1
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
2
|
Kawsar M, Sahadat Hossain M, Alam MK, Bahadur NM, Shaikh MAA, Ahmed S. Synthesis of pure and doped nano-calcium phosphates using different conventional methods for biomedical applications: a review. J Mater Chem B 2024; 12:3376-3391. [PMID: 38506117 DOI: 10.1039/d3tb02846a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The applications of calcium phosphates (hydroxyapatite, tetracalcium phosphate, tricalcium phosphate (alpha and beta), fluorapatite, di-calcium phosphate anhydrous, and amorphous calcium-phosphate) are increasing day by day. Calcium hydroxyapatite, commonly known as hydroxyapatite (HAp), represents a mineral form of calcium apatite. Owing to its close molecular resemblance to the mineral constituents of bones, teeth, and hard tissues, HAp is often employed in the biomedical domain. In addition, it is extensively employed in various sectors such as the remediation of water, air, and soil pollution. The key advantage of HAp lies in its potential to accommodate a wide variety of anionic and cationic substitutions. Nevertheless, HAp and tricalcium phosphate (TCP) syntheses typically involve the use of chemical precursors containing calcium and phosphorus sources and employ diverse techniques, such as solid-state, wet, and thermal methods or a combination of these processes. Researchers are increasingly favoring natural sources such as bio-waste (eggshells, oyster shells, animal bones, fish scales, etc.) as viable options for synthesizing HAp. Interestingly, the synthesis route significantly influences the morphology, size, and crystalline phase of calcium phosphates. In this review paper, we highlight both dry and wet methods, which include six commonly used synthesis methods (i.e. solid-state, mechano-chemical, wet-chemical precipitation, hydrolysis, sol-gel, and hydrothermal methods) coupled with the variation in source materials and their influence in modifying the structural morphology from a bulky state to nanoscale to explore the applications of multifunctional calcium phosphates in different formats.
Collapse
Affiliation(s)
- Md Kawsar
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh.
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Sahadat Hossain
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh.
| | - Md Kawcher Alam
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh.
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Aftab Ali Shaikh
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh.
- Department of Chemistry, University of Dhaka, Dhaka-1000, Bangladesh.
| | - Samina Ahmed
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh.
- BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| |
Collapse
|
3
|
Hameed H, Khan MA, Paiva-Santos AC, Ereej N, Faheem S. Chitin: A versatile biopolymer-based functional therapy for cartilage regeneration. Int J Biol Macromol 2024; 265:131120. [PMID: 38527680 DOI: 10.1016/j.ijbiomac.2024.131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Chitin is the second most abundant biopolymer and its inherent biological characteristics make it ideal to use for tissue engineering. For many decades, its properties like non-toxicity, abundant availability, ease of modification, biodegradability, biocompatibility, and anti-microbial activity have made chitin an ideal biopolymer for drug delivery. Research studies have also shown many potential benefits of chitin in the formulation of functional therapy for cartilage regeneration. Chitin and its derivatives can be processed into 2D/3D scaffolds, hydrogels, films, exosomes, and nano-fibers, which make it a versatile and functional biopolymer in tissue engineering. Chitin is a biomimetic polymer that provides targeted delivery of mesenchymal stem cells, especially of chondrocytes at the injected donor sites to accelerate regeneration by enhancing cell proliferation and differentiation. Due to this property, chitin is considered an interesting polymer that has a high potential to provide targeted therapy in the regeneration of cartilage. Our paper presents an overview of the method of extraction, structure, properties, and functional role of this versatile biopolymer in tissue engineering, especially cartilage regeneration.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| |
Collapse
|
4
|
Ţălu Ş, Matos RS, da Fonseca Filho HD, Predoi D, Liliana Iconaru S, Steluţa Ciobanu C, Ghegoiu L. Morphological and fractal features of cancer cells anchored on composite layers based on magnesium-doped hydroxyapatite loaded in chitosan matrix. Micron 2024; 176:103548. [PMID: 37813055 DOI: 10.1016/j.micron.2023.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
In the present study, we report the development and characterization of composite layers (by spin coating) based on magnesium-doped hydroxyapatite in a chitosan matrix, containing human osteosarcoma MG63 cells anchored. Studies regarding the biocompatibility of the composite layers were performed with the aid of a MTT (3-4,5-Dimethylthiazol 2,5-diphenyltetrazolium bromide) assay. The data determined that the composite layers did not inhibit the growth and adhesion of MG63 cells to their surfaces exhibiting good biocompatibility properties. Furthermore, the attachment and development of MG63 cells on the surface of MgHApCh composite layers were investigated using atomic force microscopy (AFM). AFM topographical maps emphasized that the HApCh and 8MgHApCh composite layers surface promoted the attachment and proliferation of MG63 cells on their surface. Meanwhile, in the case of 30MgHApCh layers incubated for 48 h, a slight modification of the morphological features of the MG63 cells. In addition, the effects of the composite layers against Candida albicans ATCC 10231 were also evaluated. The data results from the in vitro antifungal assay depicted that the composite layers successfully inhibited the growth of the fungal cells onto their surface. Morphological and fractal analyses unveil cancer cell surfaces on Mg-containing composite layers with intricate 3D patterns, driven by high-frequency components. Their remarkable complexity and roughness arises from a strong multifractal nature, supporting more effective vertical growth compared to Si and HApCh surfaces. The cell viability reduced of uncoated Si surface is highlighted by its less intense 3D pattern growth. Our results show that the uncoated Si surface promotes lower viability of MG63 cancer cells, with less rough and complex 3D spatial patterns.
