical equipment for medical personnel to solve wound closures. Compared with the traditional sutures, the nanofiber sutures produced by combining the preparation technology of drug-eluting sutures have greatly improved both mechanical properties and biological properties. Electrospinning technology has attracted more attention as one of the most convenient and simple methods for preparing functional nanofibers and the related sutures. This review firstly discusses the structural classification of sutures and the performance analysis affecting the manufacture and use of sutures, followed by the discussion and classification of electrospinning technology, and then summarizes the relevant research on absorbable and non-absorbable sutures. Finally, several common polymers and biologically active substances used in creating sutures are concluded, the related applications of sutures are discussed, and the future prospects of electrospinning sutures are suggested.
Collapse
Affiliation(s)
- Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Wenhui Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
6
|
Wang G, Dong E, Tang S, Song S. 1,4-Cyclohexanedimethanol-based polyesters derived from biomass: synthesis, thermal properties, crystallization properties, and tensile properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Parikh KS, Omiadze R, Josyula A, Shi R, Anders NM, He P, Yazdi Y, McDonnell PJ, Ensign LM, Hanes J. Ultra-thin, high strength, antibiotic-eluting sutures for prevention of ophthalmic infection. Bioeng Transl Med 2021; 6:e10204. [PMID: 34027091 PMCID: PMC8126818 DOI: 10.1002/btm2.10204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
Sutures are applied almost universally at the site of trauma or surgery, making them an ideal platform to modulate the local, postoperative biological response, and improve surgical outcomes. To date, the only globally marketed drug-eluting sutures are coated with triclosan for antibacterial application in general surgery. Loading drug directly into the suture rather than coating the surface offers the potential to provide drug delivery functionality to microsurgical sutures and achieve sustained drug delivery without increasing suture thickness. However, conventional methods for drug incorporation directly into the suture adversely affect breaking strength. Thus, there are no market offerings for drug-eluting sutures, drug-coated, or otherwise, in ophthalmology, where very thin sutures are required. Sutures themselves help facilitate bacterial infection, and antibiotic eye drops are commonly prescribed to prevent infection after ocular surgeries. An antibiotic-eluting suture may prevent bacterial colonization of sutures and preclude patient compliance issues with eye drops. We report twisting of hundreds of individual drug-loaded, electrospun nanofibers into a single, ultra-thin, multifilament suture capable of meeting both size and strength requirements for microsurgical ocular procedures. Nanofiber-based polycaprolactone sutures demonstrated no loss in strength with loading of 8% levofloxacin, unlike monofilament sutures which lost more than 50% strength. Moreover, nanofiber-based sutures retained strength with loading of a broad range of drugs, provided antibiotic delivery for 30 days in rat eyes, and prevented ocular infection in a rat model of bacterial keratitis.
Collapse
Affiliation(s)
- Kunal S. Parikh
- Center for NanomedicineThe Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of OphthalmologyThe Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Center for Bioengineering Innovation & DesignJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Revaz Omiadze
- Center for NanomedicineThe Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of OphthalmologyThe Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Aditya Josyula
- Center for NanomedicineThe Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Richard Shi
- Center for NanomedicineThe Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nicole M. Anders
- Department of OncologySidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ping He
- Department of OncologySidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Youseph Yazdi
- Center for Bioengineering Innovation & DesignJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Peter J. McDonnell
- Department of OphthalmologyThe Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Laura M. Ensign
- Center for NanomedicineThe Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of OphthalmologyThe Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of OncologySidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Justin Hanes
- Center for NanomedicineThe Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of OphthalmologyThe Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of OncologySidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
8
|
Synthesis of Poly(l-lactide-co-ε-caprolactone) Copolymer: Structure, Toughness, and Elasticity. Polymers (Basel) 2021; 13:polym13081270. [PMID: 33919756 PMCID: PMC8070679 DOI: 10.3390/polym13081270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/02/2022] Open
Abstract
Biodegradable and bioabsorbable polymers have drawn considerable attention because of their mechanical properties that mimic human soft tissue. Poly(l-lactide-co-ε-caprolactone) (PLCL), the copolymer of L-lactic (LA) and ε-caprolactone (CL), has been applied in many tissue engineering and regenerative medicine fields. However, both the synthesis of PLCL and the structure-activity relationship of the copolymer need to be further investigated to allow tuning of different mechanical properties. The synthesis conditions of PLCL were optimized to increase the yield and improve the copolymer properties. The synthetic process was evaluated by while varying the molar ratio of the monomers and polymerization time. The mechanical properties of the copolymer were investigated from the macroscopic and microscopic perspectives. Changes in the polymerization time and feed ratio resulted in the difference in the LA and CL content, which, in turn, caused the PLCL to exhibit different properties. The PLCL obtained with a feed ratio of 1:1 (LA:CL) and a polymerization time of 30 h has the best toughness and elasticity. The developed PLCL may have applications in dynamic mechanical environment, such as vascular tissue engineering.
