1
|
Plascencia Martinez D, Quiroz Castillo JM, Ospina Orejarena A, Pérez Gallardo A, Méndez Merino E, Trimmer López GA, López Peña IY, Hernández Martínez D, López Gastelum KA, Leyva Verduzco AA, Ledezma AS, Castillo Ortega MM. Comparative Study of Single and Coaxial Electrospun Antimicrobial Cross-Linked Scaffolds Enriched with Aloe Vera: Characterization, Antimicrobial Activity, Drug Delivery, Cytotoxicity, and Cell Proliferation on Adipose Stem Cells and Human Skin Fibroblast. ACS OMEGA 2024; 9:41157-41170. [PMID: 39398116 PMCID: PMC11465271 DOI: 10.1021/acsomega.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 10/15/2024]
Abstract
The preparation of materials with application in the biomedical field needs to attend some characteristics such as biocompatibility, nontoxicity, adequate mechanical properties, and the ability to mimic the extracellular matrix. Scaffolds for use in cell culture were prepared based on gelatin, polylactic acid (PLA), aloe vera mucilage, and tetracycline. Fibers were prepared in single and coaxial configuration and then cross-linked with glutaraldehyde saturated vapor. The fibers were obtained with cylindric morphology and changed to ribbon morphology and porous membranes, similarly to the extracellular matrix, when cross-linked. Membranes prepared by coaxial electrospinning showed core-shell structures when observed by transversal images, which is beneficial for controlled drug release. Characterization techniques such as scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy demonstrated the cross-linking due to the increase in diameter, formation of imine groups, and improvement of thermal stability. Antibiotic release tests showed that the prevalent release mechanism is diffusion and can be controlled considering the encapsulation effect, when fibers are prepared with a coaxial configuration, increasing the drug release time, making it a suitable material for controlled release. The biological evaluation of the scaffolds was carried out in two cell lines: mammalian adipose stem cells (ASCs), used as a primary cell culture, and Detroit 548 human skin fibroblasts as a dermal cell model. Aloe vera enriched scaffolds showed better activity in contact with both cell lines, exhibiting cell viability values greater than 90% and favorable results in live-dead assays when no damaged cells were observed. Cell proliferation was evaluated using Detroit 548 human skin fibroblast on gelatin-based scaffolds by the staining of the adhered cells; the images showed good confluence and morphology of the cells on the aloe vera and antibiotic loaded membranes for both of the studied configurations. Antibiotic loaded membranes presented antimicrobial activity against S. aureus, and this behavior increased when aloe vera is included. According to the results, the scaffolds prepared on single configuration enriched with aloe vera and tetracycline could be used in dermal tissue engineering as burn dressings, diabetic foot apposite, and skin substitutes, and the scaffolds prepared with a coaxial configuration are recommended for controlled release systems of antibiotics as treatments for chronic wounds such as diabetic foot and burn healing.
