1
|
Ishaq W, Afzal A, Farooq M, Sarfraz M, Adnan S, Ahmed H, Waqas M, Safdar Z. Design and Evaluation of Inorganic/Organic Hybrid Bio-composite for Site-Specific Oral Delivery of Darifenacin. AAPS PharmSciTech 2024; 25:204. [PMID: 39237789 DOI: 10.1208/s12249-024-02916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Benign hyperplasia (BHP) is a common disorder that affects men over the age of 60 years. Transurethral resection of the prostate (TURP) is the gold standard for operative treatment, but a range of drugs are also available to improve quality of life and to reduce BHP-associated urinary tract infections and complications. Darifenacin, an anti-muscarinic agent, has been found effective for relieving symptoms of overactive bladder associated with BHP, but the drug has poor solubility and bioavailability, which are major challenges in product development. An inorganic/organic bio-composite with gastric pH-resistant property was synthesized for the targeted oral delivery of Darifenacin to the lower gastrointestinal tract (GIT). This development was accomplished through co-precipitation of calcium carbonate in quince seed-based mucilage. The FTIR, XRD, DSC, and TGA results showed good drug-polymer compatibility, and the SEM images showed calcite formation in the quince hydrogel system. After 72 h, the drug release of 34% and 75% were observed in acidic (0.1N HCl) and 6.8 pH phosphate buffer, respectively. A restricted/less drug was permeated through gastric membrane (21.8%) as compared to permeation through intestinal membrane (65%.) The developed composite showed significant reduction in testosterone-induced prostatic hyperplasia (2.39 ± 0.12***) as compared to untreated diseased animal group. No sign of organ toxicity was observed against all the developed composites. In this study, we developed an inorganic-organic composite system that is highly biocompatible and effective for targeting the lower GIT, thereby avoiding the first-pass metabolism of darifenacin.
Collapse
Affiliation(s)
- Wafa Ishaq
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan
| | - Attia Afzal
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Department of Science, South East Technological University (SETU), Waterford, X91 K0EK, Ireland
| | - Muhammad Farooq
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan.
- School of Pharmacy, Multan University of Science and Technology, Multan, 59201, Pakistan.
| | - Muhammad Sarfraz
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan.
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Department of Science, South East Technological University (SETU), Waterford, X91 K0EK, Ireland.
| | - Sherjeel Adnan
- Faculty of Pharmacy, Grand Asian University Sialkot, Sialkot, 51311, Pakistan
| | - Hammad Ahmed
- Department of Pharmacy, Sialkot Institute of Science and Technology, Sialkot, 51311, Pakistan
| | - Muhammad Waqas
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| | - Zainab Safdar
- Faculty of Pharmacy, University of Lahore, Lahore, 56400, Pakistan
| |
Collapse
|
2
|
Yasmin T, Mahmood A, Sarfraz RM, Rehman U, Boublia A, Alkahtani AM, Albakri GS, Ijaz H, Ahmed S, Harron B, Albrahim M, Elboughdiri N, Yadav KK, Benguerba Y. Mimosa/quince seed mucilage-co-poly (methacrylate) hydrogels for controlled delivery of capecitabine: Simulation studies, characterization and toxicological evaluation. Int J Biol Macromol 2024; 275:133468. [PMID: 38945341 DOI: 10.1016/j.ijbiomac.2024.133468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
This research focused on developing pH-regulated intelligent networks using quince and mimosa seed mucilage through aqueous polymerization to sustain Capecitabine release while overcoming issues like short half-life, high dosing frequency, and low bioavailability. The resulting MSM/QSM-co-poly(MAA) hydrogel was evaluated for several parameters, including complex structure formation, stability, pH sensitivity, morphology, and elemental composition. FTIR, DSC, and TGA analyses confirmed the formation of a stable, complex cross-linked network, demonstrating excellent stability at elevated temperatures. SEM analysis revealed the hydrogels' smooth, fine texture with porous surfaces. PXRD and EDX results indicated the amorphous dispersion of Capecitabine within the network. The QMM9 formulation achieved an optimal Capecitabine loading of 87.17 %. The gel content of the developed formulations ranged from 65.21 % to 90.23 %. All formulations exhibited excellent swelling behavior, with ratios between 65.91 % and 91.93 % at alkaline pH. In vitro dissolution studies indicated that up to 98 % of Capecitabine was released after 24 h at pH 7.4, demonstrating the potential for sustained release. Furthermore, toxicological evaluation in healthy rabbits confirmed the system's safety, non-toxicity, and biocompatibility.
