1
|
Cordero-Elvia J, Galindo-González L, Fredua-Agyeman R, Hwang SF, Strelkov SE. Clubroot-Induced Changes in the Root and Rhizosphere Microbiome of Susceptible and Resistant Canola. PLANTS (BASEL, SWITZERLAND) 2024; 13:1880. [PMID: 38999720 PMCID: PMC11244039 DOI: 10.3390/plants13131880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Clubroot is a soilborne disease of canola (Brassica napus) and other crucifers caused by the obligate parasite Plasmodiophora brassicae. In western Canada, clubroot is usually managed by planting-resistant cultivars, but the emergence of resistance-breaking pathotypes of P. brassicae represents a major threat to sustainable canola production. The rhizosphere and root contain beneficial microorganisms that can improve plant health. In this study, we evaluated the effect of two P. brassicae isolates (termed A and B) with different levels of virulence on the root and rhizosphere microbiomes of clubroot-resistant and clubroot-susceptible canola. Additionally, potential biocontrol microorganisms were identified based on taxa antagonistic to clubroot. Although both P. brassicae isolates were classified as pathotype 3A, isolate A caused a higher disease severity index in the resistant canola genotype compared with isolate B. Metabarcoding analysis indicated a shift in the bacterial and fungal communities in response to inoculation with either field isolate. Root endophytic bacterial and fungal communities responded to changes in inoculation, isolate type, sampling time, and canola genotype. In contrast, fungal communities associated with the rhizosphere exhibited significant differences between sampling times, while bacterial communities associated with the rhizosphere exhibited low variability.
Collapse
Affiliation(s)
- Jorge Cordero-Elvia
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Leonardo Galindo-González
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada
- Ottawa Plant Laboratory, Science Branch, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H8P9, Canada
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada
| |
Collapse
|
2
|
Hameed A, Poznanski P, Noman M, Ahmed T, Iqbal A, Nadolska-Orczyk A, Orczyk W. Barley Resistance to Fusarium graminearum Infections: From Transcriptomics to Field with Food Safety Concerns. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14571-14587. [PMID: 36350344 DOI: 10.1021/acs.jafc.2c05488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Global climate change and the urgency to transform food crops require substantial breeding efforts to meet the food security challenges. Barley, an important cereal, has remained a preferential host of phytotoxic diseases caused by the Fusarium graminearum that not only severely reduces the crop yield but also compromises its food quality due to the accumulation of mycotoxins. To develop resistance against Fusarium infections, a better understanding of the host-pathogen interaction is inevitable and could be tracked through molecular insights. Here, we focused precisely on the potential gene targets that are exclusive to this devastating pathosystem and could be harnessed for fast breeding of barley. We also discuss the eco-friendly applications of nanobio hybrid and the CRISPR technology for barley protection. This review covers the critical information gaps within the subject and may be useful for the sustainable improvement of barley from the perspective of food and environmental safety concerns.
Collapse
Affiliation(s)
- Amir Hameed
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Pawel Poznanski
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adnan Iqbal
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Wacław Orczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| |
Collapse
|
3
|
Proteomic Profiling of Plant and Pathogen Interaction on the Leaf Epidermis. Int J Mol Sci 2022; 23:ijms232012171. [PMID: 36293025 PMCID: PMC9603099 DOI: 10.3390/ijms232012171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
The plant epidermis is the first line of plant defense against pathogen invasion, and likely contains important regulatory proteins related to the plant–pathogen interaction. This study aims to identify the candidates of these regulatory proteins expressed in the plant epidermis. We performed comparative proteomic studies to identify rapidly and locally expressed proteins in the leaf epidermis inoculated with fungal phytopathogen. The conidia solutions were dropped onto the Arabidopsis leaf surface, and then, we collected the epidermal tissues from inoculated and mock-treated leaves at 4 and 24 hpi. The label-free quantification methods showed that expressions of Arabidopsis proteins, which are related to defense signals, such as BAK1, MKK5, receptor-like protein kinases, transcription factors, and stomatal functions, were rapidly induced in the epidermal tissues of inoculated leaves. In contrast, most of them were not differentially regulated by fugal inoculation in the whole leaves. These findings clearly indicate that epidermal proteomics can monitor locally expressed proteins in inoculated areas of plant tissues. We also identified the 61 fungal proteins, including effector-like proteins specifically expressed on the Arabidopsis epidermis. Our new findings suggested that epidermal proteomics is useful for understanding the local expressions of plant and fungal proteins related to their interactions.
