1
|
El-Sharkawy RM, Khairy M, Abbas MHH, Zaki MEA, El-Hadary AE. Innovative optimization for enhancing Pb 2+ biosorption from aqueous solutions using Bacillus subtilis. Front Microbiol 2024; 15:1384639. [PMID: 39176280 PMCID: PMC11338800 DOI: 10.3389/fmicb.2024.1384639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Toxic heavy metal pollution has been considered a major ecosystem pollution source. Unceasing or rare performance of Pb2+ to the surrounding environment causes damage to the kidney, nervous, and liver systems. Microbial remediation has acquired prominence in recent decades due to its high efficiency, environment-friendliness, and cost-effectiveness. Methods The lead biosorption by Bacillus subtilis was optimized by two successive paradigms, namely, a definitive screening design (DSD) and an artificial neural network (ANN), to maximize the sorption process. Results Five physicochemical variables showed a significant influence (p < 0.05) on the Pb2+ biosorption with optimal levels of pH 6.1, temperature 30°C, glucose 1.5%, yeast extract 1.7%, and MgSO4.7H2O 0.2, resulting in a 96.12% removal rate. The Pb2+ biosorption mechanism using B. subtilis biomass was investigated by performing several analyses before and after Pb2+ biosorption. The maximum Pb2+ biosorption capacity of B. subtilis was 61.8 mg/g at a 0.3 g biosorbent dose, pH 6.0, temperature 30°C, and contact time 60 min. Langmuir's isotherm and pseudo-second-order model with R2 of 0.991 and 0.999 were suitable for the biosorption data, predicting a monolayer adsorption and chemisorption mechanism, respectively. Discussion The outcome of the present research seems to be a first attempt to apply intelligence paradigms in the optimization of low-cost Pb2+ biosorption using B. subtilis biomass, justifying their promising application for enhancing the removal efficiency of heavy metal ions using biosorbents from contaminated aqueous systems.
Collapse
Affiliation(s)
- Reyad M. El-Sharkawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mohamed Khairy
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mohamed H. H. Abbas
- Soils and Water Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Magdi E. A. Zaki
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Sharma A, Mona S, Sharma P. Nanomaterials for sustainable remediation: efficient removal of Rhodamine B and lead using greenly synthesized novel mesoporous ZnO@CTAB nanocomposite. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:491. [PMID: 38691183 DOI: 10.1007/s10661-024-12655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
This study explores the dual applications of a greenly synthesized ZnO@CTAB nanocomposite for the efficient remediation of Rhodamine B (RhB) and lead (Pb). The synthesis method involves a sustainable approach, emphasizing environmentally friendly practices. FT-IR, XRD, FESEM, zeta potential, and particle size analyzer (PSA), BET, and UV-VIS were used to physically characterize the zinc oxide and CTAB nanocomposite (ZnO@CTAB). The size and crystalline index of ZnO@CTAB are 77.941 nm and 63.56% respectively. The Zeta potential of ZnO@CTAB is about - 22.4 mV. The pore diameter of the ZnO@CTAB was 3.216 nm, and its total surface area was 97.42 m2/g. The mechanism of adsorption was investigated through pHZPC measurements. The nanocomposite's adsorption performance was systematically investigated through batch adsorption experiments. At pH 2, adsorbent dose of 0.025 g, and temperature 50 °C, ZnO@CTAB removed the most RhB, while at pH 6, adsorbent dose of 0.11 g, and temperature 60 °C, ZnO@CTAB removed the most Pb. With an adsorption efficiency of 214.59 mg/g and 128.86 mg/g for RhB and Pb, the Langmuir isotherm model outperforms the Freundlich isotherm model in terms of adsorption. The pseudo-2nd-order model with an R2 of 0.99 for both RhB and Pb offers a more convincing explanation of adsorption than the pseudo-1st-order model. The results demonstrated rapid adsorption kinetics and high adsorption capacities for RhB and Pb. Furthermore, there was minimal deterioration and a high reusability of ZnO@CTAB till 4 cycles were observed.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Sharma Mona
- Department of Environmental Studies, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Praveen Sharma
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India.
