1
|
Navidi G, Same S, Allahvirdinesbat M, Nakhostin Panahi P, Dindar Safa K. Development of novel hybrid nanomaterials with potential application in bone/dental tissue engineering: design, fabrication and characterization enriched-SAPO-34/CS/PANI scaffold. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2090-2114. [PMID: 38953859 DOI: 10.1080/09205063.2024.2366638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.
Collapse
Affiliation(s)
- Golnaz Navidi
- Brozek Lab, Chemistry and Biochemistry Department, University of OR, Eugene, Oregon
| | - Saeideh Same
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Allahvirdinesbat
- Organosilicon Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Kazem Dindar Safa
- Organosilicon Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Mir A, Fletcher WJ, Taylor DK, Alam J, Riaz U. Sustained Release Studies of Metformin Hydrochloride Drug Using Conducting Polymer/Gelatin-Based Composite Hydrogels. ACS OMEGA 2024; 9:18766-18776. [PMID: 38708204 PMCID: PMC11064195 DOI: 10.1021/acsomega.3c05067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Accepted: 01/10/2024] [Indexed: 05/07/2024]
Abstract
The present work highlights the synthesis and characterization of conducting polymer (CP)-based composite hydrogels with gelatin (GL-B) for their application as drug delivery vehicles. The spectral, morphological, and rheological properties of the synthesized hydrogels were explored, and morphological studies confirmed formation of an intense interpenetrating network. Rheological measurements showed variation in the flow behavior with the type of conducting polymer. The hydrogels showed a slow drug release rate of about 10 h due to the presence of the conducting polymer. The release kinetics were fitted in various mathematical models and were best fit in first order for PNA-, POPD-, and PANI-based GL-B hydrogels, and the PVDF/GL-B hydrogel was best fit in the zero-order models. The drug release was found to follow the order: POPD/GL-B > PANI/GL-B > PVDF/GL-B.
Collapse
Affiliation(s)
- Aleena Mir
- Materials
Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Wilbert J. Fletcher
- Department
of Chemistry and Biochemistry, North Carolina
Central University, Durham, North Carolina 27707, United States
| | - Darlene K. Taylor
- Department
of Chemistry and Biochemistry, North Carolina
Central University, Durham, North Carolina 27707, United States
| | - Javed Alam
- King
Abdullah Institute for Nanotechnology (KAIN), King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ufana Riaz
- Department
of Chemistry and Biochemistry, North Carolina
Central University, Durham, North Carolina 27707, United States
- Materials
Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
3
|
Komaba K, Kimura S, Kumai R, Goto H. Optically Electroactive Polymer Synthesized in a Liquid Crystal with Cyclosporin A─Circularly Polarized Electron Spin Resonance. J Phys Chem B 2024; 128:2000-2009. [PMID: 38377516 DOI: 10.1021/acs.jpcb.3c07375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cyclosporine A (CsA), a naturally derived biomaterial and physiologically active substance, is commonly used as an immunosuppressant. In this study, CsA was revealed to function as a chiral inducer of cholesteric liquid crystals (CLCs) with a high helical twisting power. CsA induced helical structures in 4-cyano-4'-pentylbiphenyl, a synthetic liquid crystal (LC) used for general purposes. Electrochemical polymerization in CLC with CsA was also performed. The polymer prepared in CLC showed electro-optical activity via chiral induction by CsA. Synchrotron X-ray diffraction measurements indicated that the polymer film prepared in the CLC formed in the manner of LC molecular arrangement through molecular form imprinting from the LC order, although the polymer exhibited no liquid crystallinity. The polymer showed structural color and laser light oscillation diffraction derived from its periodic structure. The anisotropy of the circularly polarized electron spin resonance signals for the resulting polymer with respect to the magnetic field was observed.
Collapse
Affiliation(s)
- Kyoka Komaba
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Shojiro Kimura
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 Japan
| | - Reiji Kumai
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Hiromasa Goto
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
4
|
Golba S, Loskot J. The Alphabet of Nanostructured Polypyrrole. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7069. [PMID: 38004999 PMCID: PMC10672593 DOI: 10.3390/ma16227069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
This review is devoted to polypyrrole and its morphology, which governs the electroactivity of the material. The macroscopic properties of the material are strictly relevant to microscopic ordering observed at the local level. During the synthesis, various (nano)morphologies can be produced. The formation of the ordered structure is dictated by the ability of the local forces and effects to induce restraints that help shape the structure. This review covers the aspects of morphology and roughness and their impact on the final properties of the modified electrode activity in selected applications.