Collapse
|
4
|
Roy A, Kalita B, Jayaprakash A, Kumar A, Lakshmi PTV. Computational identification and characterization of vascular wilt pathogen ( Fusarium oxysporum f. sp. lycopersici) CAZymes in tomato xylem sap. J Biomol Struct Dyn 2022:1-17. [PMID: 35470778 DOI: 10.1080/07391102.2022.2067236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fusarium oxysporum f. sp. lycopersici is a devastating plant pathogenic fungi known for wilt disease in the tomato plant and secrete cell wall degrading enzymes. These enzymes are collectively known as carbohydrate-active enzymes (CAZymes), crucial for growth, colonization and pathogenesis. Therefore, the present study was aimed to identify and annotate pathogen CAZymes in the xylem sap of a susceptible tomato variety using downstream proteomics and meta servers. Further, structural elucidation and conformational stability analysis of the selected CAZyme families were done through homology modeling and molecular dynamics simulation. Among all the fungal proteins identified, the carbohydrate metabolic process was found to be enriched. Most of the annotated CAZymes belonged to the hydrolase and oxidoreductase families, and 90% were soluble and extracellular. Moreover, using a publically available interactome database, interactions were observed between the families acting on chitin, hemicellulose and pectin. Subsequently, important catalytic residues were identified in the candidate CAZymes belonging to carbohydrate esterase (CE8) and glycosyl hydrolase (GH18 and GH28). Further, essential dynamics after molecular simulation of 100 ns revealed the overall behavior of these CAZymes with distinct global minima and transition states in CE8. Thus, our study identified some of the CAZyme families that assist in pathogenesis and growth through host cell wall deconstruction with further structural insight into the selected CAZyme families.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhijeet Roy
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Barsha Kalita
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Aiswarya Jayaprakash
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Amrendra Kumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - P T V Lakshmi
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
5
|
Soliman SSM, El-Labbad EM, Abu-Qiyas A, Fayed B, Hamoda AM, Al-Rawi AM, Dakalbab S, El-Shorbagi ANA, Hamad M, Ibrahim AS, Mohammad MG. Novel Secreted Peptides From Rhizopus arrhizus var. delemar With Immunomodulatory Effects That Enhance Fungal Pathogenesis. Front Microbiol 2022; 13:863133. [PMID: 35387075 PMCID: PMC8977774 DOI: 10.3389/fmicb.2022.863133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Secreted fungal peptides are known to influence the interactions between the pathogen and host innate immunity. The aim of this study is to screen and evaluate secreted peptides from the fungus Rhizopus arrhizus var. delemar for their immunomodulatory activity. By using mass spectrometry and immuno-informatics analysis, we identified three secreted peptides CesT (S16), Colicin (S17), and Ca2+/calmodulin-dependent protein kinase/ligand (CAMK/CAMKL; S27). Culturing peripheral blood-derived monocytic macrophages (PBMMs) in the presence of S16 or S17 caused cell clumping, while culturing them with S27 resulted in the formation of spindle-shaped cells. S27-treated PBMMs showed cell cycle arrest at G0 phase and exhibited alternatively activated macrophage phenotype with pronounced reduction in scavenger receptors CD163 and CD206. Homology prediction indicated that IL-4/IL-13 is the immunomodulatory target of S27. Confirming this prediction, S27 initiated macrophage activation through phosphorylation of STAT-6; STAT-6 inhibition reversed the activity of S27 and reduced the formation of spindle-shaped PBMMs. Lastly, S27 treatment of PBMMs was associated with altered expression of key iron regulatory genes including hepcidin, ferroportin, transferrin receptor 1, and ferritin in a pattern consistent with increased cellular iron release; a condition known to enhance Rhizopus infection. Collectively, R. arrhizus var. delemar secretes peptides with immunomodulatory activities that support fungal pathogenesis. Targeting the IL-4/IL-13R/STAT-6 axis is a potential therapeutic approach to enhance the PBMM-mediated fungal phagocytosis. This represents a potential new approach to overcome lethal mucormycosis.
Collapse
Affiliation(s)
- Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Eman M El-Labbad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Pharmaceutical Sciences Department, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Ameera Abu-Qiyas
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ahmed M Al-Rawi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Salam Dakalbab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdel-Nasser A El-Shorbagi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mawieh Hamad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Mohammad G Mohammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Liu B, Stevens-Green R, Johal D, Buchanan R, Geddes-McAlister J. Fungal pathogens of cereal crops: Proteomic insights into fungal pathogenesis, host defense, and resistance. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153593. [PMID: 34915227 DOI: 10.1016/j.jplph.2021.153593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/28/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Fungal infections of cereal crops pose a significant risk to global food security through reduced grain production and quality, as well as contamination of animal feed and human products for consumption. To combat fungal disease, we need to understand how the pathogen adapts and survives within the hostile environment of the host and how the host's defense response can be modulated for protection from disease. Such investigations offer insight into fungal pathogenesis, host immunity, the development of resistance, and mechanisms of action for currently-used control strategies. Mass spectrometry-based proteomics provides a technologically-advanced platform to define differences among fungal pathogens and their hosts at the protein level, supporting the discovery of proteins critical for disease, and uncovering novel host responses driving susceptibly or resistance of the host. In this Review, we explore the role of mass spectrometry-based proteomics in defining the intricate relationship between a pathogen and host during fungal disease of cereal crops with a focus on recent discoveries derived from the globally-devastating diseases of Fusarium head blight, Rice blast, and Powdery mildew. We highlight advances made for each of these diseases and discuss opportunities to extrapolate findings to further our fight against fungal pathogens on a global scale.