Collapse
Affiliation(s)
- Damian
Francisco Plascencia Martinez
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Colonia Centro ,Hermosillo ,Sonora 83000, México
| | - Jesús Manuel Quiroz Castillo
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Colonia Centro ,Hermosillo ,Sonora 83000, México
| | - Alida Ospina Orejarena
- Centro
de Tecnología de Sigma Alimentos, Autopista al Av. aeropuerto km. 10 Tecnología
302 y 304, Planta PIIT ,Apodaca ,NL 66629, México
| | - Alfonso Pérez Gallardo
- Centro
de Tecnología de Sigma Alimentos, Autopista al Av. aeropuerto km. 10 Tecnología
302 y 304, Planta PIIT ,Apodaca ,NL 66629, México
| | - Emilio Méndez Merino
- Centro
de Tecnología de Sigma Alimentos, Autopista al Av. aeropuerto km. 10 Tecnología
302 y 304, Planta PIIT ,Apodaca ,NL 66629, México
| | - Gerardo Asael Trimmer López
- Facultad
de Ingeniería Mecánica y Eléctrica,Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Niños
Héroes, Ciudad Universitaria, San Nicolás
de los Garza 66455, México
| | - Itzel Yanira López Peña
- Centro
de Investigación en Alimentación y Desarrollo, Carretera a la Victoria Km. 0.6
Ejido La Victoria ,Hermosillo ,Sonora 83304, México
| | - Diego Hernández Martínez
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Colonia Centro ,Hermosillo ,Sonora 83000, México
| | - Karla Alejandra López Gastelum
- Centro
de Investigación en Alimentación y Desarrollo, Carretera a la Victoria Km. 0.6
Ejido La Victoria ,Hermosillo ,Sonora 83304, México
| | - Abraham Alejandro Leyva Verduzco
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Colonia Centro ,Hermosillo ,Sonora 83000, México
| | - Antonio S. Ledezma
- Materiales
Avanzados, Centro de Investigación
en Química Aplicada, Boulevard Enrique Reyna 140 ,Saltillo ,Coahuila 25294, México
| | - María Mónica Castillo Ortega
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Colonia Centro ,Hermosillo ,Sonora 83000, México
| |
Collapse
|
2
|
Wang S, Li J, Wang P, Zhang M, Liu S, Wang R, Li Y, Ren F, Fang B. Improvement in the Sustained-Release Performance of Electrospun Zein Nanofibers via Crosslinking Using Glutaraldehyde Vapors. Foods 2024; 13:1583. [PMID: 38790885 PMCID: PMC11121536 DOI: 10.3390/foods13101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Volatile active ingredients in biopolymer nanofibers are prone to burst and uncontrolled release. In this study, we used electrospinning and crosslinking to design a new sustained-release active packaging containing zein and eugenol (EU). Vapor-phase glutaraldehyde (GTA) was used as the crosslinker. Characterization of the crosslinked zein nanofibers was conducted via scanning electron microscopy (SEM), mechanical properties, water resistance, and Fourier transform infrared (FT-IR) spectroscopy. It was observed that crosslinked zein nanofibers did not lose their fiber shape, but the diameter of the fibers increased. By increasing the crosslink time, the mechanical properties and water resistance of the crosslinked zein nanofibers were greatly improved. The FT-IR results demonstrated the formation of chemical bonds between free amino groups in zein molecules and aldehyde groups in GTA molecules. EU was added to the zein nanofibers, and the corresponding release behavior in PBS was investigated using the dialysis membrane method. With an increase in crosslink time, the release rate of EU from crosslinked zein nanofibers decreased. This study demonstrates the potential of crosslinking by GTA vapors on the controlled release of the zein encapsulation structure containing EU. Such sustainable-release nanofibers have promising potential for the design of fortified foods or as active and smart food packaging.
Collapse
Affiliation(s)
- Shumin Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| | - Jingyu Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.L.); (M.Z.)
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.L.); (M.Z.)
| | - Siyuan Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| |
Collapse
|
3
|
Altundag Ö, Öteyaka MÖ, Çelebi-Saltik B. Co- and Triaxial Electrospinning for Stem Cell-based Bone Regeneration. Curr Stem Cell Res Ther 2024; 19:865-878. [PMID: 37594104 DOI: 10.2174/1574888x18666230818094216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Bone tissue is composed of organic minerals and cells. It has the capacity to heal for certain minor damages, but when the bone defects surpass the critical threshold, they need fixing. Bone regeneration through natural and synthetic biodegradable materials requires various steps, such as manufacturing methods and materials selection. A successful biodegradable bone graft should have a high surface area/ volume ratio, strength, and a biocompatible, porous structure capable of promoting cell adhesion, proliferation, and differentiation. Considering these requirements, the electrospinning technique is promising for creating functional nano-sized scaffolds. The multi-axial methods, such as coaxial and triaxial electrospinning, are the most popular techniques to produce double or tri-layered scaffolds, respectively. Recently, stem cell culture on scaffolds and the application of osteogenic differentiation protocols on these scaffolds have opened new possibilities in the field of biomaterials research. This review discusses an overview of the progress in coaxial and triaxial technology through biodegradable composite bone materials. The review also carefully elaborates the osteogenic differentiation using stem cells and their performance with nano-sized scaffolds.
