1
|
Kulal P, Badalamoole V. Modified gum ghatti based hybrid hydrogel nanocomposite as adsorbent material for dye removal from wastewater. Int J Biol Macromol 2024; 283:137409. [PMID: 39528174 DOI: 10.1016/j.ijbiomac.2024.137409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
A hybrid hydrogel nanocomposite based on the polysaccharide-gum ghatti, has been made and evaluated as an adsorbent material for wastewater treatment. The nanocomposite is composed of a network of gum ghatti-graft-poly(2-acrylamido-2-methylpropane sulfonic acid) with magnetite nanoparticles embedded within. This functional material Ggh-g-PAMPS/Fe3O4 has been characterized by FTIR, TGA, SEM, EDS, XRD, BET and VSM techniques. The presence of magnetite nanoparticles imparted superparamagnetic property to the adsorbent material enabling its easy separation after use with an external magnet. The characterization data indicated mesoporous nature of the nanocomposite adsorbent with mean pore diameter of 4.9 nm. The nanoparticles imparted high surface area to the adsorbent material the value being 4.7 m2g-1 based on nitrogen adsorption experiments. The suitability of the material as an adsorbent for removal of cationic dyes from water was checked with two cationic dyes namely, rhodamine 6G and methylene blue. The maximum adsorption capacity of the nanocomposite Ggh-g-PAMPS/Fe3O4 towards rhodamine 6G and methylene blue were observed to be 403.2 and 427.8 mg g-1 respectively from their individual solutions of concentration 500 mg L-1. The pH dependence on swelling and surface charge indicated medium of pH of 7.0 as the ideal condition for effective adsorption. Freundlich isotherm model and pseudo second order kinetic model are observed to be the most befitting models to describe adsorption. Further, the thermodynamic studies revealed the adsorption to be a spontaneous and endothermic process. The desorption study portrayed the reusability of the adsorbent material. The excellent adsorption performance and magnetic nature of the developed nanocomposite suggests its potential application as an adsorbent material in wastewater treatment.
Collapse
Affiliation(s)
- Prajwal Kulal
- Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri 574199 (D.K.), Karnataka, India
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri 574199 (D.K.), Karnataka, India.
| |
Collapse
|
2
|
Ye Z, Zhang H, Zhou G, Bai Z, Jiang J, Yang R, Wang Y, Quan F. Exploring performance and mechanism of modified metal-organic frameworks in calcium alginate/polyvinyl alcohol double-network hydrogels for effective dye wastewater treatment. Int J Biol Macromol 2024; 281:136286. [PMID: 39368584 DOI: 10.1016/j.ijbiomac.2024.136286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
To address the growing problem of dye wastewater pollution, a novel MOFs adsorbent calcium alginate/polyvinyl alcohol@UiO-66 was developed using environmentally friendly polymers, sodium alginate and polyvinyl alcohol creating gel spheres with a double-network structure through cross-linking. UiO-66 metal-organic frameworks are then grown onto the gel spheres, resulting in the final CA/PVA@UiO-66 adsorbent. This adsorbent boasts a high surface area (17.4 m2/g) and a mesoporous-nested microporous structure. It effectively removes MB from water, the actual maximum adsorption capacity was measured at 275.8 mg/g, which surpasses most existing adsorbents. Remarkably, the adsorbent retains 93.9 % of its initial capacity even after 10 reuse cycles. The adsorption process adhered to the Redlich-Peterson model and the PFO model. The N2-Sorption isotherm, actual Methylene blue (MB) adsorption experiments, and model analysis further suggest that the adsorption process is a complex heterogeneous diffusion process involving simultaneous chemical and physical adsorption. Additionally, the adsorption process is endothermic, indicating that it can occur spontaneously at 298 K. Increasing the temperature promotes the forward progress of the adsorption reaction, thereby enhancing the adsorption capacity. The gel adsorbent exhibited excellent dye wastewater purification capabilities, coupled with commendable reusability.