Collapse
Affiliation(s)
- Tahira Yasmin
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan.
| | | | - Umaira Rehman
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Abir Boublia
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| | - Abdullah M Alkahtani
- Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha 61411, Saudi Arabia
| | - Ghadah Shukri Albakri
- Department of Teaching and Learning, College of Education and Human Development, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hira Ijaz
- Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur 22620, Pakistan
| | - Saeed Ahmed
- Department of Chemistry, University of Chakwal, 48800, Pakistan
| | - Bilal Harron
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Malik Albrahim
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Street Omar ibn El-Khattab, 6029, Gabes, Tunisia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Ferhat Abbas Setif 1 University, Setif, Algeria.
| |
Collapse
|
3
|
Fatima Z, Fatima S, Muhammad G, Hussain MA, Raza MA, Amin M, Majeed A. Stimuli-responsive glucuronoxylan polysaccharide from quince seeds for biomedical, food packaging, and environmental applications. Int J Biol Macromol 2024; 273:133016. [PMID: 38876235 DOI: 10.1016/j.ijbiomac.2024.133016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Mucilage is a gelatinous mixture of polysaccharides secreted from the seed coat and/or pericarp of many plant seeds when soaked in water. Mucilage affected seed germination while maintaining hydration levels during scarcity. Cydonia oblonga (quince) seeds are natural hydrocolloids extruding biocompatible mucilage mainly composed of polysaccharides. Quince seed mucilage (QSM) has fascinated researchers due to its applications in the food and pharmaceutical industries. On a commercial scale, QSM preserved the sensory and physiochemical properties of various products such as yogurt, desserts, cakes, and burgers. QSM is responsive to salts, pH, and solvents and is mainly investigated as edible coatings in the food industry. In tablet formulations, modified and unmodified QSM as a binder sustained the release of various drugs such as cefixime, capecitabine, diclofenac sodium, theophylline, levosulpiride, diphenhydramine, metoprolol tartrate, and acyclovir sodium. QSM acted as a reducing and capping agent to prepare nanoparticles for good antimicrobial resistance, photocatalytic characteristics, and wound-healing potential. The present review discussed the extraction optimization, chemical composition, stimuli-responsiveness, and viscoelastic properties of mucilage. The potential of mucilage in edible films, tissue engineering, and water purification will also be discussed.
Collapse
Affiliation(s)
- Zain Fatima
- Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan
| | - Seerat Fatima
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan.
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Arshad Raza
- Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan
| | - Muhammad Amin
- Department of Chemistry, University of Lahore, Sargodha Campus, Pakistan
| | - Aamna Majeed
- Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan
| |
Collapse
|
4
|
Trinh LT, Lim S, Lee HJ, Kim IT. Development of Efficient Sodium Alginate/Polysuccinimide-Based Hydrogels as Biodegradable Acetaminophen Delivery Systems. Gels 2023; 9:980. [PMID: 38131966 PMCID: PMC10743301 DOI: 10.3390/gels9120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Efficient drug delivery systems are essential for improving patient outcomes. Acetaminophen (AP), which is a kind of oral administration, is a commonly used pain reliever and fever reducer. However, oral administration carries various health risks, especially overdose and frequent use; for instance, AP is administered approximately 4 times per day. Therefore, the aim of this study is to develop an efficient delivery system for once-daily administration by combining sodium alginate and polysuccinimide (PSI) hydrogels to delay the release of analgesic AP. PSI is a biodegradable polymer that can be used safely and effectively in drug delivery systems because it is eliminated by hydrolysis in the intestine. The use of PSI also improves the mechanical properties of hydrogels and prolongs drug release. In this study, hydrogel characterizations such as mechanical properties, drug dissolution ability, and biodegradability were measured to evaluate the hydrolysis of PSI in the intestine. Based on the results, hydrogels could be designed to improve the structural mechanical properties and to allow the drug to be completely dissolved, and eliminated from the body through PSI hydrolysis in the intestines. In addition, the release profiles of AP in the hydrogels were evaluated, and the hydrogels provided continuous release of AP for 24 h. Our research suggests that sodium alginate/PSI hydrogels can potentially serve as biodegradable delivery systems for AP. These findings may have significant implications for developing efficient drug delivery systems for other classes of drugs.