| |
Collapse
|
3
|
Yadav A, Raghav S, Jangid NK, Srivastava A, Jadoun S, Srivastava M, Dwivedi J. Myrica esculenta Leaf Extract-Assisted Green Synthesis of Porous Magnetic Chitosan Composites for Fast Removal of Cd (II) from Water: Kinetics and Thermodynamics of Adsorption. Polymers (Basel) 2023; 15:4339. [PMID: 37960019 PMCID: PMC10649474 DOI: 10.3390/polym15214339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Heavy metal contamination in water resources is a major issue worldwide. Metals released into the environment endanger human health, owing to their persistence and absorption into the food chain. Cadmium is a highly toxic heavy metal, which causes severe health hazards in human beings as well as in animals. To overcome the issue, current research focused on cadmium ion removal from the polluted water by using porous magnetic chitosan composite produced from Kaphal (Myrica esculenta) leaves. The synthesized composite was characterized by BET, XRD, FT-IR, FE-SEM with EDX, and VSM to understand the structural, textural, surface functional, morphological-compositional, and magnetic properties, respectively, that contributed to the adsorption of Cd. The maximum Cd adsorption capacities observed for the Fe3O4 nanoparticles (MNPs) and porous magnetic chitosan (MCS) composite were 290 mg/g and 426 mg/g, respectively. Both the adsorption processes followed second-order kinetics. Batch adsorption studies were carried out to understand the optimum conditions for the fast adsorption process. Both the adsorbents could be regenerated for up to seven cycles without appreciable loss in adsorption capacity. The porous magnetic chitosan composite showed improved adsorption compared to MNPs. The mechanism for cadmium ion adsorption by MNPs and MCS has been postulated. Magnetic-modified chitosan-based composites that exhibit high adsorption efficiency, regeneration, and easy separation from a solution have broad development prospects in various industrial sewage and wastewater treatment fields.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapna Raghav
- Department of Chemistry, Nirankari Baba Gurubachan Singh Memorial College, Sohna 122103, India
| | | | - Anamika Srivastava
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General, Velásquez, Arica 1775, Chile;
| | - Manish Srivastava
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| |
Collapse
|
4
|
Sharma A, Mittal R, Sharma P, Pal K, Mona S. Sustainable approach for adsorptive removal of cationic and anionic dyes by titanium oxide nanoparticles synthesized biogenically using algal extract of Spirulina. NANOTECHNOLOGY 2023; 34:485301. [PMID: 37619535 DOI: 10.1088/1361-6528/acf37e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
Worldwide, dyes are significant pollutants present in water because of their huge consumption for industrial purposes. These dyes as pollutants cause serious health issues in human beings and cause the loss of aquatic biodiversity. So, remediation of pollutants like dyes from wastewater is the need of the hour. In the present study, we greenly synthesizedSpirulina-mediated titanium oxide nanoparticles (STONPs) for the adsorptive remediation of methyl orange (MO) (anionic) and malachite green (MG) (cationic) dyes. The characterization of STONPs was performed by Field emission scanning electron microscopy (FESEM) with EDX, FT-IR, XRD, Zeta Potential and particle size analyzer, Raman spectroscopy, and UV-vis. The various parameter effects like pH, nano-adsorbent dose, the concentration of dye, contact time, and temperature were also examined. Adsorption isotherms like Langmuir, Freundlich, and Temkin, and Kinetics models like Elovich Model, Pseudo 1st, intraparticle diffusion model (IPDM), Pseudo 2nd order, and the thermodynamic model were applied for a stronger interpretation. Theqmaxattained utilizing the Langmuir adsorption model was 272.4795 mg g-1and 209.6436 mg g-1for MO and MG correspondingly. The regeneration study of synthesized nanomaterials up to five cycles was also done. We found that greenly synthesized STONPs have great potential for adsorptive remediation for both MG and MO dyes.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar - 125001, Haryana, India
| | - Rishi Mittal
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar - 125001, Haryana, India
| | - Praveen Sharma
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar - 125001, Haryana, India
| | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab 140413, India
| | - Sharma Mona
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar - 125001, Haryana, India
- Department of Environmental Studies, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh-123031, Haryana, India
| |
Collapse
|
5
|