Collapse
Affiliation(s)
- Zimeng Ye
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hong Zhang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Guohang Zhou
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Zijian Bai
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jianyu Jiang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Rui Yang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yan Wang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Fengyu Quan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
| |
Collapse
|
3
|
Shruthi S, Vishalakshi B. Development of banana pseudo stem cellulose fiber based magnetic nanocomposite as an adsorbent for dye removal. Int J Biol Macromol 2024; 278:134877. [PMID: 39163967 DOI: 10.1016/j.ijbiomac.2024.134877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
A hybrid hydrogel nanocomposite derived from cellulose fiber extracted from Banana Pseudo Stem (BPS) was developed as an adsorbent material for wastewater treatment. The hydrogel was developed by graft copolymerization of N-hydroxyethylacrylamide on Cellulose Fiber (BPSCF-g-PHEAAm) with potassium peroxodisulphate (KPS) as an initiator and N, N'-methylene bisacrylamide (MBA) as a crosslinker using microwave irradiation. Magnetic nanoparticles generated by an in-situ method were incorporated into the network structure. Fourier Transform Infrared Spectroscopy (FTIR), Powder X-ray Diffraction (XRD), Thermogravimetric analysis (TGA), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller analysis (BET), Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive Spectrometer (EDS) were employed. The adsorption capacities of hydrogel and its nanocomposite were evaluated using Methylene Blue (MB) and Crystal Violet (CV) as model dyes. The parent gel exhibited the maximum absorption capacity of 235, and 219 mg g-1 towards MB and CV respectively which was enhanced to 320 and 303 mg g-1 for the nanocomposite. Adsorption data were best fitted with the pseudo-second-order kinetic model and the Freundlich isotherm model. Negative ΔG° and positive ΔH° indicated spontaneous and endothermic adsorption. Desorption was effective to an extent of 99 % in the HCl medium suggesting high reusability potential of the developed adsorbent material.
Collapse
Affiliation(s)
- S Shruthi
- Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India
| | - B Vishalakshi
- Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India.
| |
Collapse
|
4
|
Majeed F, Razzaq A, Rehmat S, Azhar I, Mohyuddin A, Rizvi NB. Enhanced dye sequestration with natural polysaccharides-based hydrogels: A review. Carbohydr Polym 2024; 330:121820. [PMID: 38368085 DOI: 10.1016/j.carbpol.2024.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Due to the expansion of industrial activities, the concentration of dyes in water has been increasing. The dire need to remove these pollutants from water has been heavily discussed. This study focuses on the reproducible and sustainable solution for wastewater treatment and dye annihilation challenges. Adsorption has been rated the most practical way of the several decolorization procedures due to its minimal initial investment, convenient utility, and high-performance caliber. Hydrogels, which are three-dimensional polymer networks, are notable because of their potential to regenerate, biodegrade, absorb bulky amounts of water, respond to stimuli, and have unique morphologies. Natural polysaccharide hydrogels are chosen over synthetic ones because they are robust, bioresorbable, non-toxic, and cheaply accessible. This study has covered six biopolymers, including chitosan, cellulose, pectin, sodium alginate, guar gum, and starch, consisting of their chemical architecture, origins, characteristics, and uses. The next part describes these polysaccharide-based hydrogels, including their manufacturing techniques, chemical alterations, and adsorption effectiveness. It is deeply evaluated how size and shape affect the adsorption rate, which has not been addressed in any prior research. To assist the readers in identifying areas for further research in this subject, limitations of these hydrogels and future views are provided in the conclusion.
