1
|
Khan R, Qamar MT, Abid H, Haider I, Zidan A, Bahadur A, Iqbal S, Mahmood S, Alotaibi MT, Akhter T. The Investigation of Structural, Optical and Thermal Properties of Nickel Doped CeO 2 Integrated PVC Nanocomposite. Microsc Res Tech 2025; 88:387-395. [PMID: 39376090 DOI: 10.1002/jemt.24708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/31/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
PVC nanocomposite (NC) films with cubic CeO2 and Ni-doped CeO2 (NDC) have been prepared using a conventional solution-casting technique. The prepared films were characterized with FT-IR spectrometer, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The optical and thermal properties of the films were evaluated using a UV-visible spectrophotometer and TGA/DSC. The optical study revealed a decrease in optical band gap energies (4.19 to 4.06 eV) whereas the increase in other optical constraints such as optical conductivity, Urbach energy, dispersion energy, refractive index, and dielectric constant of PVC NCs than pristine PVC was observed. The XRD patterns showed the presence of cubic crystalline NDC with a relatively narrower principal diffraction peak in the PVC matrix and the nonexistence of unexpected vibrational peaks in the FTIR spectra of PVC NCs confirmed the successful incorporation of nanostructured CeO2 and NDC into PVC. Thermogravimetric analysis showed the higher thermal stability of NDC/PVC NC than PVC whereas differential scanning calorimetry declared no significant change in the glass transition temperature (Tg) of the NCs. Moreover, a good dispersion of Ni-doped CeO2 nanofiller was noticed in scanning electron micrographs.
Collapse
Affiliation(s)
- Rishum Khan
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Tariq Qamar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Hina Abid
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Irfan Haider
- National Centre for Physics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Ammar Zidan
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq
| | - Ali Bahadur
- Department of Chemistry, College of Science, Mathematics, and Technology, Nanomaterials Research Center, Wenzhou-Kean University, Wenzhou, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, New Jersey, USA
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
- Functional Materials Group, Gulf University for Science and Technology, Mishref, Kuwait
| | - Mohammed T Alotaibi
- Department of Chemistry, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
2
|
Pitiphattharabun S, Auewattanapun K, Htet TL, Thu MM, Panomsuwan G, Techapiesancharoenkij R, Ohta J, Jongprateep O. Reduced graphene oxide/zinc oxide composite as an electrochemical sensor for acetylcholine detection. Sci Rep 2024; 14:14224. [PMID: 38902301 PMCID: PMC11190213 DOI: 10.1038/s41598-024-64238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Acetylcholine (ACh) plays a pivotal role as a neurotransmitter, influencing nerve cell communication and overall nervous system health. Imbalances in ACh levels are linked to neurodegenerative diseases, such as Alzheimer's and Parkinson's. This study focused on developing electrochemical sensors for ACh detection, utilizing graphene oxide (GO) and a composite of reduced graphene oxide and zinc oxide (rGO/ZnO). The synthesis involved modified Hummers' and hydrothermal methods, unveiling the formation of rGO through deoxygenation and the integration of nano-sized ZnO particles onto rGO, as demonstrated by XPS and TEM. EIS analysis also revealed the enhancement of electron transfer efficiency in rGO/ZnO. Cyclic voltammograms of the electrode, comprising the rGO/ZnO composite in ACh solutions, demonstrated prominent oxidation and reduction reactions. Notably, the composite exhibited promise for ACh detection due to its sensitivity, low detection threshold, reusability, and selectivity against interfering compounds, specifically glutamate and gamma-aminobutyric acid. The unique properties of rGO, such as high specific surface area and electron mobility, coupled with ZnO's stability and catalytic efficiency, contributed to the composite's potential in electrochemical sensor applications. This research, emphasizing the synthesis, fabrication, and characterization of the rGO/ZnO composite, established itself as a reliable platform for detecting the acetylcholine neurotransmitter.
