1
|
Lenière AC, Vlandas A, Follet J. Treating cryptosporidiosis: A review on drug discovery strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100542. [PMID: 38669849 PMCID: PMC11066572 DOI: 10.1016/j.ijpddr.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Despite several decades of research on therapeutics, cryptosporidiosis remains a major concern for human and animal health. Even though this field of research to assess antiparasitic drug activity is highly active and competitive, only one molecule is authorized to be used in humans. However, this molecule was not efficacious in immunocompromised people and the lack of animal therapeutics remains a cause of concern. Indeed, the therapeutic arsenal needs to be developed for both humans and animals. Our work aims to clarify research strategies that historically were diffuse and poorly directed. This paper reviews in vitro and in vivo methodologies to assess the activity of future therapeutic compounds by screening drug libraries or through drug repurposing. It focuses on High Throughput Screening methodologies (HTS) and discusses the lack of knowledge of target mechanisms. In addition, an overview of several specific metabolic pathways and enzymatic activities used as targets against Cryptosporidium is provided. These metabolic processes include glycolytic pathways, fatty acid production, kinase activities, tRNA elaboration, nucleotide synthesis, gene expression and mRNA maturation. As a conclusion, we highlight emerging future strategies for screening natural compounds and assessing drug resistance issues.
Collapse
Affiliation(s)
- Anne-Charlotte Lenière
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Alexis Vlandas
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Jérôme Follet
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France.
| |
Collapse
|
2
|
Keeling PJ, Mtawali M, Trznadel M, Livingston SJ, Wakeman KC. Parallel functional reduction in the mitochondria of apicomplexan parasites. Eur J Protistol 2024; 94:126065. [PMID: 38492251 DOI: 10.1016/j.ejop.2024.126065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
Extreme functional reduction of mitochondria has taken place in parallel in many distantly related lineages of eukaryotes, leading to a number of recurring metabolic states with variously lost electron transport chain (ETC) complexes, loss of the tricarboxylic acid (TCA) cycle, and/or loss of the mitochondrial genome. The resulting mitochondria-related organelles (MROs) are generally structurally reduced and in the most extreme cases barely recognizable features of the cell with no role in energy metabolism whatsoever (e.g., mitosomes, which generally only make iron-sulfur clusters). Recently, a wide diversity of MROs were discovered to be hiding in plain sight: in gregarine apicomplexans. This diverse group of invertebrate parasites has been known and observed for centuries, but until recent applications of culture-free genomics, their mitochondria were unremarkable. The genomics, however, showed that mitochondrial function has reduced in parallel in multiple gregarine lineages to several different endpoints, including the most reduced mitosomes. Here we review this remarkable case of parallel evolution of MROs, and some of the interesting questions this work raises.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada.
| | - Mahara Mtawali
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Morelia Trznadel
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Samuel J Livingston
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Kevin C Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| |
Collapse
|
3
|
|
4
|
Berná L, Rego N, Francia ME. The Elusive Mitochondrial Genomes of Apicomplexa: Where Are We Now? Front Microbiol 2021; 12:751775. [PMID: 34721355 PMCID: PMC8554336 DOI: 10.3389/fmicb.2021.751775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are vital organelles of eukaryotic cells, participating in key metabolic pathways such as cellular respiration, thermogenesis, maintenance of cellular redox potential, calcium homeostasis, cell signaling, and cell death. The phylum Apicomplexa is entirely composed of obligate intracellular parasites, causing a plethora of severe diseases in humans, wild and domestic animals. These pathogens include the causative agents of malaria, cryptosporidiosis, neosporosis, East Coast fever and toxoplasmosis, among others. The mitochondria in Apicomplexa has been put forward as a promising source of undiscovered drug targets, and it has been validated as the target of atovaquone, a drug currently used in the clinic to counter malaria. Apicomplexans present a single tubular mitochondria that varies widely both in structure and in genomic content across the phylum. The organelle is characterized by massive gene migrations to the nucleus, sequence rearrangements and drastic functional reductions in some species. Recent third generation sequencing studies have reignited an interest for elucidating the extensive diversity displayed by the mitochondrial genomes of apicomplexans and their intriguing genomic features. The underlying mechanisms of gene transcription and translation are also ill-understood. In this review, we present the state of the art on mitochondrial genome structure, composition and organization in the apicomplexan phylum revisiting topological and biochemical information gathered through classical techniques. We contextualize this in light of the genomic insight gained by second and, more recently, third generation sequencing technologies. We discuss the mitochondrial genomic and mechanistic features found in evolutionarily related alveolates, and discuss the common and distinct origins of the apicomplexan mitochondria peculiarities.
Collapse
Affiliation(s)
- Luisa Berná
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Molecular Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Sección Biomatemática-Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María E Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Roguz K, Hill L, Koethe S, Lunau K, Roguz A, Zych M. Visibility and attractiveness of Fritillaria (Liliaceae) flowers to potential pollinators. Sci Rep 2021; 11:11006. [PMID: 34040041 PMCID: PMC8155214 DOI: 10.1038/s41598-021-90140-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Visual floral characters play an important role in shaping plant-pollinator interactions. The genus Fritillaria L. (Liliaceae), comprising approximately 140 species, is described as displaying a remarkable variety of flower colours and sizes. Despite this variation in visual floral traits of fritillaries, little is known about the potential role of these features in shaping plant-pollinator interactions. Here, we seek to clarify the role of visual attraction in species offering a robust food reward for pollinators early in the spring, which is the case for Fritillaria. We also searched for potential tendencies in the evolution of floral traits crucial for plant-pollinator communication. The generality of species with green and purple flowers may indicate an influence of environmental factors other than pollinators. The flowers of the studied species seem to be visible but not very visually attractive to potential pollinators. The food rewards are hidden within the nodding perianth, and both traits are conserved among fritillaries. Additionally, visual floral traits are not good predictors of nectar properties. When in the flowers, pollinators are navigated by nectar guides in the form of contrasting nectary area colouration. Flower colour does not serve as a phenotypic filter against illegitimate pollinators-red and orange bird-pollinated fritillaries are visible to bees.
Collapse
Affiliation(s)
- Katarzyna Roguz
- Botanic Garden, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | - Sebastian Koethe
- Institute of Sensory Ecology, Faculty of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Klaus Lunau
- Institute of Sensory Ecology, Faculty of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Agata Roguz
- National Information Processing Institute, Al. Niepodległości 188 B, 00-608, Warszawa, Poland
| | - Marcin Zych
- Botanic Garden, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
QTL-Seq and Sequence Assembly Rapidly Mapped the Gene BrMYBL2.1 for the Purple Trait in Brassica rapa. Sci Rep 2020; 10:2328. [PMID: 32047197 PMCID: PMC7012920 DOI: 10.1038/s41598-020-58916-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
Anthocyanins have strong antioxidant activity and are believed to be healthy for human beings. The Brassica rapa L. ssp. chinensis var. purpurea “Zicaitai” is rich in anthocyanins. We constructed an F2 population of Zicaitai and “Caixin” (Brassica rapa ssp. parachinensis) and it shows clear segregation of the purple phenotype (i.e., variation in anthocyanin enrichment). Here, quantitative trait locus (QTL)-Seq was performed with two sample groups from the F2 population: one exhibiting an intense purple phenotype and the other showed a completely green phenotype. The results showed that the QTL-Seq and linkage analysis located different major loci. This indicates that there are two major genetic factors that plays different roles in regulating anthocyanin enrichment in Zicaitai. This was further supported by the data simulation of an in silico F2 population that QTL-Seq and linkage analysis can locate different major loci. Furthermore, the draft genomes of the two parents (Zicaitai and Caixin) were assembled and utilized to search for mutations in candidate genes. A ~100-bp insertion was found in the third exon of gene BrMYBL2.1 in Zicaitai. BrMYBL2.1 is a negative regulator of anthocyanin biosynthesis, while BrEGL3.2—previously located by linkage mapping—is a positive regulator. For these populations with multiple genes contributing large effects to a trait, a strategy of low depth re-sequencing of F2 individuals followed by QTL-Seq analysis with the free combination of sample groups is proposed. Furthermore, draft-sequence assembly of parental genomes together with QTL mapping is suggested as an efficient means for fine-mapping genes rapidly in segregating populations.