Collapse
Affiliation(s)
- Özlem Altundag
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Mustafa Özgür Öteyaka
- Department of Electronic and Automation, Mechatronic Program, Eskisehir Vocational School, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Qian C, Liu Y, Chen S, Zhang C, Chen X, Liu Y, Liu P. Electrospun core-sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications. Front Bioeng Biotechnol 2023; 11:1205252. [PMID: 37564996 PMCID: PMC10410860 DOI: 10.3389/fbioe.2023.1205252] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction: Drugs and biocompatible nanoparticles have raised significant potential in advancing the bone regeneration. Electrospinning technology enables the full realization of the value of drugs and nanoparticles. Methods: In this study, we have successfully fabricated core-sheath nanofibers solely composed of polycaprolactone (PCL) polymer. Simvastatin (SIM) was confined to the core of the nanofibers while nanohydroxyapatite (nHA) was loaded on the nanofiber surface. Results: All the prepared nanofibers exhibited a cylindrical micromorphology, and the core-sheath structure was exploited using a Transmission Electron Microscope. X-ray pattern results indicated that SIM was in an amorphous state within nanofibers, while Fourier Transform InfraRed spectroscopy showed excellent chemical compatibility among SIM, nHA, and PCL. The actual loading of nHA within the nanofiber was determined by a thermogravimetric test due to the high melting point of nHA. Core-sheath nanofibers could release SIM for 672 h, which was attributed to the core-sheath structure. Furthermore, nanofibers loaded with SIM or nHA had a positive impact on cell proliferation, with the core-sheath nanofibers displaying the most favorable cell proliferation behavior. Discussion: Such a synergistic facilitation strategy based on materials and nanostructure may encourage researchers to exploit new biomedical materials in future.
Collapse
Affiliation(s)
- Chenghui Qian
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Yubo Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Si Chen
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Chenyang Zhang
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Yuehua Liu
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| |
Collapse
|
5
|
Hosseinian H, Jimenez-Moreno M, Sher M, Rodriguez-Garcia A, Martinez-Chapa SO, Hosseini S. An origami-based technique for simple, effective and inexpensive fabrication of highly aligned far-field electrospun fibers. Sci Rep 2023; 13:7083. [PMID: 37127746 PMCID: PMC10151330 DOI: 10.1038/s41598-023-34015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023] Open
Abstract
Fabrication of highly aligned fibers by far-field electrospinning is a challenging task to accomplish. Multiple studies present advances in the alignment of electrospun fibers which involve modification of the conventional electrospinning setup with complex additions, multi-phased fabrication, and expensive components. This study presents a new collector design with an origami structure to produce highly-aligned far-field electrospun fibers. The origami collector mounts on the rotating drum and can be easily attached and removed for each round of fiber fabrication. This simple, effective, and inexpensive technique yields high-quality ultra-aligned fibers while the setup remains intact for other fabrication types. The electrospun poly(ɛ-caprolactone) (PCL) fibers were assessed by scanning electron microscope (SEM), fiber diameter distribution, water contact angle (WCA), Fast Fourier Transform analysis (FFT), surface plot profile, and pixel intensity plots. We thoroughly explored the impact of influential parameters, including polymer concentration, injection rate, collector rotation speed, distance from the collector to the tip, and needle gauge number on fibers' quality and alignment. Moreover, we employed machine learning algorithms to predict the outcomes and classify the high-quality fibers instead of low-quality productions.
Collapse
Affiliation(s)
- Hamed Hosseinian
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, NL, Mexico
| | - Martin Jimenez-Moreno
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, NL, Mexico
| | - Mazhar Sher
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD, 57007, USA
| | - Aida Rodriguez-Garcia
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, NL, Mexico
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, San Nicolás de los Garza, 66455, San Nicolás, Nuevo Leon, Mexico
| | | | - Samira Hosseini
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, NL, Mexico.