Collapse
Affiliation(s)
- Ştefan Ţălu
- The Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Constantin Daicoviciu Street, no. 15, Cluj-Napoca 400020, Cluj county, Romania.
| | - Robert S Matos
- Amazonian Materials Group, Physics Department, Federal University of Amapá, Macapá 68903-419, Amapá, Brazil.
| | | | - Daniela Predoi
- National Institute of Materials Physics, 405A Atomiștilor Street, 077125 Măgurele, Romania.
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, 405A Atomiștilor Street, 077125 Măgurele, Romania.
| | - Carmen Steluţa Ciobanu
- National Institute of Materials Physics, 405A Atomiștilor Street, 077125 Măgurele, Romania.
| | - Liliana Ghegoiu
- National Institute of Materials Physics, 405A Atomiștilor Street, 077125 Măgurele, Romania.
| |
Collapse
|
5
|
Liu G, Ma M, Yang H, He W, Xie Y, Li J, Li J, Zhao F, Zheng Y. Chitosan/polydopamine/octacalcium phosphate composite microcarrier simulates natural bone components to induce osteogenic differentiation of stem cells. BIOMATERIALS ADVANCES 2023; 154:213642. [PMID: 37776571 DOI: 10.1016/j.bioadv.2023.213642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Natural polymers and minerals can be combined to simulate natural bone for repairing bone defects. However, bone defects are often irregular and pose challenges for their repair. To overcome these challenges, we prepared Chitosan/Polydopamine/Octacalcium phosphate (CS/PDA/OCP) microcarriers that mimic bone composition and micro-size to adapt to different bone defect defects. CS/PDA microspheres were prepared by emulsion phase separation method and PDA in-situ polymerization. Finally, it was used to adsorb and immobilize OCP particles, resulting in the preparation of CS/PDA/OCP composite microcarriers. The microcarriers maintain an interconnected porous structure and appropriate porosity, which promotes cell adhesion, proliferation, and nutrient exchange. Subsequently, the protein adsorption capacity, simulated degradation, cell adhesion and proliferation capacity of the composite microcarriers were investigated. Additionally, their ability to simulate mineralization and induce osteogenic differentiation of BMSCs was characterized. The results demonstrated that the composite microcarrier had good biocompatibility and was conducive to cell adhesion and proliferation. Moreover, ALP and ARS staining revealed that the addition of OCP significantly enhanced the osteogenic differentiation of BMSCs. These results indicate that the composite microcarrier has promising prospects for bone repair applications.
Collapse
Affiliation(s)
- Guodong Liu
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengjiao Ma
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China; Beijing Wanjie Medical Device CO., LTD, China
| | - Huiyi Yang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Wei He
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yajie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Junfei Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiaping Li
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Feilong Zhao
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
6
|
Liu Z, Xu Y, Su H, Jing X, Wang D, Li S, Chen Y, Guan H, Meng L. Chitosan-based hemostatic sponges as new generation hemostatic materials for uncontrolled bleeding emergency: Modification, composition, and applications. Carbohydr Polym 2023; 311:120780. [PMID: 37028883 DOI: 10.1016/j.carbpol.2023.120780] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The choice of hemostatic technique is a curial concern for surgery and as first-aid treatment in combat. To treat uncontrolled bleeding in complex wound environments, chitosan-based hemostatic sponges have attracted significant attention in recent years because of the excellent biocompatibility, degradability, hemostasis and antibacterial properties of chitosan and their unique sponge-like morphology for high fluid absorption rate and priority aggregation of blood cells/platelets to achieve rapid hemostasis. In this review, we provide a historical perspective on the use of chitosan hemostatic sponges as the new generation of hemostatic materials for uncontrolled bleeding emergencies in complex wounds. We summarize the modification of chitosan, review the current status of preparation protocols of chitosan sponges based on various composite systems, and highlight the recent achievements on the detailed breakdown of the existing chitosan sponges to present the relationship between their composition, physical properties, and hemostatic capacity. Finally, the future opportunities and challenges of chitosan hemostatic sponges are also proposed.