Collapse
|
7
|
Bones AJ, Jossé L, More C, Miller CN, Michaelis M, Tsaousis AD. Past and future trends of Cryptosporidium in vitro research. Exp Parasitol 2018; 196:28-37. [PMID: 30521793 PMCID: PMC6333944 DOI: 10.1016/j.exppara.2018.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022]
Abstract
Cryptosporidium is a genus of single celled parasites capable of infecting a wide range of animals including humans. Cryptosporidium species are members of the phylum apicomplexa, which includes well-known genera such as Plasmodium and Toxoplasma. Cryptosporidium parasites cause a severe gastro-intestinal disease known as cryptosporidiosis. They are one of the most common causes of childhood diarrhoea worldwide, and infection can have prolonged detrimental effects on the development of children, but also can be life threatening to HIV/AIDS patients and transplant recipients. A variety of hosts can act as reservoirs, and Cryptosporidium can persist in the environment for prolonged times as oocysts. While there has been substantial interest in these parasites, there is very little progress in terms of treatment development and understanding the majority of the life cycle of this unusual organism. In this review, we will provide an overview on the existing knowledge of the biology of the parasite and the current progress in developing in vitro cultivation systems. We will then describe a synopsis of current and next generation approaches that could spearhead further research in combating the parasite.
Collapse
Affiliation(s)
- Alexander J Bones
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Lyne Jossé
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Charlotte More
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Christopher N Miller
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | - Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK; School of Biosciences, University of Kent, Canterbury, Kent, UK.
| |
Collapse
|
8
|
Miller CN, Jossé L, Tsaousis AD. Localization of Fe-S Biosynthesis Machinery in Cryptosporidium parvum Mitosome. J Eukaryot Microbiol 2018; 65:913-922. [PMID: 29932290 PMCID: PMC6282951 DOI: 10.1111/jeu.12663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/11/2018] [Accepted: 06/17/2018] [Indexed: 12/17/2022]
Abstract
Cryptosporidium is a protozoan, apicomplexan, parasite that poses significant risk to humans and animals, as a common cause of potentially fatal diarrhea in immunodeficient hosts. The parasites have evolved a number of unique biological features that allow them to thrive in a highly specialized parasitic lifestyle. For example, the genome of Cryptosporidium parvum is highly reduced, encoding only 3,805 proteins, which is also reflected in its reduced cellular and organellar content and functions. As such, its remnant mitochondrion, dubbed a mitosome, is one of the smallest mitochondria yet found. While numerous studies have attempted to discover the function(s) of the C. parvum mitosome, most of them have been focused on in silico predictions. Here, we have localized components of a biochemical pathway in the C. parvum mitosome, in our investigations into the functions of this peculiar mitochondrial organelle. We have shown that three proteins involved in the mitochondrial iron-sulfur cluster biosynthetic pathway are localized in the organelle, and one of them can functionally replace its yeast homolog. Thus, it seems that the C. parvum mitosome is involved in iron-sulfur cluster biosynthesis, supporting the organellar and cytosolic apoproteins. These results spearhead further research on elucidating the functions of the mitosome and broaden our understanding in the minimalistic adaptations of these organelles.
Collapse
Affiliation(s)
- Christopher N Miller
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Lyne Jossé
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
9
|
Rout S, Zumthor JP, Schraner EM, Faso C, Hehl AB. An Interactome-Centered Protein Discovery Approach Reveals Novel Components Involved in Mitosome Function and Homeostasis in Giardia lamblia. PLoS Pathog 2016; 12:e1006036. [PMID: 27926928 PMCID: PMC5142787 DOI: 10.1371/journal.ppat.1006036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/01/2016] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30–40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER) distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i) significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii) identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein translocation despite the massive divergence and reduction of protein import machinery in Giardia mitosomes. Organelles with endosymbiotic origin are present in virtually all extant eukaryotes and have undergone considerable remodeling during > 1 billion years of evolution. Highly diverged organelles such as mitosomes or plastids in some parasitic protozoa are the product of extensive secondary reduction. They are sufficiently unique to generate interest as targets for pharmacological intervention, in addition to providing a rich ground for evolutionary cell biologists. The so-called mitochondria-related organelles (MROs) comprise mitosomes and hydrogenosomes, with the former having lost any role in energy metabolism along with the organelle genome. The mitosomes of the intestinal pathogen Giardia lamblia are the most highly reduced MROs known and have proven difficult to investigate because of their extreme divergence and their unique biophysical properties. Here, we implemented a novel strategy aimed at systematic analysis of the organelle proteome by iterative expansion of a protein-protein interaction network. We combined serial forward and reverse co-immunoprecipitations with mass spectrometry analysis, data mining, and validation by subcellular localization and/or functional analysis to generate an interactome network centered on a giardial Tom40 homolog. This iterative ab initio proteome reconstruction provided protein-protein interaction data in addition to identifying novel organelle proteins and functions. Building on this data we generated information on organelle replication, mitosome morphogenesis and organelle dynamics in living cells.
Collapse
Affiliation(s)
- Samuel Rout
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | - Jon Paulin Zumthor
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | | | - Carmen Faso
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
- * E-mail: (ABH); (CF)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
- * E-mail: (ABH); (CF)
| |
Collapse
|
10
|
McFadden GI, Yeh E. The apicoplast: now you see it, now you don't. Int J Parasitol 2016; 47:137-144. [PMID: 27773518 DOI: 10.1016/j.ijpara.2016.08.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
Parasites such as Plasmodium and Toxoplasma possess a vestigial plastid homologous to the chloroplasts of algae and plants. The plastid (known as the apicoplast; for apicomplexan plastid) is non-photosynthetic and very much reduced, but has clear endosymbiotic ancestry including a circular genome that encodes RNAs and proteins and a suite of bacterial biosynthetic pathways. Here we review the initial discovery of the apicoplast, and recount the major new insights into apicoplast origin, biogenesis and function. We conclude by examining how the apicoplast can be removed from malaria parasites in vitro, ultimately completing its reduction by chemical supplementation.
