Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites.
Polymers (Basel) 2018;
10:polym10121363. [PMID:
30961288 PMCID:
PMC6401737 DOI:
10.3390/polym10121363]
[Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/28/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022] Open
Abstract
Over the past decades, research has escalated on the use of polylactic acid (PLA) as a replacement for petroleum-based polymers. This is due to its valuable properties, such as renewability, biodegradability, biocompatibility and good thermomechanical properties. Despite possessing good mechanical properties comparable to conventional petroleum-based polymers, PLA suffers from some shortcomings such as low thermal resistance, heat distortion temperature and rate of crystallization, thus different fillers have been used to overcome these limitations. In the framework of environmentally friendly processes and products, there has been growing interest on the use of cellulose nanomaterials viz. cellulose nanocrystals (CNC) and nanofibers (CNF) as natural fillers for PLA towards advanced applications other than short-term packaging and biomedical. Cellulosic nanomaterials are renewable in nature, biodegradable, eco-friendly and they possess high strength and stiffness. In the case of eco-friendly processes, various conventional processing techniques, such as melt extrusion, melt-spinning, and compression molding, have been used to produce PLA composites. This review addresses the critical factors in the manufacturing of PLA-cellulosic nanomaterials by using conventional techniques and recent advances needed to promote and improve the dispersion of the cellulosic nanomaterials. Different aspects, including morphology, mechanical behavior and thermal properties, as well as comparisons of CNC- and CNF-reinforced PLA, are also discussed.
Collapse