Collapse
Affiliation(s)
- Fiza Majeed
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Ammarah Razzaq
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Shabnam Rehmat
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan; School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Irfan Azhar
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, Multan 60000, Pakistan
| | | |
Collapse
|
5
|
Hao Y, Qu J, Tan L, Liu Z, Wang Y, Lin T, Yang H, Peng J, Zhai M. Synthesis and property of superabsorbent polymer based on cellulose grafted 2-acrylamido-2-methyl-1-propanesulfonic acid. Int J Biol Macromol 2023; 233:123643. [PMID: 36775220 DOI: 10.1016/j.ijbiomac.2023.123643] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
An eco-friendly superabsorbent polymer (SAP) was prepared by grafting 2-acrylamido-2-methyl-1-propanesulfonic acid onto microcrystalline cellulose in lithium chloride/N, N-dimethylacetamide system. The synthesized SAP (cellulose-g-PAMPS) was characterized by FTIR, TGA, SEM, 1H NMR, 13C NMR and XRD. The water absorption equilibrium of cellulose-g-PAMPS could be achieved within 10 min in distilled water. Moreover, the maximum water absorption capacities of cellulose-g-PAMPS in distilled water, 0.9 wt% NaCl solution and 3.2 wt% Na2CO3 solution were 648.9, 298.4 and 207.3 g·g-1, respectively. The water absorption behavior of cellulose-g-PAMPS was interpreted by the pseudo-second-order model. Furthermore, cellulose-g-PAMPS could be used in some extreme conditions due to its high acid and alkali resistance. The water retention rate of cellulose-g-PAMPS could be maintained above 90 % at 25 °C for 6 h. As a consequence, the synthesized SAP can be applied to increase the plant growth and survival time under drought conditions, even under saline alkali conditions.
Collapse
Affiliation(s)
- Yan Hao
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China.
| | - Jing Qu
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Lei Tan
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Zunyi Liu
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Yicheng Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Tingrui Lin
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Fujian Key Laboratory of Architectural Coating, Skshu Paint Co., Ltd., Putian, Fujian 351100, PR China
| | - Hui Yang
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
6
|
Oyarce E, Cantero-López P, Roa K, Boulett A, Yáñez O, Santander P, Del C Pizarro G, Sánchez J. Removal of highly concentrated methylene blue dye by cellulose nanofiber biocomposites. Int J Biol Macromol 2023; 238:124045. [PMID: 36934817 DOI: 10.1016/j.ijbiomac.2023.124045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/16/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023]
Abstract
The contamination of water by dyes in high concentrations is a worldwide concern, and it has prompted the development of efficient, economical, and environmentally friendly materials and technologies for water purification. The hydration and adsorption capacity for methylene blue (MB) in biocomposites (BCs) based on cellulose nanofiber (CNF) (0 to 2 wt%) were studied. BCs were synthesized through a simple and straightforward route and characterized by spectroscopy, microscopic techniques and thermogravimetric analysis, among others. Hydration studies showed that BCs prepared with 2 wt% of CNF can absorb large volumes of water, approximately 2274 % in the case of poly 2-acrylamide-2-methyl-1-propanesulfonic acid (PAMPS)-CNF and 2408 % in poly sodium 4-styrene sulfonate (PSSNa)-CNF. These BCs showed outstanding adsorption capacity for highly concentrated MB solutions (4536 mg g-1 PAMPS-CNF and 11,930 mg g-1 PSSNa-CNF). It was confirmed that the adsorption mechanism is through electrostatic interactions. Finally, BCs showed high MB adsorption efficiency after several sorption-desorption cycles and on a simulated textile effluent. Furthermore, the theoretical results showed a preferential interaction between MB and the semiflexible polymer chains at the lowest energy setting. The development and study of a new adsorbent material with high MB removal performance that is easy to prepare, economical and reusable for potential use in water purification treatments was successfully achieved.
Collapse
Affiliation(s)
- Estefanía Oyarce
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Plinio Cantero-López
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias, Químicas, Viña del Mar, Chile; Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile; Relativistic Molecular Physics Group (ReMoPh), PhD program in Molecular Physical Chemistry, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Karina Roa
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Andrés Boulett
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Osvaldo Yáñez
- Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago, Chile
| | - Paola Santander
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Guadalupe Del C Pizarro
- Departamento de Química, Universidad Tecnológica Metropolitana, J. P. Alessandri 1242, Santiago, Chile
| | - Julio Sánchez
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile.