Collapse
Affiliation(s)
| | - Ellen Yeh
- Department of Biochemistry, Stanford Medical School, Stanford, CA, USA; Department of Pathology, Stanford Medical School, Stanford, CA, USA
| |
Collapse
|
11
|
Matsubayashi M, Suzuta F, Terayama Y, Shimojo K, Yui T, Haritani M, Shibahara T. Ultrastructural characteristics and molecular identification of Entamoeba suis isolated from pigs with hemorrhagic colitis: implications for pathogenicity. Parasitol Res 2014; 113:3023-8. [PMID: 24894081 DOI: 10.1007/s00436-014-3965-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/25/2014] [Indexed: 11/30/2022]
Abstract
Protozoan parasites of the genus Entamoeba infect many classes of vertebrates and are primarily classified based on morphological criteria. To date, only a few species have been proven to cause disease. Here, we examined the pathology of infected pigs with hemorrhage and detected Entamoeba parasites. Isolates were characterized genetically and ultrastructurally to identify the species. Histopathologically, bleeding and thrombus formation were seen only in the large intestine mucosa, where a large number of trophozoites or some Entamoeba cysts were observed around breakdowns in the lamina propria. No screw-shaped bacteria were detected in the lesions, and no pathogenic bacteria such as Brachyspira spp. were detected in fecal cultures. Interestingly, electron microscopy revealed that the parasites possessed mitochondrial organelles, unlike other Entamoeba spp. The isolates were identified as Entamoeba suis by PCR analysis and sequencing of the small subunit ribosomal RNA (SSU rRNA) gene. In phylogenetic analyses based on the actin gene, the E. suis isolate formed a cluster with Entamoeba histolytica and Entamoeba invadens, as well as with other parasites of the Amoebidae. Whether the pathogenicity of the E. suis isolate is affected by the severity of infection or host health status remains unclear; however, our results suggest that E. suis could cause or exacerbate clinical symptoms such as hemorrhagic colitis or diarrhea.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- National Institute of Animal Health, National Agricultural and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Jenkins MC, Widmer G, O'Brien C, Bauchan G, Murphy C, Santin M, Fayer R. A highly divergent 33 kDa Cryptosporidium parvum antigen. J Parasitol 2014; 100:527-31. [PMID: 24601821 DOI: 10.1645/13-433.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Previous studies comparing the genome sequences of Cryptosporidium parvum with Cryptosporidium hominis identified a number of highly divergent genes that might reflect positive selection for host specificity. In the present study, the C. parvum DNA sequence cgd8-5370, which encodes a protein whose amino acid sequence differs appreciably from its homologue in C. hominis , was cloned by PCR and expressed as a recombinant protein in Escherichia coli . Antisera raised against the recombinant cgd8-5370 antigen strongly recognized a unique 33 kDa protein in immunoblots from reducing and non-reducing SDS-PAGE of native C. parvum protein. However, anti-Cp33 sera did not recognize the native 33 kDa homologue in C. hominis . In an immunofluorescence assay (IFA), anti-Cp33 serum recognized an antigen in the anterior end of air-dried C. parvum sporozoites but failed to bind at any sites in C. hominis sporozoites, indicating its specificity for C. parvum . IFA staining of live C. parvum sporozoites with anti-Cp33 serum failed to bind to the parasite, indicating that the CP33 antigen is not on the sporozoite surface, which is consistent with topology predictions based on the encoded amino acid sequence. RT-PCR analysis of cgd8-5370 mRNA before or during C. parvum oocyst excystation revealed transcripts only in excysting sporozoites. Thus, Cp33 represents one of a small number of proteins shown to differentiate C. parvum from C. hominis sporozoites and oocysts.
Collapse
Affiliation(s)
- Mark C Jenkins
- Environmental, Microbial, and Food Safety Laboratory, ARS, USDA, Beltsville, Maryland 20705
| | | | | | | | | | | | | |
Collapse
|
13
|
Dellibovi-Ragheb TA, Gisselberg JE, Prigge ST. Parasites FeS up: iron-sulfur cluster biogenesis in eukaryotic pathogens. PLoS Pathog 2013; 9:e1003227. [PMID: 23592980 PMCID: PMC3617024 DOI: 10.1371/journal.ppat.1003227] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Teegan A. Dellibovi-Ragheb
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jolyn E. Gisselberg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sean T. Prigge
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Hikosaka K, Kita K, Tanabe K. Diversity of mitochondrial genome structure in the phylum Apicomplexa. Mol Biochem Parasitol 2013; 188:26-33. [PMID: 23466751 DOI: 10.1016/j.molbiopara.2013.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
Abstract
Mitochondria are ubiquitous organelles in all eukaryotes that are essential for a range of cellular processes and cellular signaling. Nearly all mitochondria have their own DNA or mitochondrial (mt) genome, which varies considerably in size, structure and organization. The phylum Apicomplexa includes a variety of unicellular eukaryotes, some of which are parasites of clinical or economic importance. Recent studies have demonstrated that apicomplexan mt genomes, which include the smallest 6 kb genome of the malaria parasites, exhibit remarkably diverse structures. Apicomplexan parasites are interesting model organisms in order to understand the evolution of mt genomes. This review summarizes the structure of apicomplexan mt genomes and highlights the unique features and the evolution of the mt genome.
Collapse
Affiliation(s)
- Kenji Hikosaka
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
15
|
van Dooren GG, Kennedy AT, McFadden GI. The use and abuse of heme in apicomplexan parasites. Antioxid Redox Signal 2012; 17:634-56. [PMID: 22320355 DOI: 10.1089/ars.2012.4539] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Heme is an essential prosthetic group for most life on Earth. It functions in numerous cellular redox reactions, including in antioxidant defenses and at several stages of the electron transport chain in prokaryotes and eukaryotic mitochondria. Heme also functions as a sensor and transport molecule for gases such as oxygen. Heme is a complex organic molecule and can only be synthesized through a multienzyme pathway from simpler precursors. Most free-living organisms synthesize their own heme by a broadly conserved metabolic pathway. Parasites are adept at scavenging molecules from their hosts, and heme is no exception. RECENT ADVANCES In this review we examine recent advances in understanding heme usage and acquisition in Apicomplexa, a group of parasites that include the causative agents of malaria, toxoplasmosis, and several major parasites of livestock. CRITICAL ISSUES Heme is critical to the survival of Apicomplexa, although the functions of heme in these organisms remain poorly understood. Some Apicomplexa likely scavenge heme from their host organisms, while others retain the ability to synthesize heme. Surprisingly, some Apicomplexa may be able to both synthesize and scavenge heme. Several Apicomplexa live in intracellular environments that contain high levels of heme. Since heme is toxic at high concentrations, parasites must carefully regulate intracellular heme levels and develop mechanisms to detoxify excess heme. Indeed, drugs interfering with heme detoxification serve as major antimalarials. FUTURE DIRECTIONS Understanding heme requirements and regulation in apicomplexan parasites promises to reveal multiple targets for much-needed therapeutic intervention against these parasites.
Collapse
Affiliation(s)
- Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | |
Collapse
|
16
|
Heinz E, Lithgow T. Back to basics: a revealing secondary reduction of the mitochondrial protein import pathway in diverse intracellular parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:295-303. [PMID: 22366436 DOI: 10.1016/j.bbamcr.2012.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 12/31/2022]
Abstract
Mitochondria are present in all eukaryotes, but remodeling of their metabolic contribution has in some cases left them almost unrecognizable and they are referred to as mitochondria-like organelles, hydrogenosomes or, in the case where evolution has led to a great deal of simplification, as mitosomes. Mitochondria rely on the import of proteins encoded in the nucleus and the protein import machinery has been investigated in detail in yeast: several sophisticated molecular machines act in concert to import substrate proteins across the outer mitochondrial membrane and deliver them to a precise sub-mitochondrial compartment. Because these machines are so sophisticated, it has been a major challenge to conceptualize the first phase of their evolution. Here we review recent studies on the protein import pathway in parasitic species that have mitosomes: in the course of their evolution for highly specialized niches these parasites, particularly Cryptosporidia and Microsporidia, have secondarily lost numerous protein functions, in accordance with the evolution of their genomes towards a minimal size. Microsporidia are related to fungi, Cryptosporidia are apicomplexans and kin to the malaria parasite Plasmodium; and this great phylogenetic distance makes it remarkable that Microsporidia and Cryptosporidia have independently evolved skeletal protein import pathways that are almost identical. We suggest that the skeletal pathway reflects the protein import machinery of the first eukaryotes, and defines the essential roles of the core elements of the mitochondrial protein import machinery. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Campus, Melbourne 3800, Australia.
| | | |
Collapse
|
17
|
Hydrogenosomes and Mitosomes: Mitochondrial Adaptations to Life in Anaerobic Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Alcock F, Webb CT, Dolezal P, Hewitt V, Shingu-Vasquez M, Likić VA, Traven A, Lithgow T. A small Tim homohexamer in the relict mitochondrion of Cryptosporidium. Mol Biol Evol 2011; 29:113-22. [PMID: 21984067 DOI: 10.1093/molbev/msr165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The apicomplexan parasite Cryptosporidium parvum possesses a mitosome, a relict mitochondrion with a greatly reduced metabolic capability. This mitosome houses a mitochondrial-type protein import apparatus, but elements of the protein import pathway have been reduced, and even lost, through evolution. The small Tim protein family is a case in point. The genomes of C. parvum and related species of Cryptosporidium each encode just one small Tim protein, CpTimS. This observation challenged the tenet that small Tim proteins are always found in pairs as α3β3 hexamers. We show that the atypical CpTimS exists as a relatively unstable homohexamer, shedding light both on the early evolution of the small Tim protein family and on small Tim hexamer formation in contemporary eukaryotes.