Collapse
|
7
|
Wasupalli GK, Verma D. Development of chitosan-polygalacturonic acid polyelectrolyte complex fibrous scaffolds using the hydrothermal treatment for bone tissue engineering. J Biomed Mater Res A 2023; 111:354-366. [PMID: 36251016 DOI: 10.1002/jbm.a.37461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/09/2022] [Accepted: 10/06/2022] [Indexed: 01/12/2023]
Abstract
An ideal bone regeneration scaffold system needs to meet the high compressive properties of the bone. The stiffness of the scaffold extracellular matrix determines the cell's fate via cell adhesion migration and differentiation in-vitro and in-vivo. This study aims to investigate the effect of hydrothermal treatment on polyelectrolyte complex (PEC) fibrous biomaterials and its effect on scaffold morphology, cell viability, and function in-vitro. FTIR analysis revealed the ability of the thermal treatment to set the interaction of HAp with polymeric PEC fibers. FESEM analysis showed that with an increase in temperature, the interconnectivity and pore size increased (control-82.38 ± 12.92 μm; at 120°C-335.48 ± 85.10 μm). Mechanical tests showed that the scaffolds heated at 90°C showed the highest stiffness in both dry and wet states (dry state: 1.82 ± 0.07 MPa, wet state: 122 ± 1.78 kPa). Additionally, the hydrothermal treatment also improved the aqueous stability as well as swelling capacity. According to the experimental findings, hydrothermal treatment is a useful technique for crosslinker-free gelation with improved mechanical strength and nanofibrous structure. Furthermore, the cell adhesion, proliferation, and osteogenic differentiation of the MG63 cells on the hydrogel scaffolds in-vitro were evaluated by MTT assay, confocal imaging, alkaline phosphatase assay, and collagen estimation. The in-vitro study showed that scaffolds fabricated at 90°C promoted better MG63 cell attachment, proliferation, and differentiation. These results suggest the potential use of hydrothermal treated chitosan-polygalacturonic acid (PgA) fibrous scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Geeta Kumari Wasupalli
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
8
|
Murugesan V, Vaiyapuri M, Murugeasan A. Fabrication and characterization of strontium substituted chitosan modify hydroxyapatite for biomedical applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Cavalcante MDP, de Menezes LR, Rodrigues EJDR, Tavares MIB. In vitro characterization of a biocompatible composite based on poly(3-hydroxybutyrate)/hydroxyapatite nanoparticles as a potential scaffold for tissue engineering. J Mech Behav Biomed Mater 2022; 128:105138. [DOI: 10.1016/j.jmbbm.2022.105138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/09/2022]
|
10
|
The Effects of Electron Beam Irradiation on the Morphological and Physicochemical Properties of Magnesium-Doped Hydroxyapatite/Chitosan Composite Coatings. Polymers (Basel) 2022; 14:polym14030582. [PMID: 35160570 PMCID: PMC8839261 DOI: 10.3390/polym14030582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
This work reports on the influence of 5 MeV electron beam radiations on the morphological features and chemical structure of magnesium-doped hydroxyapatite/chitosan composite coatings generated by the magnetron sputtering technique. The exposure to ionizing radiation in a linear electron accelerator dedicated to medical use has been performed in a controllable manner by delivering up to 50 Gy radiation dose in fractions of 2 Gy radiation dose per 40 s. After the irradiation with electron beams, the surface of layers became nano-size structured. The partial detachment of irradiated layers from the substrates has been revealed only after visualizing their cross sections by scanning electron microscopy. The energy dispersive X-ray spectral analysis of layer cross-sections indicated that the distribution of chemical elements in the samples depends on the radiation dose. The X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction analysis have shown that the physicochemical processes induced by the ionizing radiation in the magnesium doped hydroxyapatite/chitosan composite coatings do not alter the apatite structure, and Mg remains bonded with the phosphate groups.