Collapse
Affiliation(s)
- Sylwia Golba
- Institute Materials Engineering, University of Silesia, 75 Pulku Piechoty Street 1A, 41-500 Chorzow, Poland
| | - Jan Loskot
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic;
| |
Collapse
|
5
|
Barbero CA. Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)-A Critical Review. Polymers (Basel) 2023; 15:2240. [PMID: 37242814 PMCID: PMC10221099 DOI: 10.3390/polym15102240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Hydrogels made of cross-linked polyacrlyamides (cPAM) and conducting materials made of polyanilines (PANIs) are both the most widely used materials in each category. This is due to their accessible monomers, easy synthesis and excellent properties. Therefore, the combination of these materials produces composites which show enhanced properties and also synergy between the cPAM properties (e.g., elasticity) and those of PANIs (e.g., conductivity). The most common way to produce the composites is to form the gel by radical polymerization (usually by redox initiators) then incorporate the PANIs into the network by oxidative polymerization of anilines. It is often claimed that the product is a semi-interpenetrated network (s-IPN) made of linear PANIs penetrating the cPAM network. However, there is evidence that the nanopores of the hydrogel become filled with PANIs nanoparticles, producing a composite. On the other hand, swelling the cPAM in true solutions of PANIs macromolecules renders s-IPN with different properties. Technological applications of the composites have been developed, such as photothermal (PTA)/electromechanical actuators, supercapacitors, movement/pressure sensors, etc. PTA devices rely on the absorption of electromagnetic radiation (light, microwaves, radiofrequency) by PANIs, which heats up the composite, triggering the phase transition of a thermosensitive cPAM. Therefore, the synergy of properties of both polymers is beneficial.
Collapse
Affiliation(s)
- Cesar A Barbero
- Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Río Cuarto 5800, Argentina
| |
Collapse
|
6
|
Etman A, Ibrahim A, Darwish F, Qasim K. A 10 years-developmental study on conducting polymers composites for supercapacitors electrodes: a review for extensive data interpretation. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Zhang T, Han J, Zhang H. Rapid saline-alkali sensitivity testing using hydrogel/gold nanoparticles-modified screen-printed electrodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160814. [PMID: 36509274 DOI: 10.1016/j.scitotenv.2022.160814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Rapid screening of microorganisms with good saline-alkali tolerance is of great significance for the improvement of saline-alkali land. In this study, a novel electrochemical method was developed for the rapid screening of saline-alkali-tolerant bacteria using a hydrogel/gold nanoparticles-modified screen-printed electrode. Monitoring bacterial growth using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) yielded a new method to measure saline-alkali sensitivity. The strains were deposited on agarose hydrogel-AuNPs composite-modified electrodes with saline-alkali treatment control at a concentration of 50 mM. The electrochemical-derived growth curve of each bacterial strain was established to monitor the effect of saline-alkaline conditions on bacterial growth. The results showed that E. coli could grow on the hydrogel-AuNPs composite-modified electrodes without saline and alkali, while the growth of E. coli was inhibited after adding saline and alkali to the modified electrodes. In contrast, Paenibacillus lautus (HC_A) and Lysinibacillus fusiformis (HC_B) were able to grow on electrodes containing saline-alkali hydrogel-AuNPs composite modification. This fast growth curves of the strains derived from electrochemical analysis indicate that the possible time for salinity sensitivity results is <45 min. Compared to the traditional bacterial culture method lasting at least 1-2 days, this method has the clear advantages of rapidity, high efficiency, and low cost.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Juan Han
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
8
|
Bioactivation of Polyaniline for Biomedical Applications and Metal Oxide Composites. J CHEM-NY 2022. [DOI: 10.1155/2022/9328512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work, the oxidative chemical synthesis of polyaniline (PANI) in the presence of glutamic acid (GA) is presented, using ammonium persulfate (APS) as the oxidizing agent. Syntheses were performed by varying the molar ratio of aniline:amino acid:oxidant. The products of the different reactions were characterized by SEM, TEM, and FTIR techniques. It was observed that the molar ratio of aniline:amino acid:oxidant used in the synthesis determines the composition and conformation of the resulting polymer and its morphological and electrochemical properties. Composite hydrogels were prepared by incorporating the drug-loaded PANI nanofibers in situ through polymerization and cross-linking of acrylamide. TEM images of the cross-section of the hydrogel revealed the formation of a three-dimensional system of the polyaniline nanofibers maintained by the insulating matrix of the polyacrylamide hydrogel. The in vitro release of the drug from the hydrogels composed of polyacrylamide/polyaniline against buffer solutions at different pH and temperature was studied, using orbital agitation. Finally, considering the potential of hydrogels composed of polyacrylamide/polyaniline for the controlled release of drugs, a study was conducted to evaluate their cytotoxicity against normal mouse subcutaneous tissue cells.
Collapse
|
9
|
Mir A, Kumar A, Riaz U. A short review on the synthesis and advance applications of polyaniline hydrogels. RSC Adv 2022; 12:19122-19132. [PMID: 35865573 PMCID: PMC9244896 DOI: 10.1039/d2ra02674k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Conductive polymeric hydrogels (CPHs) exhibit remarkable properties such as high toughness, self-recoverability, electrical conductivity, transparency, freezing resistance, stimulus responsiveness, stretch ability, self-healing, and strain sensitivity. Due to their exceptional physicochemical and physio-mechanical properties, among the widely studied CPHs, polyaniline (PANI) has been the subject of immense interest due to its stability, tunable electrical conductivity, low cost, and good biocompatibility. The current state of research on PANI hydrogel is discussed in this short review, along with the properties, preparation methods, and common characterization techniques as well as their applications in a variety of fields such as sensor and actuator manufacturing, biomedicine, and soft electronics. Furthermore, the future development and applications of PANI hydrogels are also mentioned.
Collapse
Affiliation(s)
- Aleena Mir
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Amit Kumar
- Theory & Simulation Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| |
Collapse
|