Collapse
Affiliation(s)
- Felicity Alcock
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The discovery of mitochondrion-type genes in organisms thought to lack mitochondria led to the demonstration that hydrogenosomes share a common ancestry with mitochondria, as well as the discovery of mitosomes in multiple eukaryotic lineages. No examples of examined eukaryotes lacking a mitochondrion-related organelle exist, implying that the endosymbiont that gave rise to the mitochondrion was present in the first eukaryote. These organelles, known as hydrogenosomes, mitosomes, or mitochondrion-like organelles, are typically reduced, both structurally and biochemically, relative to classical mitochondria. However, despite their diversification and adaptation to different niches, all appear to play a role in Fe-S cluster assembly, as observed for mitochondria. Although evidence supports the use of common protein targeting mechanisms in the biogenesis of these diverse organelles, divergent features are also apparent. This review examines the metabolism and biogenesis of these organelles in divergent unicellular microbes, with a focus on parasitic protists.
Collapse
Affiliation(s)
- April M Shiflett
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1489, USA
| | | |
Collapse
|
20
|
Pérez-Brocal V, Shahar-Golan R, Clark CG. A linear molecule with two large inverted repeats: the mitochondrial genome of the stramenopile Proteromonas lacertae. Genome Biol Evol 2010; 2:257-66. [PMID: 20624730 PMCID: PMC2997541 DOI: 10.1093/gbe/evq015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial evolution has given rise to a complex array of organelles, ranging from classical aerobic mitochondria to mitochondrial remnants known as hydrogenosomes and mitosomes. The latter are found in anaerobic eukaryotes, and these highly derived organelles often retain only scant evidence of their mitochondrial origins. Intermediate evolutionary stages have also been reported as facultatively or even strictly anaerobic mitochondria, and hydrogenosomes that still retain some mitochondrial features. However, the diversity among these organelles with transitional features remains rather unclear and barely studied. Here, we report the sequence, structure, and gene content of the mitochondrial DNA of the anaerobic stramenopile Proteromonas lacertae. It has a linear genome with a unique central region flanked by two identical large inverted repeats containing numerous genes and “telomeres” with short inverted repeats. Comparison with the organelle genome of the strictly anaerobic human parasite Blastocystis reveals that, despite the close similarity of the sequences, features such as the genome structure display striking differences. It remains unclear whether the virtually identical gene repertoires are the result of convergence or descent.
Collapse
Affiliation(s)
- Vicente Pérez-Brocal
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | |
Collapse
|
21
|
Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 2010; 365:713-27. [PMID: 20124340 DOI: 10.1098/rstb.2009.0224] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
All extant eukaryotes are now considered to possess mitochondria in one form or another. Many parasites or anaerobic protists have highly reduced versions of mitochondria, which have generally lost their genome and the capacity to generate ATP through oxidative phosphorylation. These organelles have been called hydrogenosomes, when they make hydrogen, or remnant mitochondria or mitosomes when their functions were cryptic. More recently, organelles with features blurring the distinction between mitochondria, hydrogenosomes and mitosomes have been identified. These organelles have retained a mitochondrial genome and include the mitochondrial-like organelle of Blastocystis and the hydrogenosome of the anaerobic ciliate Nyctotherus. Studying eukaryotic diversity from the perspective of their mitochondrial variants has yielded important insights into eukaryote molecular cell biology and evolution. These investigations are contributing to understanding the essential functions of mitochondria, defined in the broadest sense, and the limits to which reductive evolution can proceed while maintaining a viable organelle.
Collapse
Affiliation(s)
- Karin Hjort
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
22
|
Localization and targeting of an unusual pyridine nucleotide transhydrogenase in Entamoeba histolytica. EUKARYOTIC CELL 2010; 9:926-33. [PMID: 20382757 DOI: 10.1128/ec.00011-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pyridine nucleotide transhydrogenase (PNT) catalyzes the direct transfer of a hydride-ion equivalent between NAD(H) and NADP(H) in bacteria and the mitochondria of eukaryotes. PNT was previously postulated to be localized to the highly divergent mitochondrion-related organelle, the mitosome, in the anaerobic/microaerophilic protozoan parasite Entamoeba histolytica based on the potential mitochondrion-targeting signal. However, our previous proteomic study of isolated phagosomes suggested that PNT is localized to organelles other than mitosomes. An immunofluorescence assay using anti-E. histolytica PNT (EhPNT) antibody raised against the NADH-binding domain showed a distribution to the membrane of numerous vesicles/vacuoles, including lysosomes and phagosomes. The domain(s) required for the trafficking of PNT to vesicles/vacuoles was examined by using amoeba transformants expressing a series of carboxyl-terminally truncated PNTs fused with green fluorescent protein or a hemagglutinin tag. All truncated PNTs failed to reach vesicles/vacuoles and were retained in the endoplasmic reticulum. These data indicate that the putative targeting signal is not sufficient for the trafficking of PNT to the vesicular/vacuolar compartments and that full-length PNT is necessary for correct transport. PNT displayed a smear of >120 kDa on SDS-PAGE gels. PNGase F and tunicamycin treatment, chemical degradation of carbohydrates, and heat treatment of PNT suggested that the apparent aberrant mobility of PNT is likely attributable to its hydrophobic nature. PNT that is compartmentalized to the acidic compartments is unprecedented in eukaryotes and may possess a unique physiological role in E. histolytica.
Collapse
|
23
|
Hug LA, Stechmann A, Roger AJ. Phylogenetic Distributions and Histories of Proteins Involved in Anaerobic Pyruvate Metabolism in Eukaryotes. Mol Biol Evol 2009; 27:311-24. [DOI: 10.1093/molbev/msp237] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Affiliation(s)
- Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129;
| | - Michael W. Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129;
| |
Collapse
|
25
|
Thompson RCA, Olson ME, Zhu G, Enomoto S, Abrahamsen MS, Hijjawi NS. Cryptosporidium and cryptosporidiosis. ADVANCES IN PARASITOLOGY 2009; 59:77-158. [PMID: 16182865 DOI: 10.1016/s0065-308x(05)59002-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cryptosporidium is one of the most common enteric protozoan parasites of vertebrates with a wide host range that includes humans and domestic animals. It is a significant cause of diarrhoeal disease and an ubiquitous contaminant of water which serves as an excellent vehicle for transmission. A better understanding of the development and life cycle of Cryptosporidium, and new insights into its phylogenetic relationships, have illustrated the need to re-evaluate many aspects of the biology of Cryptosporidium. This has been reinforced by information obtained from the recent successful Cryptosporidium genome sequencing project, which has emphasised the uniqueness of this organism in terms of its parasite life style and evolutionary biology. This chapter provides an up to date review of the biology, biochemistry and host parasite relationships of Cryptosporidium.
Collapse
Affiliation(s)
- R C A Thompson
- Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Mather MW, Vaidya AB. Mitochondria in malaria and related parasites: ancient, diverse and streamlined. J Bioenerg Biomembr 2008; 40:425-33. [PMID: 18814021 DOI: 10.1007/s10863-008-9176-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 08/23/2008] [Indexed: 10/21/2022]
Abstract
Parasitic organisms have emerged from nearly every corner of the eukaryotic kingdom and hence display tremendous diversity of form and function. This diversity extends to their mitochondria and mitochondrion-derived organelles. While the principles of the chemiosmotic theory apply to all these pathogens, the differences from their hosts provide opportunities for therapeutic development. In this review we discuss examples of mitochondrial systems from a deep-branching phylum, Apicomplexa. Many important human pathogens, such as malaria parasites, belong to this phylum. Unique features of their mitochondria are validated targets for drugs that are selectively toxic to the parasites.