Elmekawy A, Quach Q, Abdel-Fattah TM. Synthesis of a novel multifunctional organic-inorganic nanocomposite for metal ions and organic dye removals. Sci Rep 2023; 13:12845. [PMID: 37553434 PMCID: PMC10409728 DOI: 10.1038/s41598-023-38420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
In this study, we used solvent assisted mechano-synthesis strategies to form multifunctional organic-inorganic nanocomposites capable of removing both organic and inorganic contaminants. A zeolite X (Ze) and activated carbon (AC) composite was synthesized via state-of-the-art mechanical mixing in the presence of few drops of water to form Ze/AC. The second composite (Ze/L/AC) was synthesized in a similar fashion, however this composite had the addition of disodium terephthalate as a linker. Both materials, Ze/AC and Ze/L/AC, were characterized using scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), Powdered X-ray diffraction (P-XRD), Fourier-transform infrared spectrometry (FTIR), Accelerated Surface Area and Porosimetry System (ASAP), and thermal gravimetric analysis (TGA). The SEM-EDS displayed the surface structure and composition of each material. The sodium, oxygen and carbon contents increased after linker connected Ze and AC. The P-XRD confirmed the crystallinity of each material as well as the composites, while FTIR indicated the function groups (C=C, O-H) in Ze/L/AC. The contaminant adsorption experiments investigated the effects of pH, temperature, and ionic strength on the adsorption of methylene blue (MB) and Co(II) for each material. In MB adsorption, the first-order reaction rate of Ze/L/AC (0.02 h-1) was double that of Ze/AC (0.01 h-1). The reaction rate of Ze/L/AC (4.8 h-1) was also extraordinarily higher than that of Ze/AC (0.6 h-1) in the adsorption of Co(II). Ze/L/AC composite achieved a maximum adsorption capacity of 44.8 mg/g for MB and 66.6 mg/g for Co(II) ions. The MB adsorption of Ze/AC and Ze/L/AC was best fit in Freundlich model with R2 of 0.96 and 0.97, respectively, which indicated the multilayer adsorption. In the Co(II) adsorption, the data was highly fit in Langmuir model with R2 of 0.94 and 0.92 which indicated the monolayer adsorption. These results indicated both materials exhibited chemisorption. The activation energy of Ze/L/AC in MB adsorption (34.9 kJ mol-1) was higher than that of Ze/L/AC in Co (II) adsorption (26 kJ mol-1).
Collapse
Affiliation(s)
- Ahmed Elmekawy
- Applied Research Center at Thomas Jefferson National Accelerator Facility and Department of Molecular Biology and Chemistry at Christopher, Newport University, Newport News, VA, 23606, USA
- Department of Physics, Tanta University, Tanta, Al Gharbiyah, Egypt
| | - Qui Quach
- Applied Research Center at Thomas Jefferson National Accelerator Facility and Department of Molecular Biology and Chemistry at Christopher, Newport University, Newport News, VA, 23606, USA
| | - Tarek M Abdel-Fattah
- Applied Research Center at Thomas Jefferson National Accelerator Facility and Department of Molecular Biology and Chemistry at Christopher, Newport University, Newport News, VA, 23606, USA.
- Faculty of Sciences, Alexandria University, P.O. Box 426, Ibrahimia, 21321, Alexandria, Egypt.
| |
Collapse
|
6
|
França R, Araujo FP, Neves L, Melo A, Lins A, Soares AS, Osajima JA, Guerra Y, Almeida LC, Peña-Garcia RR. Photoresponsive Activity of the Zn 0.94Er 0.02Cr 0.04O Compound with Hemisphere-like Structure Obtained by Co-Precipitation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1446. [PMID: 36837077 PMCID: PMC9964239 DOI: 10.3390/ma16041446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this work, a ZnO hemisphere-like structure co-doped with Er and Cr was obtained by the co-precipitation method for photocatalytic applications. The dopant's effect on the ZnO lattice was investigated using X-ray diffraction, Raman, photoluminescence, UV-Vis and scanning electron microscopy/energy dispersive spectroscopy techniques. The photocatalytic response of the material was analyzed using methylene blue (MB) as the model pollutant under UV irradiation. The wurtzite structure of the Zn0.94Er0.02Cr0.04O compound presented distortions in the lattice due to the difference between the ionic radii of the Cr3+, Er3+ and Zn2+ cations. Oxygen vacancy defects were predominant, and the energy competition of the dopants interfered in the band gap energy of the material. In the photocatalytic test, the MB degradation rate was 42.3%. However, using optimized H2O2 concentration, the dye removal capacity reached 90.1%. Inhibitor tests showed that •OH radicals were the main species involved in MB degradation that occurred without the formation of toxic intermediates, as demonstrated in the ecotoxicity assays in Artemia salina. In short, the co-doping with Er and Cr proved to be an efficient strategy to obtain new materials for environmental remediation.