| |
Collapse
|
7
|
Burratti L, Zannotti M, Maranges V, Giovannetti R, Duranti L, De Matteis F, Francini R, Prosposito P. Poly(ethylene glycol) Diacrylate Hydrogel with Silver Nanoclusters for Water Pb(II) Ions Filtering. Gels 2023; 9:gels9020133. [PMID: 36826304 PMCID: PMC9957228 DOI: 10.3390/gels9020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Poly(ethylene glycol) diacrylate (PEGDA) hydrogels modified with luminescent silver nanoclusters (AgNCs) are synthesized by a photo-crosslinking process. The hybrid material thus obtained is employed to filter Pb(II) polluted water. Under the best conditions, the nanocomposite is able to remove up to 80-90% of lead contaminant, depending on the filter composition. The experimental results indicate that the adsorption process of Pb(II) onto the modified filter can be well modeled using the Freundlich isotherm, thus revealing that the chemisorption is the driving process of Pb(II) adsorption. In addition, the parameter n in the Freundlich model suggests that the adsorption process of Pb(II) ions in the modified hydrogel is favored. Based on the obtained remarkable contaminant uptake capacity and the overall low cost, this hybrid system appears to be a promising sorbent material for the removal of Pb(II) ions from aqueous media.
Collapse
Affiliation(s)
- Luca Burratti
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
- Correspondence: (L.B.); (M.Z.)
| | - Marco Zannotti
- Department School of Science and Technology, Chemistry Division, ChIP Research Center, University of Camerino, Via Madonna delle Ceneri, 62032 Camerino, Italy
- Correspondence: (L.B.); (M.Z.)
| | - Valentin Maranges
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Rita Giovannetti
- Department School of Science and Technology, Chemistry Division, ChIP Research Center, University of Camerino, Via Madonna delle Ceneri, 62032 Camerino, Italy
| | - Leonardo Duranti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabio De Matteis
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Roberto Francini
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Paolo Prosposito
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
8
|
Sahar F, Riaz A, Malik NS, Gohar N, Rasheed A, Tulain UR, Erum A, Barkat K, Badshah SF, Shah SI. Design, characterization and evaluation of gelatin/carboxymethyl cellulose hydrogels for effective delivery of ciprofloxacin. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Adsorption of malachite green on the modified montmorillonite/xanthan gum-sodium alginate hybrid nanocomposite. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
10
|
Nemiwal M, Zhang TC, Kumar D. Pectin modified metal nanoparticles and their application in property modification of biosensors. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Kulal P, Krishnappa PB, Badalamoole V. Development of gum acacia based magnetic nanocomposite adsorbent for wastewater treatment. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03909-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Pathayappurakkal Mohanan D, Pathayappurakkal Mohan N, Selvasudha N, Thekkilaveedu S, Kandasamy R. Facile fabrication and structural elucidation of lignin based macromolecular green composites for multifunctional applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.51280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Nandakumar Selvasudha
- School of Pharmacy Sri Balaji Vidyapeeth Deemed University Puducherry Tamil Nadu India
| | - Saranya Thekkilaveedu
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational REsearch (CENTRE), University College of Engineering Anna University Tiruchirapalli Tamil Nadu India
| | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational REsearch (CENTRE), University College of Engineering Anna University Tiruchirapalli Tamil Nadu India
| |
Collapse
|
13
|
Ruiz C, Vera M, Rivas BL, Sánchez S, Urbano BF. Magnetic methacrylated gelatin- g-polyelectrolyte for methylene blue sorption. RSC Adv 2020; 10:43799-43810. [PMID: 35519716 PMCID: PMC9058399 DOI: 10.1039/d0ra08188d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
The presence of organic dyes in wastewater is a problem of growing interest due to its effect on the environment and human health. The aim of this work was to obtain magnetic hydrogels of methacrylated gelatin-g-polyelectrolyte to be used for the removal of methylene blue (MB) used as a model contaminant dye. Grafted gelatins with two degrees of functionalization (48% and 76%) were obtained and subsequently crosslinked using 2-acrylamido-2-methyl-1-propansulfonic acid (AMPS) and sodium 4-vinylbenzenesulfonate (SSNa) monomers. Magnetic nanoparticles were formed by an in situ precipitation method to easily remove the hydrogel from the adsorption medium. Our data show that the hydrogel with a low degree of methacrylation displayed a high degree of swelling and decreased