1
|
Du M, Xu Z, Xue Y, Li F, Bi J, Liu J, Wang S, Guo X, Zhang P, Yuan J. Application Prospect of Ion-Imprinted Polymers in Harmless Treatment of Heavy Metal Wastewater. Molecules 2024; 29:3160. [PMID: 38999112 PMCID: PMC11243660 DOI: 10.3390/molecules29133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
With the rapid development of industry, the discharge of heavy metal-containing wastewater poses a significant threat to aquatic and terrestrial environments as well as human health. This paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and focuses on the interaction between template ions and functional monomers. We summarized the current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by ion-imprinted technology and explores its prospects for application.
Collapse
Affiliation(s)
- Mengzhen Du
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Zihao Xu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Yingru Xue
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Fei Li
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jingtao Bi
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jie Liu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Shizhao Wang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Xiaofu Guo
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Panpan Zhang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Junsheng Yuan
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| |
Collapse
|
2
|
Zheng D, Wang K, Bai B. A critical review of sodium alginate-based composites in water treatment. Carbohydr Polym 2024; 331:121850. [PMID: 38388034 DOI: 10.1016/j.carbpol.2024.121850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
The global freshwater crisis is a pressing issue, especially in areas with little rainfall and inner continental regions. The growing attention to water scarcity has induced increased interest in research on advanced water treatment technologies. As an abundant bioactive material in nature, sodium alginate (SA) has been widely used in water management due to its outstanding water absorption and holding ability, reversible swelling property, and pollutant adsorption performance. Building on this, progress made in using various modified forms of SA to access clean water is addressed in this review. Covering studies concern the adsorption and separation of pollutants in wastewater by SA-based absorbents and freshwater harvesting by SA-based collectors. This review explores SA-based composites' composition-structure-construction designs and emphasizes the impact of materials like inorganic materials, functional polymers, and porous matrices and how they can be exploited for water treatment. It also highlights the mechanisms of contaminants adsorption and freshwater desorption of SA-based composites. Finally, the shortcomings and future orientation of SA-based composites are proposed, including performance optimization, structural modification, application expansion, and mechanism in-depth investigation. This review aims to offer a theoretical basis and technical guidance for the use of natural materials to respond to the shortage of freshwater resources.
Collapse
Affiliation(s)
- Dan Zheng
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Kai Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Bo Bai
- School of Water and Environment, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
3
|
Guerrero JD, Marchesini FA, Ulla MA, Gutierrez LB. Effect of biocomposite production factors on the development of an eco-friendly chitosan/alginate-based adsorbent with enhanced copper removal efficiency. Int J Biol Macromol 2023; 253:126416. [PMID: 37633556 DOI: 10.1016/j.ijbiomac.2023.126416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Nowadays, wastewater treatment is a critical concern, particularly regarding the removal of heavy metals through adsorption methods. Extensive research has been conducted on obtaining high-yield and environmentally friendly adsorbents. Natural polymer adsorbents especially have shown promise in ion and organic molecule adsorption. To enhance the practical applicability of adsorbents, the combination of biopolymers to form biocomposites is a promising alternative. In this study, adsorbents based on a 1:1 wt./wt. of chitosan (CS) and alginate (SA) were prepared. The influence of the regeneration route and drying conditions on the copper adsorption capacity was investigated, along with reaction parameters such as contact time, adsorbent particle size, and pH. The highest adsorption capacity was observed in the composite material obtained through a one-pot regeneration process and freeze-dried. The CSAR3L sample exhibited a remarkable adsorption capacity of 288 mg Cu(II)/g after 360 min at 25 °C. The synergistic effect between the CS and SA precursors was confirmed by analyzing the individual precursors and their mechanical mixture. The initial adsorption rates at pH 6 followed the order: CSAR3-L > Bk-CSR3L > Bk-SAR3L + Bk-CSR3L > Bk-SAR3L. The physicochemical and morphological properties of the materials were studied by FTIR, XRD, DLS, XPS, optical microscopy, EDS-SEM, elemental chemical analysis, and TGA-DTG. The utilization of different drying methods resulted in the formation of calcium carbonate crystalline phases in the as-prepared materials, thus creating substantial adsorption active sites. After the adsorption process, hydroxylated copper sulfate phases and a significant decrease in calcium concentration were observed, indicating that an ion exchange adsorption mechanism occurred. The analysis of adsorption kinetics and the shape of the adsorption isotherms, in agreement with the characterization results, suggested the presence of multiple active sites and the formation of a chemisorption monolayer.
