1
|
Nowack ECM, Weber APM. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:51-84. [PMID: 29489396 DOI: 10.1146/annurev-arplant-042817-040209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The conversion of free-living cyanobacteria to photosynthetic organelles of eukaryotic cells through endosymbiosis transformed the biosphere and eventually provided the basis for life on land. Despite the presumable advantage conferred by the acquisition of photoautotrophy through endosymbiosis, only two independent cases of primary endosymbiosis have been documented: one that gave rise to the Archaeplastida, and the other to photosynthetic species of the thecate, filose amoeba Paulinella. Here, we review recent genomics-informed insights into the primary endosymbiotic origins of cyanobacteria-derived organelles. Furthermore, we discuss the preconditions for the evolution of nitrogen-fixing organelles. Recent genomic data on previously undersampled cyanobacterial and protist taxa provide new clues to the origins of the host cell and endosymbiont, and proteomic approaches allow insights into the rearrangement of the endosymbiont proteome during organellogenesis. We conclude that in addition to endosymbiotic gene transfers, horizontal gene acquisitions from a broad variety of prokaryotic taxa were crucial to organelle evolution.
Collapse
Affiliation(s)
- Eva C M Nowack
- Microbial Symbiosis and Organelle Evolution Group, Biology Department, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
2
|
Schelkunov MI, Shtratnikova VY, Nuraliev MS, Selosse MA, Penin AA, Logacheva MD. Exploring the limits for reduction of plastid genomes: a case study of the mycoheterotrophic orchids Epipogium aphyllum and Epipogium roseum. Genome Biol Evol 2015; 7:1179-91. [PMID: 25635040 PMCID: PMC4419786 DOI: 10.1093/gbe/evv019] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The question on the patterns and limits of reduction of plastid genomes in nonphotosynthetic plants and the reasons of their conservation is one of the intriguing topics in plant genome evolution. Here, we report sequencing and analysis of plastid genome in nonphotosynthetic orchids Epipogium aphyllum and Epipogium roseum, which, with sizes of 31 and 19 kbp, respectively, represent the smallest plastid genomes characterized by now. Besides drastic reduction, which is expected, we found several unusual features of these “minimal” plastomes: Multiple rearrangements, highly biased nucleotide composition, and unprecedentedly high substitution rate. Only 27 and 29 genes remained intact in the plastomes of E. aphyllum and E. roseum—those encoding ribosomal components, transfer RNAs, and three additional housekeeping genes (infA, clpP, and accD). We found no signs of relaxed selection acting on these genes. We hypothesize that the main reason for retention of plastid genomes in Epipogium is the necessity to translate messenger RNAs (mRNAs) of accD and/or clpP proteins which are essential for cell metabolism. However, these genes are absent in plastomes of several plant species; their absence is compensated by the presence of a functional copy arisen by gene transfer from plastid to the nuclear genome. This suggests that there is no single set of plastid-encoded essential genes, but rather different sets for different species and that the retention of a gene in the plastome depends on the interaction between the nucleus and plastids.
Collapse
Affiliation(s)
| | | | - Maxim S Nuraliev
- M. V. Lomonosov Moscow State University, Moscow, Russia Joint Russian-Vietnamese Tropical Scientific and Technological Center, Cau Giay, Hanoi, Vietnam
| | - Marc-Andre Selosse
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Maria D Logacheva
- M. V. Lomonosov Moscow State University, Moscow, Russia Kazan Federal University, Kazan, Russia
| |
Collapse
|
3
|
Logacheva MD, Schelkunov MI, Nuraliev MS, Samigullin TH, Penin AA. The plastid genome of mycoheterotrophic monocot Petrosavia stellaris exhibits both gene losses and multiple rearrangements. Genome Biol Evol 2014; 6:238-46. [PMID: 24398375 PMCID: PMC3914687 DOI: 10.1093/gbe/evu001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 12/31/2022] Open
Abstract
Plastid genomes of nonphotosynthetic plants represent a perfect model for studying evolution under relaxed selection pressure. However, the information on their sequences is still limited. We sequenced and assembled plastid genome of Petrosavia stellaris, a rare mycoheterotrophic monocot plant. After orchids, Petrosavia represents only the second family of nonphotosynthetic monocots to have its plastid genome examined. Several unusual features were found: retention of the ATP synthase genes and rbcL gene; extensive gene order rearrangement despite a relative lack of repeat sequences; an unusually short inverted repeat region that excludes most of the rDNA operon; and a lack of evidence for accelerated sequence evolution. Plastome of photosynthetic relative of P. stellaris, Japonolirion osense, has standard gene order and does not have the predisposition to inversions. Thus, the rearrangements in the P. stellaris plastome are the most likely associated with transition to heterotrophic way of life.