Collapse
Affiliation(s)
| | | | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Republic of Korea; (L.T.T.); (S.L.)
| | - Il Tae Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Republic of Korea; (L.T.T.); (S.L.)
| |
Collapse
|
5
|
Sarfraz M, Tulain UR, Erum A, Malik NS, Mahmood A, Sumaira, Aslam S, Sandhu MA, Tayyab M. Cydonia oblonga-Seed-Mucilage-Based pH-Sensitive Graft Copolymer for Controlled Drug Delivery-In Vitro and In Vivo Evaluation. Pharmaceutics 2023; 15:2445. [PMID: 37896205 DOI: 10.3390/pharmaceutics15102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The primary objective of this study was to assess the potential utility of quince seed mucilage as an excipient within a graft copolymer for the development of an oral-controlled drug delivery system. The Cydonia oblonga-mucilage-based graft copolymer was synthesized via a free radical polymerization method, employing potassium per sulfate (KPS) as the initiator and N, N-methylene bisacrylamide (MBA) as the crosslinker. Various concentrations of monomers, namely acrylic acid (AA) and methacrylic acid (MAA), were used in the graft copolymerization process. Metoprolol tartarate was then incorporated into this graft copolymer matrix, and the resultant drug delivery system was subjected to comprehensive characterization using techniques such as Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The swelling behavior of the drug delivery system was evaluated under different pH conditions, and in vitro drug release studies were conducted. Furthermore, pharmacokinetic parameters including the area under the curve (AUC), maximum plasma concentration (Cmax), time to reach Cmax (Tmax), and half-life (t1/2) were determined for metoprolol-loaded hydrogel formulations in rabbit plasma, and these results were compared with those obtained from a commercially available product. The key findings from the study include observations that higher concentrations of acrylic acid (AA) and Cydonia oblonga mucilage (CM) in the graft copolymer enhanced swelling, while the opposite trend was noted at elevated concentrations of methacrylic acid (MAA) and N, N-methylene bisacrylamide (MBA). FTIR analysis confirmed the formation of the graft copolymer and established the compatibility between the drug and the polymer. SEM imaging revealed a porous structure in the prepared formulations. Additionally, the swelling behavior and drug release profiles indicated a pH-sensitive pattern. The pharmacokinetic assessment revealed sustained release patterns of metoprolol from the hydrogel network system. Notably, the drug-loaded formulation exhibited a higher Cmax (156.48 ng/mL) compared to the marketed metoprolol product (96 ng/mL), and the AUC of the hydrogel-loaded metoprolol was 2.3 times greater than that of the marketed formulation. In conclusion, this study underscores the potential of quince seed mucilage as an intelligent material for graft-copolymer-based oral-controlled release drug delivery systems.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain 64141, United Arab Emirates
| | - Ume Ruqia Tulain
- Faculty of Pharmacy, University of Sargodha, Punjab 40100, Pakistan
| | - Alia Erum
- Faculty of Pharmacy, University of Sargodha, Punjab 40100, Pakistan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Sumaira
- Faculty of Pharmacy and Alternative Medicine, The Islamia University, Bahawalpur 63100, Pakistan
| | - Sidra Aslam
- Faculty of Pharmacy, University of Sargodha, Punjab 40100, Pakistan
| | - Mansur Abdullah Sandhu
- Department of Physiology, Phir Meher Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Muhammad Tayyab
- Department of Pharmacy, Quaid Azam University, Islamabad 15320, Pakistan
| |
Collapse
|
6
|
Aslam A, Umer Ashraf M, Barkat K, Mahmood A, Muhammad Sarfraz R, Malatani RT, Gad HA. Green synthesis of quince/pectin cross-linked superporous hydrogel sponges for pH-regulated sustained domperidone delivery. Int J Pharm 2023; 644:123305. [PMID: 37572857 DOI: 10.1016/j.ijpharm.2023.123305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The present study aims to utilize green synthesis to fabricate stimuli-responsive, smart, quince/pectin cross-linked hydrogel sponges for the pH-regulated conveyance of domperidone. The designed hydrogel sponges were evaluated for a sol-gel fraction (%), swelling studies and kinetics, drug loading (%), electrolyte-responsive character, scanning