Collapse
|
11
|
Fabrication of Novel Chitosan–Hydroxyapatite Nanostructured Thin Films for Biomedical Applications. COATINGS 2021. [DOI: 10.3390/coatings11121561] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we develop chitosan–hydroxyapatite (CS–HAp) composite layers that were deposited on Si substrates in radio frequency (RF) magnetron sputtering discharge in argon gas. The composition and structure of CS–HAp composite layers were investigated by analytical techniques, such as Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), metallographic microscopy (MM), and atomic force microscopy (AFM). On the other hand, in the present study the second order derivative of FT-IR–ATR spectra, for compositional analyses of CS–HAp, were used. The SEM, MM, and AFM data have shown the formation of CS–HAp composite layers. The surface of CS–HAp composite layers showed uniform growth (at an Ar gas working pressure of p = 2 × 10−3 mbar). The surface of the CS–HAp composites coatings became more nanostructured, becoming granular as the gas pressure increased from 5 × 10−3 to 1.2 × 10−2 mbar. However, our studies revealed that the surface morphology of the CS–HAp composite layers varies with the Ar gas working pressure. At the same time, optical properties are slightly influenced by Ar pressure. Their unique physicochemical properties make them suitable for various applications in the biomedical field, if we consider the already proven antimicrobial properties of chitosan. The antifungal properties and the capacity of the CS–HAp composite layers to inhibit the development of fungal biofilms were also demonstrated using the Candida albicans ATCC 10231 (C. albicans) fungal strain.
Collapse
|
12
|
The Application of Chitosan Nanostructures in Stomatology. Molecules 2021; 26:molecules26206315. [PMID: 34684896 PMCID: PMC8541323 DOI: 10.3390/molecules26206315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan (CS) is a natural polymer with a positive charge, a deacetylated derivative of chitin. Chitosan nanostructures (nano-CS) have received increasing interest due to their potential applications and remarkable properties. They offer advantages in stomatology due to their excellent biocompatibility, their antibacterial properties, and their biodegradability. Nano-CSs can be applied as drug carriers for soft tissue diseases, bone tissue engineering and dental hard tissue remineralization; furthermore, they have been used in endodontics due to their antibacterial properties; and, finally, nano-CS can improve the adhesion and mechanical properties of dental-restorative materials due to their physical blend and chemical combinations. In this review, recent developments in the application of nano-CS for stomatology are summarized, with an emphasis on nano-CS’s performance characteristics in different application fields. Moreover, the challenges posed by and the future trends in its application are assessed.
Collapse
|
13
|
Synthesis of Inorganic Compounds in the Matrix of Polysaccharide Chitosan. Biomimetics (Basel) 2021; 6:biomimetics6030045. [PMID: 34287224 PMCID: PMC8293181 DOI: 10.3390/biomimetics6030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022] Open
Abstract
Data related to the fabrication of hybrid materials based on the polysaccharide chitosan were systematized and reviewed. The possibility of using chitosan as a “host” matrix for in situ synthesis of inorganic compounds for the preparation of various types of composite materials were investigated. Coprecipitation of metal oxides/hydroxides (Fe, Ni, Al, Zr, Cu and Mn) with chitosan was carried out through the alkalinization of solutions containing metal salts and chitosan, with the addition of ammonia or alkali solutions, homogeneous hydrolysis of urea, or electrophoretic deposition on the cathode. The synthesis of transition metal ferrocyanides and hydroxyapatite was achieved from precursor salts in a chitosan solution with simultaneous alkalinization. The mechanism of composite formation during the coprecipitation process of inorganic compounds with chitosan is discussed. Composite materials are of interest as sorbents, coatings, sensors, and precursors for the production of ceramic and electrode materials.
Collapse
|
14
|
Balu SK, Andra S, Jeevanandam J, S MV, V S. Emerging marine derived nanohydroxyapatite and their composites for implant and biomedical applications. J Mech Behav Biomed Mater 2021; 119:104523. [PMID: 33940538 DOI: 10.1016/j.jmbbm.2021.104523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 01/30/2023]
Abstract
Implant materials must mimic natural human bones with biocompatibility, osteoconductivity and mechanical stability to successfully replace damaged or disease-affected bones. Synthetic hydroxyapatite was incorporated with bioglass to mimic natural bones for replacing conventional implant materials which has led to certain toxicity issues. Hence, hydroxyapatite (HAp) are recently gaining applicational importance as they are resembling the structure and function of natural bones. Further, nanosized HAp is under extensive research to utilize them as a potential replacement for traditional implants with several exclusive properties. However, chemical synthesis of nano-HAp exhibited toxicity towards normal and healthy cells. Recently, biogenic Hap synthesis from marine and animal sources are introduced as a next generation implant materials, due to their mineral ion and significant porous architecture mediated biocompatibility and bone bonding ability, compared to synthetic HAp. Thus, the purpose of the paper is to give a bird's eye view into the conventional approaches for fabricating nano-HAp, its limitations and the significance of using marine organisms and marine food wastes as a precursor for biogenic nano-Hap production. Moreover, in vivo and in vitro analyses of marine source derived nano-HAp and their potential biomedical applications were also discussed.