Collapse
|
9
|
Deng X, Qasim M, Ali A. Engineering and polymeric composition of drug-eluting suture: A review. J Biomed Mater Res A 2021; 109:2065-2081. [PMID: 33830631 DOI: 10.1002/jbm.a.37194] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/14/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Sutures are the most popular surgical implants in the global surgical equipment market. They are used for holding tissues together to achieve wound closure. However, controlling the body's immune response to these "foreign bodies" at site of infection is challenging. Natural polymers such as collagen, silk, nylon, and cotton, and synthetic polymers such as polycaprolactone, poly(lactic-co-glycolic acid), poly(p-dioxanone) and so forth, contribute the robust foundation for the engineering of drug-eluting sutures. The incorporation of active pharmaceutical ingredients (APIs) with polymeric composition of suture materials is an efficient way to reduce inflammatory reaction in the wound site as well as to control bacterial growth, while allowing wound healing. The incorporation of polymeric composition in surgical sutures has been found to add high flexibility as well as excellent physical and mechanical properties. Fabrication processes and polymer materials allow control over drug-eluting profiles to effectively address wound healing requirements. This review outlines and discusses (a) polymer materials and APIs used in suture applications, including absorbable and nonabsorbable sutures; (b) suture structures, such as monofilament, multifilament, barded and smart sutures; and (c) the existing manufacturing techniques for drug-eluting suture production, including electrospinning, melt-extrusion and coating.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering and Nanomedicine (Dunedin), Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Muhammad Qasim
- Centre for Bioengineering and Nanomedicine (Dunedin), Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine (Dunedin), Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Singh M, Jonnalagadda S. Design and characterization of 3D printed, neomycin-eluting poly-L-lactide mats for wound-healing applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:44. [PMID: 33830338 PMCID: PMC8032582 DOI: 10.1007/s10856-021-06509-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/15/2021] [Indexed: 05/04/2023]
Abstract
This study evaluates the suitability of 3D printed biodegradable mats to load and deliver the topical antibiotic, neomycin, for up to 3 weeks in vitro. A 3D printer equipped with a hot melt extruder was used to print bandage-like wound coverings with porous sizes appropriate for cellular attachment and viability. The semicrystalline polyester, poly-l-lactic acid (PLLA) was used as the base polymer, coated (post-printing) with polyethylene glycols (PEGs) of MWs 400 Da, 6 kDa, or 20 kDa to enable manipulation of physicochemical and biological properties to suit intended applications. The mats were further loaded with a topical antibiotic (neomycin sulfate), and cumulative drug-release monitored for 3 weeks in vitro. Microscopic imaging as well as Scanning Electron Microscopy (SEM) studies showed pore dimensions of 100 × 400 µm. These pore dimensions were achieved without compromising mechanical strength; because of the "tough" individual fibers constituting the mat (Young's Moduli of 50 ± 20 MPa and Elastic Elongation of 10 ± 5%). The in vitro dissolution study showed first-order release kinetics for neomycin during the first 20 h, followed by diffusion-controlled (Fickian) release for the remaining duration of the study. The release of neomycin suggested that the ability to load neomycin on to PLLA mats increases threefold, as the MW of the applied PEG coating is lowered from 20 kDa to 400 Da. Overall, this study demonstrates a successful approach to using a 3D printer to prepare porous degradable mats for antibiotic delivery with potential applications to dermal regeneration and tissue engineering. Illustration of the process used to create and characterize 3D printed PLLA mats.
Collapse
Affiliation(s)
- Mahima Singh
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, USciences 600 S 43rd St, Philadelphia, PA, 19143, USA
| | - Sriramakamal Jonnalagadda
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, USciences 600 S 43rd St, Philadelphia, PA, 19143, USA.