stiffness due to its less connected polymer network. MB adsorption experiments showed that neither the low degree of methacrylation nor the presence of the aromatic group in the PSSNa polyelectrolyte generated an increase in the adsorption capacity of the hydrogel. However, a significant increase in the adsorption capacity was observed when dry hydrogels were combined compared to that of previously swollen hydrogel. The experimental data were non-linearly fitted to the pseudo-first and pseudo-second order models and in both cases, the highest qe values were obtained for the GelMA-HF/PAMPS and GelMA-LF/PAMPS hydrogels. The Freundlich isotherm model was the one with the best correlation with the data (r2 > 0.9700). Higher kf values were obtained for the GelMA-HF/PAMPS and GelMA-LF/PAMPS hydrogels at 20 °C. The results obtained from this study demonstrated that magnetic polyelectrolyte-grafted gelatins are an efficient option for the removal of contaminant dyes from aqueous solutions. Magnetic methacrylated gelatin grafted with anionic polyelectrolytes hydrogels removes methylene blue efficiently and easily separate with a magnet.![]()
Collapse
Affiliation(s)
- Carla Ruiz
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción Concepción Chile
| | - Myleidi Vera
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción Concepción Chile
| | - Bernabé L Rivas
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción Concepción Chile
| | - Susana Sánchez
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción Concepción Chile
| | - Bruno F Urbano
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción Concepción Chile
| |
Collapse
|
14
|
Dolinska J, Holdynski M, Pieta P, Lisowski W, Ratajczyk T, Palys B, Jablonska A, Opallo M. Noble Metal Nanoparticles in Pectin Matrix. Preparation, Film Formation, Property Analysis, and Application in Electrocatalysis. ACS OMEGA 2020; 5:23909-23918. [PMID: 32984711 PMCID: PMC7513339 DOI: 10.1021/acsomega.0c03167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 05/23/2023]
Abstract
Stable polymeric materials with embedded nano-objects, retaining their specific properties, are indispensable for the development of nanotechnology. Here, a method to obtain Pt, Pd, Au, and Ag nanoparticles (ca. 10 nm, independent of the metal) by the reduction of their ions in pectin, in the absence of additional reducing agents, is described. Specific interactions between the pectin functional groups and nanoparticles were detected, and they depend on the metal. Bundles and protruding nanoparticles are present on the surface of nanoparticles/pectin films. These films, deposited on the electrode surface, exhibit electrochemical response, characteristic for a given metal. Their electrocatalytic activity toward the oxidation of a few exemplary organic molecules was demonstrated. In particular, a synergetic effect of simultaneously prepared Au and Pt nanoparticles in pectin films on glucose electro-oxidation was found.
Collapse
Affiliation(s)
- Joanna Dolinska
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Marcin Holdynski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Piotr Pieta
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Wojciech Lisowski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Tomasz Ratajczyk
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Barbara Palys
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
| | - Anna Jablonska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
| | - Marcin Opallo
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
15
|
Urzedo AL, Gonçalves MC, Nascimento MHM, Lombello CB, Nakazato G, Seabra AB. Cytotoxicity and Antibacterial Activity of Alginate Hydrogel Containing Nitric Oxide Donor and Silver Nanoparticles for Topical Applications. ACS Biomater Sci Eng 2020; 6:2117-2134. [DOI: 10.1021/acsbiomaterials.9b01685] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alessandro L. Urzedo
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Marcelly C. Gonçalves
- Department of Microbiology, Universidade Estadual de Londrina (UEL), Campus Universitário, CEP 86055-990, Londrina, Paraná, Brazil
| | - Mônica H. M. Nascimento
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Christiane B. Lombello
- Center for Engineering, Modeling and Applied Social Sciences, Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Universidade Estadual de Londrina (UEL), Campus Universitário, CEP 86055-990, Londrina, Paraná, Brazil
| | - Amedea B. Seabra
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| |
Collapse
|
16
|
Bhangi BK, Ray SK. Nano silver chloride and alginate incorporated composite copolymer adsorbent for adsorption of a synthetic dye from water in a fixed bed column and its photocatalytic reduction. Int J Biol Macromol 2020; 144:801-812. [DOI: 10.1016/j.ijbiomac.2019.09.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
|