Collapse
Affiliation(s)
- Robson França
- Programa de Pós-Graduação em Engenharia Física, Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Francisca Pereira Araujo
- Programa de Pós-Graduação em Engenharia Física, Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Luan Neves
- Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Arthur Melo
- Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Alexsandro Lins
- Programa de Pós-Graduação em Engenharia Física, Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Adriano Santana Soares
- Programa de Pós-Graduação em Ciências e Engenharia dos Materiais, Universidade Federal de Piauí, Teresina 64049-550, PI, Brazil
| | - Josy Anteveli Osajima
- Programa de Pós-Graduação em Ciências e Engenharia dos Materiais, Universidade Federal de Piauí, Teresina 64049-550, PI, Brazil
| | - Yuset Guerra
- Departamento de Física, Universidade Federal do Piauí, Teresina 64049-550, PI, Brazil
| | - Luciano Costa Almeida
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Ramón Raudel Peña-Garcia
- Programa de Pós-Graduação em Engenharia Física, Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
- Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
- Programa de Pós-Graduação em Ciências e Engenharia dos Materiais, Universidade Federal de Piauí, Teresina 64049-550, PI, Brazil
| |
Collapse
|
7
|
Hingrajiya RD, Kalola AG, Patel MP. Poly(AA-co-NVIm-co-AAm) sensor hydrogels for the simultaneous visual detection and removal of Cu2+ ions from aqueous media. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Saltan F, Saltan GM. Synthesis of a new adsorbent poly(
allylisothiocyanate
‐
co
‐
hydroxyethylmethacrylate‐co‐vinylimidazole
) via photopolymerization: Characterization and investigation of heavy metal adsorption capacity. J Appl Polym Sci 2022. [DOI: 10.1002/app.52639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fehmi Saltan
- Department of Chemistry, Faculty of Science Cankiri Karetkin University Çankırı Turkey
| | - Gözde Murat Saltan
- Department of Chemistry, Faculty of Science and Literature Manisa Celal Bayar University Manisa Turkey
| |
Collapse
|
9
|
Krishnappa PB, Kodoth AK, Kulal P, Badalamoole V. Effective removal of ionic dyes from aqueous media using modified karaya gum–PVA semi-interpenetrating network system. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Patel SR, Patel MP. Selective capture of anionic and cationic dyes via chitosan-g-poly-(IA-co-DADMAC)/Fe3O4 polymer composite hydrogel. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04017-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
The utilization of cross-linked gelatin/PAMAM aerogels as heavy metal ions bio-adsorbents from aqueous solutions. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04019-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Adsorption Characteristics and Molecular Simulation of Malachite Green onto Modified Distillers’ Grains. WATER 2022. [DOI: 10.3390/w14020171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adsorbent material was prepared using distillers’ grains (DG), which is a waste product of distilleries. The DG was pre-treated with NaOH and esterification-modified with CS2, which is a commonly used anionic modifier. The structure and morphology of the adsorbent was characterized by FTIR, XRD, EDS, SEM, BET, and zeta potential. The related mechanism of adsorption of malachite green (MG) onto modified distiller’s grains (MDG) was studied by adsorption experiments and molecular simulation techniques. The experimental results showed that CS2 successfully modified the DG fiber, and simultaneously yielded the MDG with a uniform pore distribution. MDG had a considerable adsorption capacity of 367.39 mg/g and a maximum removal rate of 96.51%. After eight adsorption–desorption cycle experiments, the adsorption removal rate of MDG to MG dye remained at 82.6%. The adsorption process could be fitted well by a pseudo-second-order kinetic model (the correlation coefficient R2 > 0.998) and Freundlich isotherm adsorption equation (the correlation coefficient R2 > 0.972). Moreover, the adsorption of MG dye by MDG is a spontaneous, endothermic, and increased entropy process. The results of molecular simulation showed that the mechanism of MG molecules onto MDG was mainly chemical adsorption. The adsorption performance of MG onto MDG was better and more stable than DG. Molecular simulation also provided a theoretical guidance of MDG adsorption–desorption for the research on recycling of DG resources.
Collapse
|
13
|
Sanakousar MF, C VC, Jiménez-Pérez VM, Mounesh, Shridhar AH. Mechanistic insight into the photocatalytic degradation of organic pollutants and electrochemical behavior of modified MWCNTs/Cu–Co 3O 4 nanocomposites. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00117a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present work reported the physical, chemical and electrical properties of Cu doped Co3O4.