Collapse
Affiliation(s)
- Maria D. Logacheva
- M.V. Lomonosov Moscow State University, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail I. Schelkunov
- M.V. Lomonosov Moscow State University, Moscow, Russia
- V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maxim S. Nuraliev
- M.V. Lomonosov Moscow State University, Moscow, Russia
- Joint Russian–Vietnamese Tropical Scientific and Technological Center, Cau Giay, Hanoi, Vietnam
| | | | - Aleksey A. Penin
- M.V. Lomonosov Moscow State University, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Oldenburg DJ, Kumar RA, Bendich AJ. The amount and integrity of mtDNA in maize decline with development. PLANTA 2013; 237:603-17. [PMID: 23229060 DOI: 10.1007/s00425-012-1802-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/26/2012] [Indexed: 05/10/2023]
Abstract
In maize and other grasses there is a developmental gradient from the meristematic cells at the base of the stalk to the differentiated cells at the leaf tip. This gradient presents an opportunity to investigate changes in mitochondrial DNA (mtDNA) that accompany growth under light and dark conditions, as done previously for plastid DNA. Maize mtDNA was analyzed by DAPI-DNA staining of individual mitochondria, gel electrophoresis/blot hybridization, and real-time qPCR. Both the amount and integrity of the mtDNA were found to decline with development. There was a 20-fold decline in mtDNA copy number per cell from the embryo to the light-grown leaf blade. The amount of DNA per mitochondrial particle was greater in dark-grown leaf blade (24 copies, on average) than in the light (2 copies), with some mitochondria lacking any detectable DNA. Three factors that influence the demise of mtDNA during development are considered: (1) the decision to either repair or degrade mtDNA molecules that are damaged by the reactive oxygen species produced as byproducts of respiration; (2) the generation of ATP by photophosphorylation in chloroplasts, reducing the need for respiratory-competent mitochondria; and (3) the shift in mitochondrial function from energy-generating respiration to photorespiration during the transition from non-green to green tissue.
Collapse
Affiliation(s)
- Delene J Oldenburg
- Department of Biology, University of Washington, Seattle, WA 98195-5325, USA.
| | | | | |
Collapse
|
5
|
Cahoon AB, Takacs EM, Sharpe RM, Stern DB. Nuclear, chloroplast, and mitochondrial transcript abundance along a maize leaf developmental gradient. PLANT MOLECULAR BIOLOGY 2008; 66:33-46. [PMID: 17932771 DOI: 10.1007/s11103-007-9250-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 10/01/2007] [Indexed: 05/09/2023]
Abstract
In maize, the chloroplast chromosome encodes 104 genes whose roles are primarily in photosynthesis and gene expression. The 2,000-3,000 nuclear gene products that localize to plastids are required both to encode and regulate plastid gene expression as well as to underpin each aspect of plastid physiology and development. We used a new "three-genome" maize biogenesis cDNA microarray to track abundance changes in nuclear, chloroplast and mitochondrial transcripts in stage 2 semi-emerged leaf blades of one month-old maize plants. We report the detection and quantification of 433 nuclear, 62 chloroplast, and 27 mitochondrial transcripts, with the majority of the nuclear transcripts predicted or known to encode plastid proteins. The data were analyzed as ratios of expression of individual transcripts in the green tip (mature chloroplasts) versus the yellow base of the leaf (etioplasts). According to the microarray data at least 51 plastid genes and 121 nuclear genes are expressed at least two-fold higher in the tip of the leaf. Almost all (25) mitochondrial and 177 nuclear transcripts were expressed at least 2-fold higher in the leaf base. Independent quantification of a subset of each transcript population by RNA gel blot analysis and/or quantitative real time RT-PCR concurred with the transcript ratios determined by the array. Ontological distribution of the transcripts suggests that photosynthesis-related RNAs were most highly abundant in the leaf tip and that energy use genes were most highly expressed in the base. Transcripts whose products are used in plastid translation constituted the largest single ontological group with relatively equal numbers of genes in the three expression categories, defined as higher in tip, higher in base, or equally expressed in tip and base.
Collapse
Affiliation(s)
- A Bruce Cahoon
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN 37132, USA.
| | | | | | | |
Collapse
|
6
|
DNA replication, recombination, and repair in plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0231] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Barbrook AC, Howe CJ, Purton S. Why are plastid genomes retained in non-photosynthetic organisms? TRENDS IN PLANT SCIENCE 2006; 11:101-8. [PMID: 16406301 DOI: 10.1016/j.tplants.2005.12.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 12/05/2005] [Accepted: 12/20/2005] [Indexed: 05/06/2023]
Abstract
The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the 'essential tRNAs' hypothesis and the 'transfer-window' hypothesis.
Collapse
Affiliation(s)
- Adrian C Barbrook
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | | | | |
Collapse
|
8
|
Cahoon AB, Harris FM, Stern DB. Analysis of developing maize plastids reveals two mRNA stability classes correlating with RNA polymerase type. EMBO Rep 2004; 5:801-6. [PMID: 15258614 PMCID: PMC1299113 DOI: 10.1038/sj.embor.7400202] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 05/07/2004] [Accepted: 06/16/2004] [Indexed: 01/08/2023] Open
Abstract
The plastid genome is transcribed by two distinct RNA polymerases, the PEP encoded by the plastid genome and the NEP encoded in the nucleus. Initial models of plastid transcription held that the NEP is responsible for the transcription of housekeeping genes needed early in development, and that the PEP transcribes genes required for photosynthesis. Recently, this model was challenged by the discovery that all plastid genes are transcribed by NEP in PEP-deficient tobacco plastids, suggesting that mRNA turnover may have a strong role in previously observed transcription patterns. In this study, we provide evidence that the NEP enzyme level decreases as plastids mature. In contrast, production of mRNAs by NEP increases as plastids mature, yet their accumulations remain constant. These results suggest that as plastids mature NEP may become more active, and that mRNA turnover varies between transcripts synthesized by NEP and PEP.
Collapse
Affiliation(s)
- A Bruce Cahoon
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|