Collapse
Affiliation(s)
- Michael W Mather
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
27
|
Identification and characterization of a mitochondrial iron-superoxide dismutase of Cryptosporidium parvum. Parasitol Res 2008; 103:787-95. [PMID: 18551319 DOI: 10.1007/s00436-008-1041-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
Abstract
Cryptosporidium parvum is an intracellular protozoan parasite that causes cryptosporidiosis in mammals. In this study, we identified a gene encoding mitochondrial iron-superoxide dismutase of C. parvum (Cp-mtSOD) and characterized biochemical properties of the recombinant protein. Multiple sequence alignment of the deduced amino acid sequence of Cp-mtSOD with those of previously reported iron-containing SODs (Fe-SODs) from other protozoan parasites showed that Cp-mtSOD shares common metal-binding residues and motifs that were conserved in Fe-SODs. However, the N-terminal 26-amino acid residues of Cp-mtSOD did not show sequence identities to any other Fe-SOD sequences. Further analysis of the N-terminal presequence of Cp-mtSOD suggested that it shares common physiochemical characteristics found in mitochondria targeting sequences and predicted localization of Cp-mtSOD in the mitochondria. The recombinant Cp-mtSOD showed typical biochemical properties with other characterized Fe-SODs, including molecular structure, broad pH optimum, and sensitivity to hydrogen peroxide.
Collapse
|
28
|
Hampl V, Silberman JD, Stechmann A, Diaz-Triviño S, Johnson PJ, Roger AJ. Genetic evidence for a mitochondriate ancestry in the 'amitochondriate' flagellate Trimastix pyriformis. PLoS One 2008; 3:e1383. [PMID: 18167542 PMCID: PMC2148110 DOI: 10.1371/journal.pone.0001383] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 12/07/2007] [Indexed: 11/24/2022] Open
Abstract
Most modern eukaryotes diverged from a common ancestor that contained the α-proteobacterial endosymbiont that gave rise to mitochondria. The ‘amitochondriate’ anaerobic protist parasites that have been studied to date, such as Giardia and Trichomonas harbor mitochondrion-related organelles, such as mitosomes or hydrogenosomes. Yet there is one remaining group of mitochondrion-lacking flagellates known as the Preaxostyla that could represent a primitive ‘pre-mitochondrial’ lineage of eukaryotes. To test this hypothesis, we conducted an expressed sequence tag (EST) survey on the preaxostylid flagellate Trimastix pyriformis, a poorly-studied free-living anaerobe. Among the ESTs we detected 19 proteins that, in other eukaryotes, typically function in mitochondria, hydrogenosomes or mitosomes, 12 of which are found exclusively within these organelles. Interestingly, one of the proteins, aconitase, functions in the tricarboxylic acid cycle typical of aerobic mitochondria, whereas others, such as pyruvate:ferredoxin oxidoreductase and [FeFe] hydrogenase, are characteristic of anaerobic hydrogenosomes. Since Trimastix retains genetic evidence of a mitochondriate ancestry, we can now say definitively that all known living eukaryote lineages descend from a common ancestor that had mitochondria.
Collapse
Affiliation(s)
- Vladimir Hampl
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeffrey D. Silberman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Alexandra Stechmann
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sara Diaz-Triviño
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Patricia J. Johnson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Aguilera P, Barry T, Tovar J. Entamoeba histolytica mitosomes: Organelles in search of a function. Exp Parasitol 2008; 118:10-6. [PMID: 17880942 DOI: 10.1016/j.exppara.2007.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 11/23/2022]
Abstract
It has been more than eight years since the discovery of mitosomes (mitochondrial remnant organelles) in the intestinal human pathogen Entamoeba histolytica. Despite detailed knowledge about the biochemistry of this parasite and the completion of the E. histolytica genome sequencing project no physiological function has yet been unequivocally assigned to these organelles. Entamoeba mitosomes seem to be the most degenerate of all endosymbiosis-derived organelles studied to date. They do not appear to participate in energy metabolism and may have dispensed completely with the proteins required for iron-sulphur cluster biosynthesis. However, the large number of mitosomes found in E. histolytica trophozoites hints at a significant biological role for these organelles in their natural environment. Identifying the protein complement of mitosomes will provide answers as to their biological significance and the reason(s) for their retention in this parasite.
Collapse
Affiliation(s)
- Penelope Aguilera
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| | | | | |
Collapse
|
30
|
Abstract
Gregarines are early diverging apicomplexans that appear to be closely related to Cryptosporidium. Most apicomplexans, including Plasmodium, Toxoplasma, and Eimeria, possess both plastids and corresponding plastid genomes. Cryptosporidium lacks both the organelle and the genome. To investigate the evolutionary history of plastids in the Apicomplexa, we tried to determine whether gregarines possess a plastid and/or its genome. We used PCR and dot-blot hybridization to determine whether the gregarine Gregarina niphandrodes possesses a plastid genome. We used an inhibitor of plastid function for any reduction in gregarine infection, and transmission electron microscopy to search for plastid ultrastructure. Despite an extensive search, an organelle of the appropriate ultrastructure in transmission electron microscopy, was not observed. Triclosan, an inhibitor of the plastid-specific enoyl-acyl carrier reductase enzyme, did not reduce host infection by G. niphandrodes. Plastid-specific primers produced amplicons with the DNA of Babesia equi, Plasmodium falciparum, and Toxoplasma gondii as templates, but not with G. niphandrodes DNA. Plastid-specific DNA probes, which hybridized to Babesia equi, failed to hybridize to G. niphandrodes DNA. This evidence indicates that G. niphandrodes is not likely to possess either a plastid organelle or its genome. This raises the possibility that the plastid was lost in the Apicomplexan following the divergence of gregarines and Cryptosporidium.
Collapse
Affiliation(s)
- Marc A Toso
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | | |
Collapse
|
31
|
Cook T, Roos D, Morada M, Zhu G, Keithly JS, Feagin JE, Wu G, Yarlett N. Divergent polyamine metabolism in the Apicomplexa. MICROBIOLOGY (READING, ENGLAND) 2007; 153:1123-1130. [PMID: 17379721 DOI: 10.1099/mic.0.2006/001768-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The lead enzymes of polyamine biosynthesis, i.e. ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), were not detected in Toxoplasma gondii [the limit of detection for ODC and ADC was 5 pmol min(-1) (mg protein)(-1)], indicating that T. gondii lacks a forward-directed polyamine biosynthetic pathway, and is therefore a polyamine auxotroph. The biochemical results were supported by results obtained from data-mining the T. gondii genome. However, it was possible to demonstrate the presence of a highly active backconversion pathway that formed spermidine from spermine, and putrescine from spermidine, via the combined action of spermidine/spermine N(1)-acetyltransferase (SSAT) or spermidine N(1)-acetyltransferase (SAT) and polyamine oxidase (PAO). With spermine as the substrate, T. gondii SSAT had a specific activity of 1.84 nmol min(-1) (mg protein)(-1), and an apparent K(m) for spermine of 180 mM; with spermidine as the substrate, the SAT had a specific activity of 3.95 nmol min(-1) (mg protein)(-1), and a K(m) for spermidine of 240 mM. T. gondii PAO had a specific activity of 10.6 nmol min(-1) (mg protein)(-1), and a K(m) for acetylspermine of 36 mM. Furthermore, the results demonstrated that T. gondii SSAT was 50 % inhibited by 30 mM di(ethyl)norspermine. The parasite actively transported arginine and ornithine, which were converted via the arginine dihydrolase pathway to citrulline and carbamoyl phosphate, resulting in the formation of ATP via carbamate kinase. The lack of polyamine biosynthesis by T. gondii is contrasted with polyamine metabolism by other apicomplexans.