Collapse
Affiliation(s)
- Siraprapa Pitiphattharabun
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
- Program of Sustainable Energy and Resources Engineering (SERE), Thailand Science Park, TAIST-Tokyo Tech, Pathumthani 12120, Thailand
| | - Krittin Auewattanapun
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Thura Lin Htet
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Myo Myo Thu
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Gasidit Panomsuwan
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
- International Collaborative Education Program for Materials Technology, Education, and Research (ICE-Matter), ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Bangkok, Thailand
| | - Ratchatee Techapiesancharoenkij
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
- International Collaborative Education Program for Materials Technology, Education, and Research (ICE-Matter), ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Bangkok, Thailand
| | - Jun Ohta
- International Collaborative Education Program for Materials Technology, Education, and Research (ICE-Matter), ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Bangkok, Thailand
- Division of Materials Science, Nara Institute of Science and Technology, Nara, Japan
| | - Oratai Jongprateep
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand.
- International Collaborative Education Program for Materials Technology, Education, and Research (ICE-Matter), ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Bangkok, Thailand.
| |
Collapse
|
3
|
Sánchez-Cepeda A, Cedeño E, Marín E, Pazos MC, Ingrid SC, Muñoz EDJ, Vera-Graziano R. Evaluation of the dispersion properties of graphene oxide/cetyltrimethylammonium bromide for application in nanocomposite materials. RSC Adv 2024; 14:3267-3279. [PMID: 38249673 PMCID: PMC10798003 DOI: 10.1039/d3ra04689c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
The properties of thermal diffusivity and Z potential of the GONPs/CTAB nanofluid were studied as a function of GO concentration (in the range between 4 and 12% w/v), temperature (35 and 50 °C) and time (30 and 60 min) under ultrasound. In turn, the structural properties of GONPs/CTAB were measured by XRD, Raman, SEM and TEM. The GO previously modified with CTAB was used to obtain a PLA/GO nanocomposite. It was found that the behavior of thermal diffusivity provides information in situ on the dispersion properties of the nanofluid, finding values from 0.0013 to 0.0024 cm2 s-1. The hydrodynamic diameter of the GONP dispersions was also determined to range from 75.83 to 360.3 nm with an increase in Z potential from 17 to 30 mV. The most stable GONPs/CTAB dispersion conditions were 6% w/v GO, 50 °C and 30 min. Under these conditions, the GONPs/CTAB materials present an increase in the spacing between GO layers, associated with a greater multilayer stacking of the GO and CTAB layers. The Raman spectrum allowed us to demonstrate that the modification with CTAB did not affect the crystallinity of GO, which was verified by the intensity ratio of the D band and the G band (ID/IG) for the GO/CTAB samples, with the exception of the GO 6% sample, where an increase in the ID/IG ratio (0.9) was observed compared to GO (0.82), associated with greater intercalation of CTAB between the GO sheets. Finally, an SEM analysis of the PLA/GO nanocomposite was carried out and the homogeneous distribution of GO in PLA was demonstrated when it is used as a filler in proportions of 0.1%. This treatment, in turn, contributed to improving the mechanical flexural properties of the nanocomposite materials.
Collapse
Affiliation(s)
- Angela Sánchez-Cepeda
- Facultad de Ciencias Básicas, Escuela de Posgrados, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa 150001 Tunja Boyacá Colombia
| | - E Cedeño
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Av. Legaria # 694, Col. Irrigación, Del. Miguel Hidalgo 11500 Ciudad de México Mexico
| | - E Marín
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Av. Legaria # 694, Col. Irrigación, Del. Miguel Hidalgo 11500 Ciudad de México Mexico
| | - M Carolina Pazos
- Escuela de Ciencias Química, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa Tunja Boyacá Colombia
| | - Silva-Cote Ingrid
- Unidad de Terapia Celular, Instituto Distrital de Ciencia, Biotecnología e Innovación en salud. IDCBIS Cra 32 #12-81 0571 Bogotá Colombia
| | - Efrén de Jesús Muñoz
- Facultad de Ciencias Básicas, Escuela de Posgrados, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa 150001 Tunja Boyacá Colombia
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México UNAM Avda Universidad, C.U., Coyoacán 04510 Ciudad de México Mexico
| |
Collapse
|
4
|
Wilczewski S, Skórczewska K, Tomaszewska J, Osial M, Dąbrowska A, Nikiforow K, Jenczyk P, Grzywacz H. Graphene Modification by Curcuminoids as an Effective Method to Improve the Dispersion and Stability of PVC/Graphene Nanocomposites. Molecules 2023; 28:molecules28083383. [PMID: 37110616 PMCID: PMC10143296 DOI: 10.3390/molecules28083383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A large amount of graphene-related research is its use as a filler for polymer composites, including thin nanocomposite films. However, its use is limited by the need for large-scale methods to obtain high-quality filler, as well as its poor dispersion in the polymer matrix. This work presents polymer thin-film composites based on poly(vinyl chloride) (PVC) and graphene, whose surfaces were modified by curcuminoids. TGA, UV-vis, Raman spectroscopy, XPS, TEM, and SEM methods have confirmed the effectiveness of the graphene modification due to π-π interactions. The dispersion of graphene in the PVC solution was investigated by the turbidimetric method. SEM, AFM, and Raman spectroscopy methods evaluated the thin-film composite's structure. The research showed significant improvements in terms of graphene's dispersion (in solutions and PVC composites) following the application of curcuminoids. The best results were obtained for materials modified with compounds obtained from the extraction of the rhizome of Curcuma longa L. Modification of the graphene's surface with these compounds also increased the thermal and chemical stability of PVC/graphene nanocomposites.