- Writing Lab, Institute for the Future of Education, Tecnologico de Monterrey, 64849, Monterrey, NL, Mexico.
| |
Collapse
|
6
|
Furko M, Horváth ZE, Czömpöly O, Balázsi K, Balázsi C. Biominerals Added Bioresorbable Calcium Phosphate Loaded Biopolymer Composites. Int J Mol Sci 2022; 23:ijms232415737. [PMID: 36555378 PMCID: PMC9779388 DOI: 10.3390/ijms232415737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Nanocrystalline calcium phosphate (CP) bioceramic coatings and their combination with biopolymers are innovative types of resorbable coatings for load-bearing implants that can promote the integration of metallic implants into human bodies. The nanocrystalline, amorphous CP particles are an advantageous form of the various calcium phosphate phases since they have a faster dissolution rate than that of crystalline hydroxyapatite. Owing to the biomineral additions (Mg, Zn, Sr) in optimized concentrations, the base CP particles became more similar to the mineral phase in human bones (dCP). The effect of biomineral addition into the CaP phases was thoroughly studied. The results showed that the shape, morphology, and amorphous characteristic slightly changed in the case of biomineral addition in low concentrations. The optimized dCP particles were then incorporated into a chosen polycaprolactone (PCL) biopolymer matrix. Very thin, non-continuous, rough layers were formed on the surface of implant substrates via the spin coating method. The SEM elemental mapping proved the perfect incorporation and distribution of dCP particles into the polymer matrix. The bioresorption rate of thin films was followed by corrosion measurements over a long period of time. The corrosion results indicated a faster dissolution rate for the dCP-PCL composite compared to the dCP and CP powder layers.
Collapse
|
7
|
Erythromycin Formulations—A Journey to Advanced Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102180. [PMID: 36297615 PMCID: PMC9608461 DOI: 10.3390/pharmaceutics14102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Erythromycin (ERY) is a macrolide compound with a broad antimicrobial spectrum which is currently being used to treat a large number of bacterial infections affecting the skin, respiratory tract, intestines, bones and other systems, proving great value from a clinical point of view. It became popular immediately after its discovery in 1952, due to its therapeutic effect against pathogens resistant to other drugs. Despite this major advantage, ERY exhibits several drawbacks, raising serious clinical challenges. Among them, the very low solubility in water and instability under acidic conditions cause a limited efficacy and bioavailability. Apart from this, higher doses promote drug resistance and undesirable effects. In order to overcome these disadvantages, during the past decades, a large variety of ERY formulations, including nanoparticles, have emerged. Despite the interest in ERY-(nano)formulations, a review on them is lacking. Therefore, this work was aimed at reviewing all efforts made to encapsulate ERY in formulations of various chemical compositions, sizes and morphologies. In addition, their preparation/synthesis, physico-chemical properties and performances were carefully analysed. Limitations of these studies, particularly the quantification of ERY, are discussed as well.