Collapse
Affiliation(s)
- Jhonnys D Guerrero
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina
| | - Fernanda A Marchesini
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina
| | - María A Ulla
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina
| | - Laura B Gutierrez
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina.
| |
Collapse
|
4
|
Lazar MM, Ghiorghita CA, Dragan ES, Humelnicu D, Dinu MV. Ion-Imprinted Polymeric Materials for Selective Adsorption of Heavy Metal Ions from Aqueous Solution. Molecules 2023; 28:molecules28062798. [PMID: 36985770 PMCID: PMC10055817 DOI: 10.3390/molecules28062798] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The introduction of selective recognition sites toward certain heavy metal ions (HMIs) is a great challenge, which has a major role when the separation of species with similar physicochemical features is considered. In this context, ion-imprinted polymers (IIPs) developed based on the principle of molecular imprinting methodology, have emerged as an innovative solution. Recent advances in IIPs have shown that they exhibit higher selectivity coefficients than non-imprinted ones, which could support a large range of environmental applications starting from extraction and monitoring of HMIs to their detection and quantification. This review will emphasize the application of IIPs for selective removal of transition metal ions (including HMIs, precious metal ions, radionuclides, and rare earth metal ions) from aqueous solution by critically analyzing the most relevant literature studies from the last decade. In the first part of this review, the chemical components of IIPs, the main ion-imprinting technologies as well as the characterization methods used to evaluate the binding properties are briefly presented. In the second part, synthesis parameters, adsorption performance, and a descriptive analysis of solid phase extraction of heavy metal ions by various IIPs are provided.
Collapse
Affiliation(s)
- Maria Marinela Lazar
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ecaterina Stela Dragan
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
5
|
Bagheri AR, Aramesh N, Lee HK. Chitosan- and/or cellulose-based materials in analytical extraction processes: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Vedula SS, Yadav GD. Synthesis and application of environment friendly membranes of chitosan and chitosan-PTA for removal of copper (II) from wastewater. Chem Ind 2022. [DOI: 10.1080/00194506.2022.2093636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shivani S. Vedula
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Ganapati D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
7
|
Ali I, Zakaria E, Khalil M, El-Tantawy A, El-Saied F. Synthesis of ion-imprinted polymers based on chitosan for high selectivity of La(III), Ce(III) and Sm(III) via solid phase extraction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Chitosan–collagen/hydroxyapatite and tripolyphosphate nanocomposite: characterization and application for copper removal from aqueous solution. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03998-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Synergistic DFT-guided design and microfluidic synthesis of high-performance ion-imprinted biosorbents for selective heavy metal removal. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Teng Y, Jiang Z, Yu A, Yu H, Huang Z, Zou L. Optimization of preparation parameters for environmentally friendly attapulgite functionalized by chitosan and its adsorption properties for Cd 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44064-44078. [PMID: 33843002 DOI: 10.1007/s11356-021-13788-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/30/2021] [Indexed: 05/28/2023]
Abstract
This work focused on using attapulgite and chitosan as raw materials to improve the adsorption capacity of Cd2+ from the aqueous phase by optimizing the preparation experimental parameters. The modification parameters (attapulgite-chitosan mass ratio, calcination temperature, and time) were specifically studied and optimized. The results indicated that the mass ratio of attapulgite to chitosan was 1:4, the calcination temperature was 300 °C, and the calcination time was 1 h. Both raw and functionalized attapulgite samples were characterized by nitrogen adsorption-desorption isotherms at 77 K, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and zeta potential analysis. A series of adsorption experiments showed that the pseudo-second-order kinetic model and Langmuir adsorption isotherm better corresponded with the adsorption characteristics of the newly prepared adsorbent, and the maximum adsorption amount of Cd2+ was 109.30 mg/g. Moreover, the effects of the pH value and coexisting cations on the Cd2+ adsorption in aqueous solution were investigated. Adsorption mechanism of Cd2+ on adsorbent might attribute to complexation, ion exchange reaction, and self-polarization.