| |
Collapse
|
11
|
Jummaat F, Yahya EB, Khalil H.P.S. A, Adnan AS, Alqadhi AM, Abdullah CK, A.K. AS, Olaiya NG, Abdat M. The Role of Biopolymer-Based Materials in Obstetrics and Gynecology Applications: A Review. Polymers (Basel) 2021; 13:633. [PMID: 33672526 PMCID: PMC7923797 DOI: 10.3390/polym13040633] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Biopolymers have gained tremendous attention in many daily life applications, including medical applications, in the past few years. Obstetrics and gynecology are two fields dealing with sensitive parts of the woman's body and her newborn baby, which are normally associated with many issues such as toxicity, infections, and even gene alterations. Medical professions that use screening, examination, pre, and post-operation materials should benefit from a better understanding of each type of material's characteristics, health, and even environmental effects. The underlying principles of biopolymer-based materials for different obstetric and gynecologic applications may discover various advantages and benefits of using such materials. This review presents the health impact of conventional polymer-based materials on pregnant women's health and highlights the potential use of biopolymers as a safer option. The recent works on utilizing different biopolymer-based materials in obstetric and gynecologic are presented in this review, which includes suture materials in obstetric and gynecologic surgeries, cosmetic and personal care products, vaginal health, and drug delivery; as well as a wound dressing and healing materials. This review highlights the main issues and challenges of biopolymers in obstetric and gynecologic applications.
Collapse
Affiliation(s)
- Fauziah Jummaat
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Abdul Khalil H.P.S.
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - A. S. Adnan
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia
| | | | - C. K. Abdullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Atty Sofea A.K.
- Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Jaya, Permatang Pauh 13700, Malaysia;
| | - N. G. Olaiya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Munifah Abdat
- Department of Preventive and Public Health Dentistry, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| |
Collapse
|
12
|
Merrilees M, Buunk N, Zuo N, Larsen N, Karimi S, Tucker N. Use of Stacked Layers of Electrospun L-Lactide/Glycolide Co-Polymer Fibers for Rapid Construction of Skin Sheets. Bioengineering (Basel) 2021; 8:bioengineering8010007. [PMID: 33430199 PMCID: PMC7825689 DOI: 10.3390/bioengineering8010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
This paper describes a novel method for the rapid construction of skin, using multiple layers of aligned electrospun fibers as starting scaffolds. Scaffolds were spun from biodegradable L-lactide/glycolide (molar ratio 10:90) with predominantly parallel arrays of fibers attached peripherally to thin 304 stainless steel layer frames. Each layer frame was held between two thicker support frames. Human skin cells were seeded onto multiple (three–nine) scaffolds. Dermal fibroblasts were seeded on both sides of each scaffold except for one on which keratinocytes were seeded on one side only. Following 48 h of culture, the scaffolds and layer frames were unmounted from their support frames, stacked, with keratinocytes uppermost, and securely held in place by upper and lower support frames to instantly form a multilayered “dermis” and a nascent epidermis. The stack was cultured for a further 5 days during which time the cells proliferated and then adhered to form, in association with the spun fibers, a mechanically coherent tissue. Fibroblasts preferentially elongated in the dominant fiber direction and a two-dimensional weave of alternating fiber and cell alignments could be constructed by selected placement of the layer frames during stacking. Histology of the 7-day tissue stacks showed the organized layers of fibroblasts and keratinocytes immuno-positive for keratin. Electron microscopy showed attachment of fibroblasts to the lactide/glycolide fibers and small-diameter collagen fibers in the extracellular space. This novel approach could be used to engineer a range of tissues for grafting where rapid construction of tissues with aligned or woven layers would be beneficial.
Collapse
Affiliation(s)
- Mervyn Merrilees
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand;
- Correspondence:
| | - Neil Buunk
- Electrospinz Limited, 44 Lee Street, Blenheim 7201, New Zealand;
| | - Ning Zuo
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand;
| | - Nigel Larsen
- Canterbury Agriculture & Science Centre, The NZ Institute for Plant & Food Research Ltd. Lincoln, Gerald Street, Lincoln 7608, New Zealand; (N.L.); (S.K.); (N.T.)
| | - Samaneh Karimi
- Canterbury Agriculture & Science Centre, The NZ Institute for Plant & Food Research Ltd. Lincoln, Gerald Street, Lincoln 7608, New Zealand; (N.L.); (S.K.); (N.T.)
| | - Nick Tucker
- Canterbury Agriculture & Science Centre, The NZ Institute for Plant & Food Research Ltd. Lincoln, Gerald Street, Lincoln 7608, New Zealand; (N.L.); (S.K.); (N.T.)