Collapse
|
8
|
Gruppuso M, Guagnini B, Musciacchio L, Bellemo F, Turco G, Porrelli D. Tuning the Drug Release from Antibacterial Polycaprolactone/Rifampicin-Based Core-Shell Electrospun Membranes: A Proof of Concept. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27599-27612. [PMID: 35671365 PMCID: PMC9946292 DOI: 10.1021/acsami.2c04849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The employment of coaxial fibers for guided tissue regeneration can be extremely advantageous since they allow the functionalization with bioactive compounds to be preserved and released with a long-term efficacy. Antibacterial coaxial membranes based on poly-ε-caprolactone (PCL) and rifampicin (Rif) were synthesized here, by analyzing the effects of loading the drug within the core or on the shell layer with respect to non-coaxial matrices. The membranes were, therefore, characterized for their surface properties in addition to analyzing drug release, antibacterial efficacy, and biocompatibility. The results showed that the lower drug surface density in coaxial fibers hinders the interaction with serum proteins, resulting in a hydrophobic behavior compared to non-coaxial mats. The air-plasma treatment increased their hydrophilicity, although it induced rifampicin degradation. Moreover, the substantially lower release of coaxial fibers influenced the antibacterial efficacy, tested against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Indeed, the coaxial matrices were inhibitory and bactericidal only against S. aureus, while the higher release from non-coaxial mats rendered them active even against E. coli. The biocompatibility of the released rifampicin was assessed too on murine fibroblasts, revealing no cytotoxic effects. Hence, the presented coaxial system should be further optimized to tune the drug release according to the antibacterial effectiveness.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Benedetta Guagnini
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Luigi Musciacchio
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Francesca Bellemo
- Department
of Engineering and Architecture, University
of Trieste, Via Alfonso
Valerio 6/1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Davide Porrelli
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
9
|
Preparation and characterization of steroid and umbelliferone-based hetero-bifunctional poly(ε-caprolactone)s for potential drug delivery systems: antimicrobial and anticancer activities. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Electrospun Coaxial Fibers to Optimize the Release of Poorly Water-Soluble Drug. Polymers (Basel) 2022; 14:polym14030469. [PMID: 35160459 PMCID: PMC8839822 DOI: 10.3390/polym14030469] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
In a drug delivery system, the physicochemical properties of the polymeric matrix have a positive impact on the bioavailability of poorly water-soluble drugs. In this work, monolithic F1 fibers and coaxial F2 fibers were successfully prepared using polyvinylpyrrolidone as the main polymer matrix for drug loading and the poorly water-soluble curcumin (Cur) as a model drug. The hydrophobic poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) was designed as a blank layer to change the hydrophilicity of the fiber and restrain the drug dissolution rate. The curved linear morphology without beads of F1 fibers and the straight linear morphology with few spindles of F2 fibers were characterized using field-emission environmental scanning electron microscopy. The amorphous forms of the drug and its good compatibility with polymeric matrix were verified by X-ray diffraction and attenuated total reflectance Fourier transformed infrared spectroscopy. Surface wettability and drug dissolution data showed that the weaker hydrophilicity F2 fibers (31.42° ± 3.07°) had 24 h for Cur dissolution, which was much longer than the better hydrophilic F1 fibers (15.31° ± 2.79°) that dissolved the drug in 4 h.
Collapse
|
11
|
Mehta P, Rasekh M, Patel M, Onaiwu E, Nazari K, Kucuk I, Wilson PB, Arshad MS, Ahmad Z, Chang MW. Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Adv Drug Deliv Rev 2021; 175:113823. [PMID: 34089777 DOI: 10.1016/j.addr.2021.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Advancements in technology and material development in recent years has led to significant breakthroughs in the remit of fiber engineering. Conventional methods such as wet spinning, melt spinning, phase separation and template synthesis have been reported to develop fibrous structures for an array of applications. However, these methods have limitations with respect to processing conditions (e.g. high processing temperatures, shear stresses) and production (e.g. non-continuous fibers). The materials that can be processed using these methods are also limited, deterring their use in practical applications. Producing fibrous structures on a nanometer scale, in sync with the advancements in nanotechnology is another challenge met by these conventional methods. In this review we aim to present a brief overview of conventional methods of fiber fabrication and focus on the emerging fiber engineering techniques namely electrospinning, centrifugal spinning and pressurised gyration. This review will discuss the fundamental principles and factors governing each fabrication method and converge on the applications of the resulting spun fibers; specifically, in the drug delivery remit and in regenerative medicine.
Collapse
Affiliation(s)
- Prina Mehta
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Middlesex UB8 3PH, UK
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - I Kucuk
- Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Turkey
| | - Philippe B Wilson
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell NG25 0QF, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, Northern Ireland BT37 0QB, UK.
| |
Collapse
|