Collapse
Affiliation(s)
- Yue Teng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China.
| | - Ziyang Jiang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - An Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Hongyan Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Zhenxing Huang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China
| | - Luyi Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
11
|
Liu E, Lin X, Zhang D, Xu W, Shi J, Hong Y. Preparation of an ion imprinted chitosan-based porous film with an interpenetrating network structure for efficient selective adsorption of Gd( iii). NEW J CHEM 2021. [DOI: 10.1039/d0nj04959j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, a new Gd(III) ion imprinted CS-based porous film with interpenetrating network structure was fabricated by a simple polymerization–evaporation approach for the efficient selective adsorption of Gd(III) from aqueous solution.
Collapse
Affiliation(s)
- Enli Liu
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255000
- People's Republic of China
- School of Materials Science and Engineering
| | - Xue Lin
- School of Materials Science and Engineering
- Beihua University
- Jilin 132013
- People's Republic of China
| | - Dan Zhang
- School of Materials Science and Engineering
- Beihua University
- Jilin 132013
- People's Republic of China
| | - Wenbiao Xu
- School of Materials Science and Engineering
- Beihua University
- Jilin 132013
- People's Republic of China
| | - Junyou Shi
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255000
- People's Republic of China
- School of Materials Science and Engineering
| | - Yuanzhi Hong
- School of Materials Science and Engineering
- Beihua University
- Jilin 132013
- People's Republic of China
| |
Collapse
|
12
|
Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide. Int J Biol Macromol 2020; 165:1286-1295. [DOI: 10.1016/j.ijbiomac.2020.09.244] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022]
|
13
|
Arsenic selective adsorption using a nanomagnetic ion imprinted polymer: Optimization, equilibrium, and regeneration studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
14
|
Liu P, Jia W, Ou X, Liu C, Zhang J, Chen Z, Li X. Study on Synthesis and Adsorption Properties of ReO 4 - Ion-Imprinted Polymer. ACS OMEGA 2020; 5:24356-24366. [PMID: 33015452 PMCID: PMC7528184 DOI: 10.1021/acsomega.0c02634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
In this work, an ion imprinted polymer (ReO4 --IIP) of the perrhenate ion based on acrylamide (AM) and acrylic acid (AA) was prepared by solution polymerization using ReO4 - as a template ion, N,N-methylenebisacrylamide (NMBA) as cross-linkers, hydrogen peroxide-vitamin C (H2O2-Vc) as an initiator, and a mixed solution of water (H2O) and methanol (CH3OH) with volume ratio v(H2O)/v(CH3OH) = 3:7 as a solvent. During the process of synthesis condition investigation and optimization, the adsorption capacity (Q) and the separation degree (R) in the equimolar concentration mixture solutions of NH4ReO4 and KMnO4 were adopted as indexes, and the obtained optimal conditions were as follows: the molar ratios of NMBA, NH4ReO4, AA, H2O2, and Vc to AM were 5.73, 0.052, 1.29, 0.02, and 0.003, and the temperature and time of polymerization were 40 °C and 28 h, respectively. Under optimal conditions, the sample with indexes, Q and R of 0.064 mmol/g and 3.20, were harvested. What is more, a further reusability study found that good adsorption selectivity was maintained after repeating the experiment 9 times. Taking the non-IP prepared under the same conditions as a control, Fourier transform infrared spectroscopy, transmission electron microscopy, and Brunauer Emmett Teller were used to characterize the structure of the ReO4 --IIP prepared under the optimal conditions. Finally, the kinetic study results showed that the zero-order kinetic model could better describe the adsorption process. The thermodynamic study results showed that the Langmuir model was more suitable for describing the isotherm adsorption process of the IIP.