Collapse
Affiliation(s)
- Tuesday Cook
- Haskins Laboratories, Pace University, New York, NY 10038, USA
| | - David Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY 10038, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Janet S Keithly
- Division of Infectious Diseases, David Axelrod Institute, Wadsworth Center, NYS Department of Health, Albany, NY 1220, USA
| | - Jean E Feagin
- Seattle Biomedical Research Institute, 307 Westlake Ave N., Seattle, WA 9810, USA
| | - Gang Wu
- Haskins Laboratories, Pace University, New York, NY 10038, USA
| | - Nigel Yarlett
- Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
- Haskins Laboratories, Pace University, New York, NY 10038, USA
| |
Collapse
|
32
|
Ctrnacta V, Ault JG, Stejskal F, Keithly JS. Localization of pyruvate:NADP+ oxidoreductase in sporozoites of Cryptosporidium parvum. J Eukaryot Microbiol 2006; 53:225-31. [PMID: 16872290 DOI: 10.1111/j.1550-7408.2006.00099.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cryptosporidium parvum contains a unique fusion protein pyruvate:NADP+ oxidoreductase (CpPNO) that is composed of two distinct, conserved domains, an N-terminal pyruvate:ferredoxin oxidoreductase (PFO) and a C-terminal cytochrome P450 reductase (CPR). Unlike a similar fusion protein that localizes to the mitochondrion of the photosynthetic protist Euglena gracilis, CpPNO lacks an N-terminal mitochondrial targeting sequence. Using two distinct polyclonal antibodies raised against CpPFO and one polyclonal antibody against CpCPR, Western blot analysis has shown that sporozoites of C. parvum express the entire CpPNO fusion protein. Furthermore, confocal immunofluorescence and transmission electron microscopy confirm that CpPNO is localized within the cytosol rather than the relict mitochondrion of C. parvum. The distribution of this protein is not, however, strictly confined to the cytosol. CpPNO also appears to localize posteriorly within the crystalloid body.
Collapse
Affiliation(s)
- Vlasta Ctrnacta
- Department of Tropical Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
33
|
Embley TM. Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci 2006; 361:1055-67. [PMID: 16754614 PMCID: PMC1578728 DOI: 10.1098/rstb.2006.1844] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Classical ideas for early eukaryotic evolution often posited a period of anaerobic evolution producing a nucleated phagocytic cell to engulf the mitochondrial endosymbiont, whose presence allowed the host to colonize emerging aerobic environments. This idea was given credence by the existence of contemporary anaerobic eukaryotes that were thought to primitively lack mitochondria, thus providing examples of the type of host cell needed. However, the groups key to this hypothesis have now been shown to contain previously overlooked mitochondrial homologues called hydrogenosomes or mitosomes; organelles that share common ancestry with mitochondria but which do not carry out aerobic respiration. Mapping these data on the unfolding eukaryotic tree reveals that secondary adaptation to anaerobic habitats is a reoccurring theme among eukaryotes. The apparent ubiquity of mitochondrial homologues bears testament to the importance of the mitochondrial endosymbiosis, perhaps as a founding event, in eukaryotic evolution. Comparative study of different mitochondrial homologues is needed to determine their fundamental importance for contemporary eukaryotic cells.
Collapse
Affiliation(s)
- T Martin Embley
- The Devonshire Building, University of Newcastle upon Tyne, Division of Biology, NE1 7RU, UK.
| |
Collapse
|
34
|
Vaidya AB, Mather MW. A post-genomic view of the mitochondrion in malaria parasites. Curr Top Microbiol Immunol 2006; 295:233-50. [PMID: 16265893 DOI: 10.1007/3-540-29088-5_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mitochondria in Plasmodium parasites have many characteristics that distinguish them from mammalian mitochondria. Selective targeting of malaria parasite mitochondrial physiology has been exploited in successful antimalarial chemotherapy. At present, our understanding of the functions served by the parasite mitochondrion is somewhat limited, but the availability of the genomic sequences makes it possible to develop a framework of possible mitochondrial functions by providing information on genes encoding mitochondrially targeted proteins. This review aims to provide an overview of mitochondrial physiology in this post-genomic era. Although in many cases direct experimental proof for their mitochondrial functions may not be available at present, descriptions of these potential mitochondrial proteins can provide a basis for experimental approaches.
Collapse
Affiliation(s)
- A B Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
35
|
Köhler S. Multi-membrane-bound structures of Apicomplexa: II. the ovoid mitochondrial cytoplasmic (OMC) complex of Toxoplasma gondii tachyzoites. Parasitol Res 2006; 98:355-69. [PMID: 16470415 DOI: 10.1007/s00436-005-0066-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
Apicomplexa including the causative agents of toxoplasmosis and malaria reportedly possess one or few tubular-shaped mitochondria that permeate, more or less branched, throughout these unicellular parasites. Electron micrographs generated herein from serial-sectioned Toxoplasma gondii tachyzoites demonstrated, however, a greater diversity regarding both the shape of the cultured parasite's single mitochondrion and its sub-structural organization. Moreover, a unique subcellular construction was detected that basically comprised a pouch-shaped subdivision of the tachyzoite mitochondrion plus a fraction of parasitic cytoplasm enclosed therein. This composite assembling, termed ovoid mitochondrial cytoplasmic (OMC) complex, characteristically displayed a highly reduced matrix lumen of its mitochondrial border construction, which furthermore often failed to possess any cristae or contained tightly pleated cristae, thus creating a pouch-shaped multi-laminar wall of four or more membranous layers, respectively. Given this architecture, cross-sectioned OMC complexes of T. gondii tachyzoites frequently mimicked in size and shape the parasites' plastid-like organelle (apicoplast). Moreover, like the apicoplast, the OMC complex was often found adjacent to the tachyzoite's single Golgi complex and constantly located in close proximity to the outer membrane of the parasite's nuclear envelope. The T. gondii OMC complex differed, however, from the apicoplast in its exact fine structural organization and a stage-restricted presence that was apparently linked to mitochondrial growth and/or division. Any special function(s) possibly performed by the T. gondii OMC complex remains, nevertheless, to be elucidated.
Collapse
Affiliation(s)
- Sabine Köhler
- Institute for Zoomorphology, Cell Biology and Parasitology, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| |
Collapse
|
36
|
van der Giezen M, León-Avila G, Tovar J. Characterization of chaperonin 10 (Cpn10) from the intestinal human pathogen Entamoeba histolytica. MICROBIOLOGY-SGM 2005; 151:3107-3115. [PMID: 16151221 DOI: 10.1099/mic.0.28068-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Entamoeba histolytica is the causative agent of amoebiasis, a poverty-related disease that kills an estimated 100 000 people each year. E. histolytica does not contain "standard mitochondria", but harbours mitochondrial remnant organelles called mitosomes. These organelles are characterized by the presence of mitochondrial chaperonin Cpn60, but little else is known about the functions and molecular composition of mitosomes. In this study, a gene encoding molecular chaperonin Cpn10--the functional partner of Cpn60--was cloned, and its structure and expression were characterized, as well as the cellular localization of its encoded protein. The 5' untranslated region of the gene contains all of the structural promoter elements required for transcription in this organism. The amoebic Cpn10, like Cpn60, is not significantly upregulated upon heat-shock treatment. Computer-assisted protein modelling, and specific antibodies against Cpn10 and Cpn60, suggest that both proteins interact with each other, and that they function in the same intracellular compartment. Thus, E. histolytica appears to have retained at least two of the key molecular components required for the refolding of imported mitosomal proteins.
Collapse
Affiliation(s)
- Mark van der Giezen
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Gloria León-Avila
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Jorge Tovar
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
37
|
van der Giezen M, Tovar J. Degenerate mitochondria. EMBO Rep 2005; 6:525-30. [PMID: 15940286 PMCID: PMC1369098 DOI: 10.1038/sj.embor.7400440] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 04/15/2005] [Indexed: 11/08/2022] Open
Abstract
Mitochondria are the main sites of biological energy generation in eukaryotes. These organelles are remnants of a bacterial endosymbiont that took up residence inside a host cell over 1,500 million years ago. Comparative genomics studies suggest that the mitochondrion is monophyletic in origin. Thus, the original mitochondrial endosymbiont has evolved independently in anaerobic and aerobic environments that are inhabited by diverse eukaryotic lineages. This process has resulted in a collection of morphologically, genetically and functionally heterogeneous organelle variants that include anaerobic and aerobic mitochondria, hydrogenosomes and mitosomes. Current studies aim to determine whether a central common function drives the retention of mitochondrial organelles in different eukaryotic organisms.