Collapse
Affiliation(s)
- M. F. Sanakousar
- Department of PG Studies and Research in Chemistry, Rani Channamma University, Belagavi-591156, Karnataka, India
| | - Vidyasagar C. C
- Department of PG Studies and Research in Chemistry, Rani Channamma University, Belagavi-591156, Karnataka, India
| | - Víctor M. Jiménez-Pérez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad Universitaria, Av. Universidad s/n. C. P., 66451, Nuevo León, Mexico
| | - Mounesh
- Department of PG Studies and Research in Chemistry, Vijayanagara Srikrishnadevaraya University, Ballari-583105, Karnataka, India
| | - A. H. Shridhar
- Department of Chemistry, SVM Arts Science & Commerce College, Ilkal, Karnataka, India
| |
Collapse
|
14
|
Abstract
To adsorb hexavalent chromium (Cr(VI)) in polluted water, this paper prepared a UiO-66 (Zr6O4(OH)4(BDC)12) modified granular corncob composite adsorbent by hydrothermal method with in situ loading of UiO-66 on pretreated corncob particles. The physicochemical properties of the synthesized samples were characterized. Batch adsorption experiments were conducted to investigate the adsorption process of aqueous Cr(VI) under various conditions (different ionic strength, pH and co-existing anions). The results showed that UiO-66 was successfully loaded on the modified corncob particles. The isothermal adsorption data of Cr(VI) adsorption by the UiO-66 modified corncob fit well with the Langmuir model with the maximum adsorption capacity of Cr(VI) on UiO-66@Corn+ being 90.04 mg/g. UiO-66 loading could increase Cr(VI) adsorption capacity of Corn+. The kinetic study showed that the equilibrium time for Cr(VI) adsorption on UiO-66 modified corncob was about 180 min and the kinetic data followed the pseudo-secondary kinetic model. The Cr(VI) adsorption capacity on UiO-66@Corn+ decreased with the increasing solution pH, and the optimum pH range was 4–6. The ionic strength has little effect on the Cr(VI) adsorption capacity, but the coexistence of CO32−, SO42− and PO43− in the solution could significantly decrease the equilibrium adsorption capacity of Cr(VI). The adsorption mechanism analysis showed that Cr(VI) was adsorbed on the surface of adsorbents through electrostatic attraction and was reduced further to the less toxic Cr(III) by the electron donor on the surface of adsorbent. The electrostatic interaction was the main force affecting the adsorption of Cr(VI) by UiO-66. UiO-66@Corn+ had an excellent removal efficiency of Cr(VI) and excellent reusability. UiO-66@Corn+ could effectively remove Cr(VI) from water and have a promising application.
Collapse
|
15
|
Dan S, Kalantari M, Kamyabi A, Soltani M. Synthesis of chitosan-g-itaconic acid hydrogel as an antibacterial drug carrier: optimization through RSM-CCD. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03903-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Raza ZA, Munim SA, Ayub A. Recent developments in polysaccharide-based electrospun nanofibers for environmental applications. Carbohydr Res 2021; 510:108443. [PMID: 34597980 DOI: 10.1016/j.carres.2021.108443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Electrospinning has become an inevitable approach to produce nanofibrous structures for diverse environmental applications. Polysaccharides, due to their variety of types, biobased origins, and eco-friendly, and renewable nature are wonderful materials for the said purpose. The present review discusses the electrospinning process, the parameters involved in the formation of electrospun nanofibers in general, and the polysaccharides in specific. The selection of materials to be electrospun depends on the processing conditions and properties deemed desirable for specific applications. Thereby, the conditions to electrospun polysaccharides-based nanofibers have been focused on for possible environmental applications including air filtration, water treatment, antimicrobial treatment, environmental sensing, and so forth. The polysaccharide-based electrospun membranes, for instance, due to their active adsorption sites could find significant potential for contaminants removal from the aqueous systems. The study also gives some recommendations to overcome any shortcomings faced during the electrospinning and environmental applications of polysaccharide-based matrices.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.
| | - S A Munim
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| | - Asif Ayub
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| |
Collapse
|
17
|
Ahmad K, Shah HUR, Nasim HA, Ayub A, Ashfaq M, Rauf A, Shah SSA, Ahmad MM, Nawaz H, Hussain E. Synthesis and characterization of water stable polymeric metallo organic composite (PMOC) for the removal of arsenic and lead from brackish water. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1919902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Khalil Ahmad
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad ul Jadeed Campus, Bahawalpur, Pakistan
| | - Habib-Ur-Rehman Shah
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad ul Jadeed Campus, Bahawalpur, Pakistan
| | - Hafiza Ammara Nasim
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad ul Jadeed Campus, Bahawalpur, Pakistan
| | - Asif Ayub
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad ul Jadeed Campus, Bahawalpur, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad ul Jadeed Campus, Bahawalpur, Pakistan
| | - Syed Shoaib Ahmad Shah
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad ul Jadeed Campus, Bahawalpur, Pakistan
- Department of Chemistry, CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, PR China
| | | | - Haq Nawaz
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ejaz Hussain
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad ul Jadeed Campus, Bahawalpur, Pakistan
| |
Collapse
|