| |
Collapse
|
13
|
Liu S, Yu J, Li H, Wang K, Wu G, Wang B, Liu M, Zhang Y, Wang P, Zhang J, Wu J, Jing Y, Li F, Zhang M. Controllable Drug Release Behavior of Polylactic Acid (PLA) Surgical Suture Coating with Ciprofloxacin (CPFX)-Polycaprolactone (PCL)/Polyglycolide (PGA). Polymers (Basel) 2020; 12:E288. [PMID: 32024179 PMCID: PMC7077375 DOI: 10.3390/polym12020288] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Polylactic acid (PLA) surgical suture can be absorbed by human body. In order to avoid surgical site infections (SSIs), the drug is usually loaded on the PLA suture, and then the drug can release directly to the wound. Because the different types of wounds heal at different times, it is needed to control the drug release rate of PLA suture to consistent to the wound healing time. Two biopolymers, polyglycolide (PGA) and polycaprolactone (PCL), were selected as the carrier of ciprofloxacin (CPFX) drug, and then the CPFX-PCL/PGA was coated on the PLA suture. The degradation rate of drug-carrier can be controlled by adjusting the proportion of PCL/PGA, which can regulate the rate of CPFX drug release from PLA suture. The results show that the surface of PLA suture, coating with PCL/PGA, was very rough, which led to increased stitching resistance when we were suturing the wound. These materials, such as the PLA suture, the PCL/PGA carriers and the CPFX drug, were just physically mixed rather than chemically reacted, which was very useful for ensuring the original efficacy of CPFX drug. With the increasing of PCL in the carriers, both the breaking strength and elongation of these un-degraded sutures increased. During degradation, the breaking strength of all sutures gradually decreased, and the more PCL in the coating materials, the longer effective strength-time for the suture. With the increasing of PCL in the drug-carrier, the rate of drug releasing became lower. The drug release mechanism of CPFX-PCL/PGA was a synergistic effect of drug diffusion and PCL/PGA carrier dissolution.
Collapse
Affiliation(s)
- Shuqiang Liu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
- Biomedical Textile Laboratory, Taiyuan University of Technology, Jinzhong 030600, China
| | - Juanjuan Yu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Huimin Li
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Kaiwen Wang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Gaihong Wu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Bowen Wang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Mingfang Liu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Yao Zhang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Peng Wang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Jie Zhang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Jie Wu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Yifan Jing
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Fu Li
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
- Biomedical Textile Laboratory, Taiyuan University of Technology, Jinzhong 030600, China
| | - Man Zhang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
- Biomedical Textile Laboratory, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
14
|
Lee EJ, Huh BK, Kim SN, Lee JY, Park CG, Mikos AG, Choy YB. Application of Materials as Medical Devices with Localized Drug Delivery Capabilities for Enhanced Wound Repair. PROGRESS IN MATERIALS SCIENCE 2017; 89:392-410. [PMID: 29129946 PMCID: PMC5679315 DOI: 10.1016/j.pmatsci.2017.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plentiful assortment of natural and synthetic materials can be leveraged to accommodate diverse wound types, as well as different stages of the healing process. An ideal material is envisioned to promote tissue repair with minimal inconvenience for patients. Traditional materials employed in the clinical setting often invoke secondary complications, such as infection, pain, foreign body reaction, and chronic inflammation. This review surveys the repertoire of surgical sutures, wound dressings, surgical glues, orthopedic fixation devices and bone fillers with drug eluting capabilities. It highlights the various techniques developed to effectively incorporate drugs into the selected material or blend of materials for both soft and hard tissue repair. The mechanical and chemical attributes of the resultant materials are also discussed, along with their biological outcomes in vitro and/or in vivo. Perspectives and challenges regarding future research endeavors are also delineated for next-generation wound repair materials.
Collapse
Affiliation(s)
- Esther J. Lee
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Beom Kang Huh
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Se Na Kim
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Jae Yeon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Chun Gwon Park
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
- Department of Chemical and Biomolecular Engineering, Rice University, MS 362, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Young Bin Choy
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Joseph B, George A, Gopi S, Kalarikkal N, Thomas S. Polymer sutures for simultaneous wound healing and drug delivery - A review. Int J Pharm 2017; 524:454-466. [PMID: 28385650 DOI: 10.1016/j.ijpharm.2017.03.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 01/27/2023]
Abstract
Drug delivery using suitable polymeric devices has gathered momentum in the recent years due to their remarkable properties. The versatility of polymeric materials makes them reliable candidates for site targeted drug release. Among them biodegradable sutures has received considerable attention because they offer great promises in the realm of drug delivery. Sutures have been found to be an effective strategy for the delivery of antibacterial agents or anti-inflammatory drugs to the surgical site. Recent developments yielded sutures with improved mechanical properties, but designing sutures with all the desirable properties is still under investigation. This review is an attempt to analyze the recent developments pertaining to biologically active sutures emphasizing their potential as drug delivery vehicle.
Collapse
Affiliation(s)
- Blessy Joseph
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Anne George
- Department of Anatomy, Kottayam Medical College, Kerala, India
| | - Sreeraj Gopi
- Plant Lipids Pvt. Ltd., Kolencherry, Cochin, India
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala, India.