Collapse
Affiliation(s)
- Sławomir Wilczewski
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Street, 85-326 Bydgoszcz, Poland
| | - Katarzyna Skórczewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Street, 85-326 Bydgoszcz, Poland
| | - Jolanta Tomaszewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Street, 85-326 Bydgoszcz, Poland
| | - Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland
| | - Agnieszka Dąbrowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
- Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Kostiantyn Nikiforow
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Jenczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland
| | - Hubert Grzywacz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Oliveira AMD, Anjos Szczerepa MMD, Bronharo Tognim MC, Abreu Filho BAD, Cardozo-Filho L, Gomes RG, Bergamasco R. Moringa oleifera seed oil extracted by pressurized n-propane and its effect against Staphylococcus aureus biofilms. ENVIRONMENTAL TECHNOLOGY 2023; 44:1083-1098. [PMID: 34704544 DOI: 10.1080/09593330.2021.1994653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus is often associated worldwide with foodborne illnesses, and the elimination of biofilms formed by this bacterium from industrial surfaces is very challenging. To date, there have been few attempts to investigate plant oils obtained by recent green technologies, applied against biofilms on usual surfaces of the food industry and bacteria isolated from such environment. Therefore, this study evaluated the activity of Moringa oleifera seed oil (MOSO), extracted with pressurized n-propane, against standard and environmental S. aureus biofilms. Additionally, a genotypic and phenotypic study of the environmental S. aureus was proposed. It was found that this bacterium was a MSSA (methicillin-sensitive S. aureus), a carrier of icaA and icaD genes that has strong adhesion (OD550=1.86 ± 0.19) during biofilm formation. The use of pressurized n-propane as a solvent was efficient in obtaining MOSO, achieving a yield of 60.9%. Gas chromatography analyses revealed the presence of a rich source of fatty acids in MOSO, mainly oleic acid (62.47%), behenic acid (10.5%) and palmitic acid (7.32%). On polystyrene surface, MOSO at 0.5% and 1% showed inhibitory and bactericidal activity, respectively, against S. aureus biofilms. MOSO at 1% allowed a maximum reduction of 2.38 log UFC/cm² of S. aureus biofilms formed on PVC (polyvinyl chloride) surface. Scanning electron microscopy showed disturbances on the surface of S. aureus after exposure to MOSO. These unprecedented findings suggest that MOSO extracted with pressurized n-propane is potentially capable of inhibiting biofilms of different S. aureus strains, thus, contributing to microbiological safety during food processing.