electron microscopy (SEM), thermal analysis, drug-excipient compatibility studies (FTIR), X-ray diffraction (XRD) analysis, mechanical testing, in-vitro drug release studies, and acute oral toxicity studies. The drug loading (%) ranged from 67 to 85%. Hydrogel sponges displayed pH-responsive swelling potential, with optimum swelling in a phosphate buffer (pH 7.4) and insignificant swelling in an acidic buffer of pH 1.2. The prepared hydrogel sponges displayed second-order swelling dynamics. The FTIR data revealed the successful fabrication of the hydrogel sponges with the primary drug peaks remaining unchanged, demonstrating excipients-drug compatibility. SEM confirmed the rough, porous surface of hydrogel sponges with numerous cracks. XRD measurements revealed the transformation of the crystalline nature of domperidone into an amorphous one within the developed hydrogel sponges. Dissolution studies revealed little domperidone release in an acidic environment. However, hydrogel sponges exhibited release up to 10 h in phosphate buffer.The sponge's non-toxic or biocompatible character was confirmed through toxicological studies. Thus, the finding indicates that quince/pectin cross-linked hydrogel sponges are durable enough to deliver the domperidone to the gut for a longer time.
Collapse
Affiliation(s)
- Aysha Aslam
- Faculty of Pharmacy, The University of Lahore, Lahore 54600, Pakistan; Faculty of Pharmacy, Minhaj University, Lahore 54770, Pakistan.
| | | | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Lahore 54600, Pakistan.
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan.
| | | | - Rania T Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| |
Collapse
|
7
|
Bulut E. Assessment of temperature-sensitive properties of ionically crosslinked sodium alginate/hydroxypropyl cellulose blend microspheres: preparation, characterization, and in vitro release of paracetamol. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:565-586. [PMID: 36218277 DOI: 10.1080/09205063.2022.2135077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Today, polymer systems can be formed to respond to single stimuli or multiple stimuli by changing their properties. The use of these systems, which are designed to be sensitive to stimuli, is expanding in a wide range of applications. Herein, microspheres of sodium alginate (NaAlg) and hydroxypropyl cellulose (HPC) sensitive to dual stimuli for the controlled release of model drug paracetamol were produced by the ionotropic gelation method in the presence of Zn2+ ions. FTIR, DSC, TGA, SEM, and particle size measurements were used to describe the blend microspheres. Low critical solution temperatures (LCST) of polymer blends at different ratios were determined and the biggest change according to the LCST value of HPC was found to be approximately 1-2 °C lower than 41 °C in microspheres with a NaAlg/HPC ratio of 50/50. In vitro release experiments of paracetamol from microspheres were carried out in a gastrointestinal tract simulation environment at two different temperatures (37 °C and 47 °C). From the release profiles, paracetamol release varied depending on the NaAlg/HPC ratio, the paracetamol content in the microspheres, the exposure time to Zn2+ ions, and the pH of the medium. Among the microsphere formulations, the highest entrapment efficiency was 57.86%, obtained for B7 formulation microspheres with a NaAlg/HPC ratio of 70/30, a paracetamol loading percentage of 20%, and a crosslinking time of 5 min.RESEARCH HIGHLIGHTSMicrospheres of sodium alginate (NaAlg) and hydroxypropyl cellulose (HPC) sensitive to dual stimuli for the controlled release of model drug paracetamol were produced by the ionotropic gelation method in the presence of Zn2+ ions.LCST values of the microspheres with a NaAlg/HPC ratio of 50/50 were significantly lower by 1-2 °C than the LCST value of HPC, and the release results supported the temperature sensitivity of the microspheres.Among the microsphere formulations, the highest entrapment efficiency was 57.86% obtained for B7 formulation microspheres.These microspheres can be used as a temperature-sensitive drug delivery system in the biomedical field and also as an encapsulation system of cancer drugs for cancer treatment modalities such as hyperthermia.
Collapse
Affiliation(s)
- Emine Bulut
- Department of Food Processing, Bolvadin Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|