Collapse
Affiliation(s)
- Mark van der Giezen
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Jorge Tovar
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
- Tel: + 44 1784 414159; Fax: +44 1784 434326;
| |
Collapse
|
38
|
Keithly JS, Langreth SG, Buttle KF, Mannella CA. Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and organelles. J Eukaryot Microbiol 2005; 52:132-40. [PMID: 15817118 DOI: 10.1111/j.1550-7408.2005.04-3317.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sporozoites of the apicomplexan Cryptosporidium parvum possess a small, membranous organelle sandwiched between the nucleus and crystalloid body. Based upon immunolabelling data, this organelle was identified as a relict mitochondrion. Transmission electron microscopy and tomographic reconstruction reveal the complex arrangement of membranes in the vicinity of this organelle, as well as its internal organization. The mitochondrion is enveloped by multiple segments of rough endoplasmic reticulum that extend from the outer nuclear envelope. In tomographic reconstructions of the mitochondrion, there is either a single, highly-folded inner membrane or multiple internal subcompartments (which might merge outside the reconstructed volume). The infoldings of the inner membrane lack the tubular "crista junctions" found in typical metazoan, fungal, and protist mitochondria. The absence of this highly conserved structural feature is congruent with the loss, through reductive evolution, of the normal oxidative phosphorylation machinery in C. parvum. It is proposed that the retention of a relict mitochondrion in C. parvum is a strategy for compartmentalizing away from the cytosol toxic ferrous iron and sulfide, which are needed for iron sulfur cluster biosynthesis, an essential function of mitochondria in all eukaryotes.
Collapse
Affiliation(s)
- Janet S Keithly
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA.
| | | | | | | |
Collapse
|
39
|
Regoes A, Zourmpanou D, León-Avila G, van der Giezen M, Tovar J, Hehl AB. Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem 2005; 280:30557-63. [PMID: 15985435 DOI: 10.1074/jbc.m500787200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial remnant organelles (mitosomes) that exist in a range of "amitochondrial" eukaryotic organisms represent ideal models for the study of mitochondrial evolution and for the establishment of the minimal set of proteins required for the biogenesis of an endosymbiosis-derived organelle. Giardia intestinalis, often described as the earliest branching eukaryote, contains double membrane-bounded structures involved in iron-sulfur cluster biosynthesis, an essential function of mitochondria. Here we present evidence that Giardia mitosomes also harbor Cpn60, mtHsp70, and ferredoxin and that despite their advanced state of reductive evolution they have retained vestiges of presequence-dependent and -independent protein import pathways akin to those that operate in mammalian mitochondria. Although import of IscU and ferredoxin is still reliant on their amino-terminal presequences, targeting of Giardia Cpn60, IscS, or mtHsp70 into mitosomes no longer requires cleavable presequences, a derived feature from their mitochondrial homologues. In addition, we found that division and segregation of a single centrally positioned mitosome tightly associated with the microtubular cytoskeleton is coordinated with the cell cycle, whereas peripherally located mitosomes are inherited into daughter cells stochastically.
Collapse
Affiliation(s)
- Attila Regoes
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW. The unusual mitochondrial compartment of Cryptosporidium parvum. Trends Parasitol 2005; 21:68-74. [PMID: 15664529 DOI: 10.1016/j.pt.2004.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies, including the Cryptosporidium parvum Genome Project, have provided evidence for a mitochondrial-derived compartment in this parasite. This organelle appears to lack a genome, and thus must be entirely dependent on nuclear-encoded proteins. Here, we review the evidence for such an organelle in C. parvum and its probable function. There is no adequate treatment for infection by this parasite and so the elucidation of the role of this organelle and the effective targeting of its functions by antimicrobial agents might provide new treatments for infection by C. parvum.
Collapse
Affiliation(s)
- Fiona L Henriquez
- Department of Immunology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor St, Glasgow, UK, G4 0NR
| | | | | | | | | |
Collapse
|
41
|
Gabaldón T, Huynen MA. Shaping the mitochondrial proteome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1659:212-20. [PMID: 15576054 DOI: 10.1016/j.bbabio.2004.07.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 07/15/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
Mitochondria are eukaryotic organelles that originated from a single bacterial endosymbiosis some 2 billion years ago. The transition from the ancestral endosymbiont to the modern mitochondrion has been accompanied by major changes in its protein content, the so-called proteome. These changes included complete loss of some bacterial pathways, amelioration of others and gain of completely new complexes of eukaryotic origin such as the ATP/ADP translocase and most of the mitochondrial protein import machinery. This renewal of proteins has been so extensive that only 14-16% of modern mitochondrial proteome has an origin that can be traced back to the bacterial endosymbiont. The rest consists of proteins of diverse origin that were eventually recruited to function in the organelle. This shaping of the proteome content reflects the transformation of mitochondria into a highly specialized organelle that, besides ATP production, comprises a variety of functions within the eukaryotic metabolism. Here we review recent advances in the fields of comparative genomics and proteomics that are throwing light on the origin and evolution of the mitochondrial proteome.
Collapse
Affiliation(s)
- Toni Gabaldón
- NCMLS, Nijmegen Center for Molecular Life Sciences, P/O: CMBI, Center for Molecular and Biomolecular Informatics, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | | |
Collapse
|
42
|
van der Giezen M, Tovar J, Clark CG. Mitochondrion‐Derived Organelles in Protists and Fungi. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:175-225. [PMID: 16157181 DOI: 10.1016/s0074-7696(05)44005-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The mitochondrion is generally considered to be a defining feature of eukaryotic cells, yet most anaerobic eukaryotes lack this organelle. Many of these were previously thought to derive from eukaryotes that diverged prior to acquisition of the organelle through endosymbiosis. It is now known that all extant eukaryotes are descended from an ancestor that had a mitochondrion and that in anaerobic eukaryotes the organelle has been modified into either hydrogenosomes, which continue to generate energy for the host cell, or mitosomes, which do not. These organelles have each arisen independently several times. Recent evidence suggests a shared derived characteristic that may be responsible for the retention of the organelles in the absence of the better-known mitochondrial functions--iron-sulfur cluster assembly. This review explores the events leading to this new understanding of mitochondrion-derived organelles in amitochondriate eukaryotes, the current state of our knowledge, and future areas for investigation.
Collapse
Affiliation(s)
- Mark van der Giezen
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | |
Collapse
|
43
|
Hackstein JHP, Yarlett N. Hydrogenosomes and symbiosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 41:117-42. [PMID: 16623392 DOI: 10.1007/3-540-28221-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Johannes H P Hackstein
- Department of Evolutionary Microbiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, NL 6525 ED Nijmegen, The Netherlands.
| | | |
Collapse
|
44
|
|
45
|
Slapeta J, Keithly JS. Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria. EUKARYOTIC CELL 2004; 3:483-94. [PMID: 15075277 PMCID: PMC387664 DOI: 10.1128/ec.3.2.483-494.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mitochondrial HSP70 gene (Cp-mtHSP70) is described for the apicomplexan Cryptosporidium parvum, an agent of diarrhea in humans and animals. Mitochondrial HSP70 is known to have been acquired from the proto-mitochondrial endosymbiont. The amino acid sequence of Cp-mtHSP70 shares common domains with mitochondrial and proteobacterial homologues, including 34 amino acids of an NH2-terminal mitochondrion-like targeting presequence. Phylogenetic reconstruction places Cp-mtHSP70 within the mitochondrial clade of HSP70 homologues. Using reverse transcription-PCR, Cp-mtHSP70 mRNA was observed in C. parvum intracellular stages cultured in HCT-8 cells. Polyclonal antibodies to Cp-mtHSP70 recognize a approximately 70-kDa protein in Western blot analysis of sporozoite extracts. Both fluorescein- and immunogold-labeled anti-Cp-mtHSP70 localize to a single mitochondrial compartment in close apposition to the nucleus. Furthermore, the NH2-terminal presequence of Cp-mtHSP70 can correctly target green fluorescent protein to the single mitochondrion of the apicomplexan Toxoplasma gondii and the mitochondrial network of the yeast Saccharomyces cerevisiae. When this presequence was truncated, the predicted amphiphilic alpha-helix was shown to be essential for import into the yeast mitochondrion. These data further support the presence of a secondarily reduced relict mitochondrion in C. parvum.