Collapse
Affiliation(s)
| | | | | | | | - Lúcio Cardozo-Filho
- Department of Chemical Engineering, State University of Maringa, Maringa, Brazil
| | | | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringa, Maringa, Brazil
| |
Collapse
|
6
|
Tayouri MI, Estaji S, Mousavi SR, Salkhi Khasraghi S, Jahanmardi R, Nouranian S, Arjmand M, Khonakdar HA. Degradation of polymer nanocomposites filled with graphene oxide and reduced graphene oxide nanoparticles: A review of current status. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Wilczewski S, Skórczewska K, Tomaszewska J, Lewandowski K, Studziński W, Osial M, Jenczyk P, Grzywacz H, Domańska A. Curcuma longa L. Rhizome Extract as a Poly(vinyl chloride)/Graphene Nanocomposite Green Modifier. Molecules 2022; 27:molecules27228081. [PMID: 36432182 PMCID: PMC9698460 DOI: 10.3390/molecules27228081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
In this work, a method to increase the dispersion of graphene (GN) in the matrix of rigid poly(vinyl chloride) (PVC) by using a natural plant extract from Curcuma longa L. (CE) is proposed. Currently, despite the increasing number of reports on the improvement of GN dispersion in PVC blends, still there is a need to find environmentally friendly and economical dispersion stabilizers. We proposed a stabilizer that can be easily obtained from a plant offering thermal stability and high effectiveness. PVC/GN nanocomposites stabilized with the proposed extract were investigated by SEM, AFM (structure), TGA, and Congo red test (thermal properties). Additionally, static and dynamic mechanical properties and electrical resistivity were measured. The use of CE as a graphene dispersant improved its dispersion in the PVC matrix, influenced tensile properties, increased the storage modulus and glass transition temperature, and extended the thermal stability time of nanocomposites. In this work, a CE extract is proposed as an efficient eco-friendly additive for the production of nanocomposites with an improved homogeneity of a nanofiller in the matrix and promising characteristics.
Collapse
Affiliation(s)
- Sławomir Wilczewski
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Street, 85-326 Bydgoszcz, Poland
- Correspondence: (S.W.); (M.O.)
| | - Katarzyna Skórczewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Street, 85-326 Bydgoszcz, Poland
| | - Jolanta Tomaszewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Street, 85-326 Bydgoszcz, Poland
| | - Krzysztof Lewandowski
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Street, 85-326 Bydgoszcz, Poland
| | - Waldemar Studziński
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Street, 85-326 Bydgoszcz, Poland
| | - Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Street, 02-106 Warsaw, Poland
- Correspondence: (S.W.); (M.O.)
| | - Piotr Jenczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Street, 02-106 Warsaw, Poland
| | - Hubert Grzywacz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Street, 02-106 Warsaw, Poland
| | - Agata Domańska
- Łukasiewicz Research Network—Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55 Street, 87-100 Toruń, Poland
| |
Collapse
|
8
|
Farhan A, Rashid EU, Waqas M, Ahmad H, Nawaz S, Munawar J, Rahdar A, Varjani S, Bilal M. Graphene-based nanocomposites and nanohybrids for the abatement of agro-industrial pollutants in aqueous environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119557. [PMID: 35709916 DOI: 10.1016/j.envpol.2022.119557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Incessant release of a large spectrum of agro-industrial pollutants into environmental matrices remains a serious concern due to their potential health risks to humans and aquatic animals. Existing remediation techniques are unable to remove these pollutants, necessitating the development of novel treatment approaches. Due to its unique structure, physicochemical properties, and broad application potential, graphene has attracted a lot of attention as a new type of two-dimensional nanostructure. Given its chemical stability, large surface area, electron mobility, superior thermal conductivity, and two-dimensional structure, tremendous research has been conducted on graphene and its derived composites for environmental remediation and pollution mitigation. Various methods for graphene functionalization have facilitated the development of different graphene derivatives such as graphene oxide (GO), functional reduced graphene oxide (frGO), and reduced graphene oxide (rGO) with novel attributes for multiple applications. This review provides a comprehensive read on the recent progress of multifunctional graphene-based nanocomposites and nanohybrids as a promising way of removing emerging contaminants from aqueous environments. First, a succinct overview of the fundamental structure, fabrication techniques, and features of graphene-based composites is presented. Following that, graphene and GO functionalization, i.e., covalent bonding, non-covalent, and elemental doping, are discussed. Finally, the environmental potentials of a plethora of graphene-based hybrid nanocomposites for the abatement of organic and inorganic contaminants are thoroughly covered.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Haroon Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Junaid Munawar
- College of Chemistry, Beijing University of Chemical Technology, 100013, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