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala, India.
| |
Collapse
|
16
|
Champeau M, Thomassin JM, Tassaing T, Jérôme C. Current manufacturing processes of drug-eluting sutures. Expert Opin Drug Deliv 2017; 14:1293-1303. [DOI: 10.1080/17425247.2017.1289173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mathilde Champeau
- Department of Chemistry, Centre for Education and Research on Macromolecules (CERM), University of Liège, Liège, Belgium
- Department of Chemistry, Institut des Sciences Moléculaires, UMR 5255 CNRS, Université Bordeaux, Groupe Spectroscopie Moléculaire, Talence Cedex, France
| | - Jean-Michel Thomassin
- Department of Chemistry, Centre for Education and Research on Macromolecules (CERM), University of Liège, Liège, Belgium
| | - Thierry Tassaing
- Department of Chemistry, Institut des Sciences Moléculaires, UMR 5255 CNRS, Université Bordeaux, Groupe Spectroscopie Moléculaire, Talence Cedex, France
| | - Christine Jérôme
- Department of Chemistry, Centre for Education and Research on Macromolecules (CERM), University of Liège, Liège, Belgium
| |
Collapse
|
17
|
Li H, Liao H, Bao C, Xiao Y, Wang Q. Preparation and Evaluations of Mangiferin-Loaded PLGA Scaffolds for Alveolar Bone Repair Treatment Under the Diabetic Condition. AAPS PharmSciTech 2017; 18:529-538. [PMID: 27126006 DOI: 10.1208/s12249-016-0536-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/18/2016] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to prepare and evaluate a sustained-release mangiferin scaffold for improving alveolar bone defect repair in diabetes. Mangiferin-loaded poly(D,L-lactide-co-glycolide) (PLGA) scaffolds were prepared using a freeze-drying technique with ice particles as the porogen material. The produced scaffolds were examined using a scanning electron microscope (SEM). Drug content and drug release were detected using a spectrophotometer. Degradation behaviors were monitored as a measure of weight loss and examined using SEM. Then, the scaffolds were incubated with rat bone marrow stromal cells under the diabetic condition in vitro, and cell viability was assessed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Afterward, the scaffolds were implanted into alveolar bone defects of diabetic rats, and bone repair was examined using hematoxylin and eosin staining. The fabricated scaffolds showed porous structures, with average pore size range from 111.35 to 169.45 μm. A higher PLGA concentration led to decreased average pore size. A lower PLGA concentration or a higher mangiferin concentration resulted in increased drug content. The prepared scaffolds released mangiferin in a sustained manner with relatively low initial burst during 10 weeks. Their degradation ratios gradually increased as degradation proceeded. The mangiferin-loaded scaffolds attenuated cell viability decrease under the diabetic condition in vitro. Moreover, they increased histological scorings of bone regeneration and improved delayed alveolar bone defect healing in diabetic rats. These results suggest that the produced mangiferin-loaded scaffolds may provide a potential approach in the treatment of impaired alveolar bone healing in diabetes.
Collapse
|
18
|
Zhang Z, Wang X, Zhu R, Wang Y, Li B, Ma Y, Yin Y. Synthesis and characterization of serial random and block-copolymers based on lactide and glycolide. POLYMER SCIENCE SERIES B 2016. [DOI: 10.1134/s1560090416060191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Dennis C, Sethu S, Nayak S, Mohan L, Morsi YY, Manivasagam G. Suture materials - Current and emerging trends. J Biomed Mater Res A 2016; 104:1544-59. [DOI: 10.1002/jbm.a.35683] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/07/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Christopher Dennis
- Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University; Vellore Tamil Nadu 632014 India
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation; Bangalore Karnataka 560099 India
| | - Sunita Nayak
- Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University; Vellore Tamil Nadu 632014 India
- School of Bio Sciences and Technology, VIT University; Vellore Tamil Nadu 632014 India
| | - Loganathan Mohan
- Surface Engineering Division; CSIR - National Aerospace Laboratories; Bangalore Karnataka 560017 India
| | - Yosry Yos Morsi
- Biomechanical and Tissue Engineering Labs, Faculty of Science, Engineering and Technology, Swinburne University of Technology; Australia
| | - Geetha Manivasagam
- Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University; Vellore Tamil Nadu 632014 India
| |
Collapse
|
20
|
Popovici D, Barzic AI, Barzic RF, Vasilescu DS, Hulubei C. Semi-alicyclic polyimide precursors: structural, optical and biointerface evaluations. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1495-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|