Collapse
Affiliation(s)
- Jan Slapeta
- Wadsworth Center, New York State Department of Health, Albany, New York 12201-2002, USA.
| | | |
Collapse
|
46
|
Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA. The genome of Cryptosporidium hominis. Nature 2004; 431:1107-12. [PMID: 15510150 DOI: 10.1038/nature02977] [Citation(s) in RCA: 395] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 08/06/2004] [Indexed: 11/09/2022]
Abstract
Cryptosporidium species cause acute gastroenteritis and diarrhoea worldwide. They are members of the Apicomplexa--protozoan pathogens that invade host cells by using a specialized apical complex and are usually transmitted by an invertebrate vector or intermediate host. In contrast to other Apicomplexans, Cryptosporidium is transmitted by ingestion of oocysts and completes its life cycle in a single host. No therapy is available, and control focuses on eliminating oocysts in water supplies. Two species, C. hominis and C. parvum, which differ in host range, genotype and pathogenicity, are most relevant to humans. C. hominis is restricted to humans, whereas C. parvum also infects other mammals. Here we describe the eight-chromosome approximately 9.2-million-base genome of C. hominis. The complement of C. hominis protein-coding genes shows a striking concordance with the requirements imposed by the environmental niches the parasite inhabits. Energy metabolism is largely from glycolysis. Both aerobic and anaerobic metabolisms are available, the former requiring an alternative electron transport system in a simplified mitochondrion. Biosynthesis capabilities are limited, explaining an extensive array of transporters. Evidence of an apicoplast is absent, but genes associated with apical complex organelles are present. C. hominis and C. parvum exhibit very similar gene complements, and phenotypic differences between these parasites must be due to subtle sequence divergence.
Collapse
Affiliation(s)
- Ping Xu
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284-2030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Striepen B, Kissinger JC. Genomics meets transgenics in search of the elusive Cryptosporidium drug target. Trends Parasitol 2004; 20:355-8. [PMID: 15246316 DOI: 10.1016/j.pt.2004.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cryptosporidium is an important pathogen of humans, and a challenging model for the laboratory. The parasite genome sequence, accessible through a comprehensive database, now provides exciting opportunities for urgently needed advances. Comparative genomics, combined with the genetic system in the related parasite Toxoplasma gondii, outlines a detailed Cryptosporidium parvum metabolic map and facilitates cell biological analyses. New targets for Cryptosporidium drug and vaccine development can be identified and validated based on this approach.
Collapse
Affiliation(s)
- Boris Striepen
- Center for Tropical and Emerging Global Diseases, University of Georgia, 623 Biological Sciences Building, Athens, GA 30602, USA.
| | | |
Collapse
|
48
|
Huang J, Mullapudi N, Lancto CA, Scott M, Abrahamsen MS, Kissinger JC. Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum. Genome Biol 2004; 5:R88. [PMID: 15535864 PMCID: PMC545779 DOI: 10.1186/gb-2004-5-11-r88] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 08/16/2004] [Accepted: 09/10/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The apicomplexan parasite Cryptosporidium parvum is an emerging pathogen capable of causing illness in humans and other animals and death in immunocompromised individuals. No effective treatment is available and the genome sequence has recently been completed. This parasite differs from other apicomplexans in its lack of a plastid organelle, the apicoplast. Gene transfer, either intracellular from an endosymbiont/donor organelle or horizontal from another organism, can provide evidence of a previous endosymbiotic relationship and/or alter the genetic repertoire of the host organism. Given the importance of gene transfers in eukaryotic evolution and the potential implications for chemotherapy, it is important to identify the complement of transferred genes in Cryptosporidium. RESULTS We have identified 31 genes of likely plastid/endosymbiont (n = 7) or prokaryotic (n = 24) origin using a phylogenomic approach. The findings support the hypothesis that Cryptosporidium evolved from a plastid-containing lineage and subsequently lost its apicoplast during evolution. Expression analyses of candidate genes of algal and eubacterial origin show that these genes are expressed and developmentally regulated during the life cycle of C. parvum. CONCLUSIONS Cryptosporidium is the recipient of a large number of transferred genes, many of which are not shared by other apicomplexan parasites. Genes transferred from distant phylogenetic sources, such as eubacteria, may be potential targets for therapeutic drugs owing to their phylogenetic distance or the lack of homologs in the host. The successful integration and expression of the transferred genes in this genome has changed the genetic and metabolic repertoire of the parasite.
Collapse
Affiliation(s)
- Jinling Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Nandita Mullapudi
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Cheryl A Lancto
- Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | - Marla Scott
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | | | - Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
49
|
Abstract
Cryptosporidium parvum is one of the apicomplexans that can cause severe diarrhea in humans and animals. The slow development of anti-cryptosporidiosis chemotherapy is primarily due to the poor understanding on the basic metabolic pathways in this parasite. Many well-defined or promising drug targets found in other apicomplexans are either absent or highly divergent in C. parvum. The recently discovered apicoplast and its associated Type II fatty acid synthetic enzymes in Plasmodium, Toxoplasma, and Eimeria apicomplexans are absent in C. parvum, suggesting this parasite is unable to synthesize fatty acids de novo. However, C. parvum possesses a giant Type I fatty acid synthase (CpFAS1) that makes very long chain fatty acids using mediate or long chain fatty acids as precursors. Cryptosporidium also contains a Type I polyketide synthase (CpPKS1) that is probably involved in the production of unknown polyketide(s) from a fatty acid precursor. In addition to CpFAS1 and CpPKS1, a number of other enzymes involved in fatty acid metabolism have also been identified. These include a long chain fatty acyl elongase (LCE), a cytosolic acetyl-CoA carboxylase (ACCase), three acyl-CoA synthases (ACS), and an unusual "long-type" acyl-CoA binding protein (ACBP), which allows us to hypothetically reconstruct the highly streamlined fatty acid metabolism in this parasite. However, C. parvum lacks enzymes for the oxidation of fatty acids, indicating that fatty acids are not an energy source for this parasite. Since fatty acids are essential components of all biomembranes, molecular and functional studies on these critical enzymes would not only deepen our understanding on the basic metabolism in the parasites, but also point new directions for the drug discovery against C. parvum and other apicomplexan-based diseases.
Collapse
Affiliation(s)
- Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, Texas 77843-4467, USA.
| |
Collapse
|
50
|
Nasirudeen AMA, Tan KSW. Isolation and characterization of the mitochondrion-like organelle from Blastocystis hominis. J Microbiol Methods 2004; 58:101-9. [PMID: 15177908 DOI: 10.1016/j.mimet.2004.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/06/2004] [Accepted: 03/11/2004] [Indexed: 11/18/2022]
Abstract
Blastocystis hominis in an unusual protozoan parasite of the human intestinal tract. Previous studies have described the presence of mitochondrial-like structures despite the anaerobic nature of the organism. In this study, we describe a simple and rapid technique to isolate and characterize mitochondrion-like organelles (MLO) from B. hominis. The parasite was disrupted using glass beads and the MLO were collected and purified using a sucrose gradient. Negative staining and transmission electron microscopy of the isolated organelles showed mitochondrial-like structures. B. hominis cells were stained with rhodamine 123 and MitoLight to show the presence of transmembrane potential of the MLO. DAPI staining of the cells suggested the presence of DNA in the MLO. Though brief reports have been made in literature, this study is the first to describe a technique for the isolation of the MLO from this organism. Using this technique of isolation, major metabolic functions of the organelle, their associated macromolecules and intra-mitochondrial location can be extensively studied. The role of MLO in this anaerobic protozoan can be widely investigated using this protocol.
Collapse
Affiliation(s)
- A M A Nasirudeen
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, Faculty of Medicine, National University of Singapore, 5 Science Drive 2, 117597 Singapore
| | | |
Collapse
|