9
|
Sheydaei M, Pouraman V, Alinia-Ahandani E, Shahbazi-Ganjgah S. PVCS/GO nanocomposites: investigation of thermophysical, mechanical and antimicrobial properties. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2036151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Milad Sheydaei
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Vahid Pouraman
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | | | | |
Collapse
|
10
|
Vasseghian Y, Dragoi EN, Almomani F, Le VT. Graphene-based materials for metronidazole degradation: A comprehensive review. CHEMOSPHERE 2022; 286:131727. [PMID: 34352554 DOI: 10.1016/j.chemosphere.2021.131727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Due to its cytotoxic effect, metronidazole (MNZ) is a drug commonly used to treat bacterial, protozoal, and microaerophilic bacterial infections. After consumption, it undergoes a series of metamorphic reactions that lead to the degradation of oxidized, acetylated, and hydrolyzed metabolites in the environment. To eliminate such pollutants, due to their high potential, adsorption and photocatalysis extensive processes are used in which graphene can be used to improve efficiency. This review analyses the use of graphene as an absorbent and catalyst with a focus on absorption and photocatalytic degradation of MNZ by graphene-based materials (GBMs). The parameters affecting the adsorption, and photocatalytic degradation of MNZ are investigated and discussed. Besides, the basic mechanisms occurring in these processes are summarized and analyzed. This work provides a theoretical framework that can direct future research in the field of MNZ removal from aqueous solutions.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron No 73, 700050, Romania.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam.
| |
Collapse
|
11
|
Mindivan F, Çolak A. Tribo‐material based on a
UHMWPE
/
RGOC
biocomposite for using in artificial joints. J Appl Polym Sci 2021. [DOI: 10.1002/app.50768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ferda Mindivan
- Faculty of Engineering, Department of Bioengineering Bilecik Seyh Edebali University Bilecik Turkey
| | - Alime Çolak
- Biotechnology Application and Research Centre Bilecik Seyh Edebali University Bilecik Turkey
| |
Collapse
|
12
|
|
13
|
Minale M, Gu Z, Guadie A, Kabtamu DM, Li Y, Wang X. Application of graphene-based materials for removal of tetracyclines using adsorption and photocatalytic-degradation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111310. [PMID: 32891984 DOI: 10.1016/j.jenvman.2020.111310] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Tetracyclines are extensively used to treat human and animal infectious diseases due to its effective antimicrobial activities. About 70-90% of its parent materials are released into the environment through urine and feces, implying they are the most frequently detected antibiotics in the environment with high ecological risks. Adsorption and photocatalysis have been promising techniques for the removal of tetracyclines due to effectiveness and efficiency. Graphene-based materials provide promising platforms for adsorptive and photocatalytic removal of tetracyclines from aqueous environment owning to distinctive remarkable physicochemical, optical, and electrical characteristics. Herein, we intensively reviewed the available literatures in order to provide comprehensive insight about the applications and mechanisms of graphene-based materials for removal of tetracyclines via adsorption and phototocatalysis. The synthesis methods of graphene-based materials, the tetracycline adsorption and photocatalytic-degradation conditions, and removal mechanisms have been extensively discussed. Finally concluding remarks and future perspectives have been deduced and recommended to stimulate further researches in the subject. The review study can be used as theoretical guideline for further researchers to improve the current approaches of material synthesis and application towards tetracyclines removal.
Collapse
Affiliation(s)
- Mengist Minale
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zaoli Gu
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental Science and Engineering, Tongji University, PR China.
| | - Awoke Guadie
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Daniel Manaye Kabtamu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuan Li
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental Science and Engineering, Tongji University, PR China
| | - Xuejiang Wang
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental Science and Engineering, Tongji University, PR China.
| |
Collapse
|
14
|
|
15
|
Mindivan F, Göktaş M. Rosehip‐Extract‐Assisted Green Synthesis and Characterization of Reduced Graphene Oxide. ChemistrySelect 2020. [DOI: 10.1002/slct.202001656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ferda Mindivan
- Department of Bioengineering Faculty of EngineeringBilecik Seyh Edebali University Bilecik 11230 Turkey
| | - Meryem Göktaş
- Department of Metallurgy Vocational CollegeBilecik Seyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
16
|
Çolak A, Göktaş M, Mindivan F. Effect of reduced graphene oxide amount on the tribological properties of UHMWPE biocomposites under water-lubricated conditions. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2179-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|