Collapse
Affiliation(s)
- Pu Liu
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
- Baiyin
Research Institute of Novel Materials of Lanzhou University of Technology, Baiyin 730900, Gansu, China
| | - Weiwei Jia
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
| | - Xiaojian Ou
- State
Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchang 737100, Gansu, China
| | - Chunli Liu
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
| | - Jun Zhang
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
| | - Zhenbin Chen
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
| | - Xiaoming Li
- Baiyin
Research Institute of Novel Materials of Lanzhou University of Technology, Baiyin 730900, Gansu, China
| |
Collapse
|
15
|
Applications of Chitosan in Molecularly and Ion Imprinted Polymers. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s42250-020-00177-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Qin L, Zhao Y, Wang L, Zhang L, Kang S, Wang W, Zhang T, Song S. Preparation of ion-imprinted montmorillonite nanosheets/chitosan gel beads for selective recovery of Cu(Ⅱ) from wastewater. CHEMOSPHERE 2020; 252:126560. [PMID: 32222519 DOI: 10.1016/j.chemosphere.2020.126560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
The novel ion-imprinted montmorillonite nanosheets/chitosan (IIMNC) gel beads were prepared for selective adsorption of Cu2+. The IIMNC gel beads were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The results showed that IIMNC was successfully assembled and rich in honeycombed pores, which performed well in the removal of Cu2+ through the synergistic effect of montmorillonite nanosheets and chitosan. The elimination of copper was followed by pseudo-second-order model and was enhanced by introduced montmorillonite nanosheets (MMTNS) because MMTNS attracted Cu(Ⅱ) by its negative charge and provided active adsorption sites through its high performance of cation exchange. This composite gel also showed excellent reusability, performing well in the removal of Cu2+ after undergoing adsorption-desorption in five cycles, because the adsorption sites of MMTNS can be continually reactivated by NaOH solution. More importantly, its high selectivity for Cu2+ provides a feasible way to recover Cu2+ from wastewater containing various cations.
Collapse
Affiliation(s)
- Lei Qin
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yunliang Zhao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Liang Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Lingbo Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Shichang Kang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Wei Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Tingting Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| |
Collapse
|
17
|
Zhang X, Jia W, Li D, Liu C, Wang R, Li K, Li H, Chen Z, Sun Y, Ruso JM, Hu D, Liu Z. Study on synthesis and adsorption properties of ReO4− ion imprinted polymer. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02172-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors – A review. Int J Biol Macromol 2020; 152:437-448. [DOI: 10.1016/j.ijbiomac.2020.02.240] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
|
19
|
Ganglo C, Rui J, Zhu Q, Shan J, Wang Z, Su F, Liu D, Xu J, Guo M, Qian J. Chromium (III) coordination capacity of chitosan. Int J Biol Macromol 2020; 148:785-792. [PMID: 31978470 DOI: 10.1016/j.ijbiomac.2020.01.203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 11/19/2022]
Abstract
Polycationic chitosan has a strong coordination to heavy metal ions due to its multifunctional hydroxyl and amino groups. However, due to the fast and facile dissolution of chitosan in acidic medium, it is difficult to measure the exact adsorption amount or coordination capacity accurately. In this work, a simple method of lyophilization plus ethanol-washing was employed to separate and purify chitosan/Cr(III) complex for further determining the coordination capacity. Meanwhile, the coordination structure of Bridge-chitosan-N(OH)3(H2O) and morphology of regenerated fibrillar sponge of CS/Cr(III) were further certified. The coordination capacity of Cr(III) on chitosan increased with the rising concentration of Cr(III) ions till the maximum coordination capacity was reached up to 355.03 mg/g. The mechanisms and characteristic parameters of the adsorption process were fit using two-parameter isotherm models which revealed the following order (based on the coefficient of determination) of Langmuir > Halsey > Freundlich > Temkin > Dubinin-Radushkevich. A proposed coordination formula of CS/Cr (III) might be a good certificate for the homogeneous chemical combination nature of Cr(III) on the monolayer surface of chitosan in a molecular scale.
Collapse
Affiliation(s)
- Caroline Ganglo
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jilong Rui
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qiufeng Zhu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Jiaqi Shan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhuoying Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Fan Su
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Dagang Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Jianqiang Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mengna Guo
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jun Qian
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science & Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
20
|
Dragan ES, Dinu MV. Advances in porous chitosan-based composite hydrogels: Synthesis and applications. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104372] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Effects of mono-dentate and bi-dentate ligands on adsorption characteristics of Cu-ion-imprinted hybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Ben Arfi R, Karoui S, Mougin K, Ghorbal A. Cetyltrimethylammonium bromide-treated Phragmites australis powder as novel polymeric adsorbent for hazardous Eriochrome Black T removal from aqueous solutions. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2648-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|