Collapse
Affiliation(s)
- Satheesh Kumar Balu
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Swetha Andra
- Center for Nanoscience and Technology, Chennai Institute of Technology, Chennai, Tamil Nadu, 600069, India
| | - Jaison Jeevanandam
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Manisha Vidyavathy S
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India.
| | - Sampath V
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
15
|
Noteworthy enhancement of wound-healing activity of triphala biomass metabolite-loaded hydroxyapatite nanocomposite. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01813-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Ding B, Wang Z, Wang X, Yang W, Wang S, Li C, Dai H, Tao S. Sr2+ adsorbents produced by microfluidics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Mechanical Behavior of Hydroxyapatite-Chitosan Composite: Effect of Processing Parameters. MINERALS 2021. [DOI: 10.3390/min11020213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three-dimensional hydroxyapatite-chitosan (HA-CS) composites were formulated via solid-liquid technic and freeze-drying. The prepared composites had an apatitic nature, which was demonstrated by X-ray diffraction and Infrared spectroscopy analyses. The impact of the solid/liquid (S/L) ratio and the content and the molecular weight of the polymer on the composite mechanical strength was investigated. An increase in the S/L ratio from 0.5 to 1 resulted in an increase in the compressive strength for HA-CSL (CS low molecular weight: CSL) from 0.08 ± 0.02 to 1.95 ± 0.39 MPa and from 0.3 ± 0.06 to 2.40 ± 0.51 MPa for the HA-CSM (CS medium molecular weight: CSM). Moreover, the increase in the amount (1 to 5 wt%) and the molecular weight of the polymer increased the mechanical strength of the composite. The highest compressive strength value (up to 2.40 ± 0.51 MPa) was obtained for HA-CSM (5 wt% of CS) formulated at an S/L of 1. The dissolution tests of the HA-CS composites confirmed their cohesion and mechanical stability in an aqueous solution. Both polymer and apatite are assumed to work together, giving the synergism needed to make effective cylindrical composites, and could serve as a promising candidate for bone repair in the orthopedic field.
Collapse
|
18
|
Nihmath A, Ramesan MT. Fabrication, characterization, dielectric properties, thermal stability, flame retardancy and transport behavior of chlorinated nitrile rubber/hydroxyapatite nanocomposites. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03469-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Saeedi Dehaghani AH, Pirouzfar V, Alihosseini A. Novel nanocomposite membranes-derived poly(4-methyl-1-pentene)/functionalized titanium dioxide to improve the gases transport properties and separation performance. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03086-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Huang D, Xu M, Niu L, Pérez M, Du J, Wei Y, Hu Y, Lian X, Chen W. In situ biomimetic formation of nano‐hydroxyapatite crystals on chitosan microspheres. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Di Huang
- Department of Biomedical Engineering, Research Center for Nano‐Biomaterials and Regenerative Medicine, College of Biomedical EngineeringTaiyuan University of Technology Taiyuan China
- Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical EngineeringTaiyuan University of Technology Taiyuan China
| | - Mengjie Xu
- Department of Biomedical Engineering, Research Center for Nano‐Biomaterials and Regenerative Medicine, College of Biomedical EngineeringTaiyuan University of Technology Taiyuan China
| | - Lulu Niu
- Department of Biomedical Engineering, Research Center for Nano‐Biomaterials and Regenerative Medicine, College of Biomedical EngineeringTaiyuan University of Technology Taiyuan China
| | - Montserrat Pérez
- Departamento de BioingenieríaTecnológico de Monterrey Monterrey México
| | - Jingjing Du
- Department of Biomedical Engineering, Research Center for Nano‐Biomaterials and Regenerative Medicine, College of Biomedical EngineeringTaiyuan University of Technology Taiyuan China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano‐Biomaterials and Regenerative Medicine, College of Biomedical EngineeringTaiyuan University of Technology Taiyuan China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano‐Biomaterials and Regenerative Medicine, College of Biomedical EngineeringTaiyuan University of Technology Taiyuan China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano‐Biomaterials and Regenerative Medicine, College of Biomedical EngineeringTaiyuan University of Technology Taiyuan China
| | - Weiyi Chen
- Department of Biomedical Engineering, Research Center for Nano‐Biomaterials and Regenerative Medicine, College of Biomedical EngineeringTaiyuan University of Technology Taiyuan China
- Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical EngineeringTaiyuan University of Technology Taiyuan China
| |
Collapse
|