Collapse
Affiliation(s)
- B Liu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - R Stevens-Green
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - D Johal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - R Buchanan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - J Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Canadian Proteomics and Artificial Intelligence Research and Training Consortium, Canada.
| |
Collapse
|
7
|
Bouarda J, Bassi FM, Wallwork H, Benchacho M, Labhilili M, Maafa I, El Aissami A, Bentata F. Evaluation of Durum Wheat Genotypes for Resistance against Root Rot Disease Caused by Moroccan Fusarium culmorum Isolates. THE PLANT PATHOLOGY JOURNAL 2022; 38:1-11. [PMID: 35144357 PMCID: PMC8831354 DOI: 10.5423/ppj.oa.09.2021.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Fusarium culmorum is one of the most important causal agents of root rot of wheat. In this study, 10 F. culmorum isolates were collected from farms located in five agro-ecological regions of Morocco. These were used to challenge 20 durum wheat genotypes via artificial inoculation of plant roots under controlled conditions. The isolate virulence was determined by three traits (roots browning index, stem browning index, and severity of root rot). An alpha-lattice design with three replicates was used, and the resulting ANOVA revealed a significant (P < 0.01) effect of isolate (I), genotype (G), and G × I interaction. A total of four response types were observed (R, MR, MS, and S) revealing that different genes in both the pathogen and the host were activated in 53% of interactions. Most genotypes were susceptible to eight or more isolates, while the Moroccan cultivar Marouan was reported resistant to three isolates and moderately resistant to three others. Similarly, the Australian breeding line SSD1479-117 was reported resistant to two isolates and moderately resistant to four others. The ICARDA elites Icaverve, Berghisyr, Berghisyr2, Amina, and Icaverve2 were identified as moderately resistant. Principal component analysis based on the genotypes responses defined two major clusters and two sub-clusters for the 10 F. culmorum isolates. Isolate Fc9 collected in Khemis Zemamra was the most virulent while isolate Fc3 collected in Haj-Kaddour was the least virulent. This work provides initial results for the discovery of differential reactions between the durum lines and isolates and the identification of novel sources of resistance.
Collapse
Affiliation(s)
- Jamila Bouarda
- Laboratory of Botanic, Biotechnology and Plant Protection, Department of Biology, Faculty of Science University Ibn Tofail, Kenitra 14000,
Morocco
- Research Unit of Plant Breeding and Conservation of Plant Genetic Resources, National Institute for Agricultural Research, Rabat 10101,
Morocco
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Biodiversity and Integrated Gene Management. P.O. Box 6299, Rabat Institutes, Rabat 10101,
Morocco
| | - Hugh Wallwork
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA 5064,
Australia
| | - Mohammed Benchacho
- Laboratory of Botanic, Biotechnology and Plant Protection, Department of Biology, Faculty of Science University Ibn Tofail, Kenitra 14000,
Morocco
| | - Mustapha Labhilili
- Research Unit of Plant Breeding and Conservation of Plant Genetic Resources, National Institute for Agricultural Research, Rabat 10101,
Morocco
| | - Ilyass Maafa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Biodiversity and Integrated Gene Management. P.O. Box 6299, Rabat Institutes, Rabat 10101,
Morocco
- Research Center in Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University of Rabat, Rabat 10106,
Morocco
| | - Aicha El Aissami
- Research Center in Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University of Rabat, Rabat 10106,
Morocco
| | - Fatiha Bentata
- Research Unit of Plant Breeding and Conservation of Plant Genetic Resources, National Institute for Agricultural Research, Rabat 10101,
Morocco
| |
Collapse
|
8
|
Combining analytical approaches for better lignocellulosic biomass degradation: a way of improving fungal enzymatic cocktails? Biotechnol Lett 2021; 43:2283-2298. [PMID: 34708264 DOI: 10.1007/s10529-021-03201-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE In this study, a combinatory approach was undertaken to assay the efficiency of fungal enzymatic cocktails from different fermentation conditions to degrade different lignocellulosic biomasses with the aim of finely characterizing fungal enzymatic cocktails. METHODS Enzymatic assays (AZO and pNP-linked substrates and ABTS) were used to assess the composition of the fungal enzymatic cocktails for cellulase, xylanase and laccase activities. Comparisons were made with a new range of chromogenic substrates based on complex biomass (CBS substrates). The saccharification efficiency of the cocktails was evaluated as a quantification of the sugar monomers released from the different biomasses after incubation with the enzymatic cocktails. RESULTS The results obtained showed striking differences between the AZO and pNP-linked substrates and the CBS substrates for the same enzymatic cocktails. On AZO and pNP-linked substrates, different hydrolysis profiles were observed between the different fungi species with Aspergillus oryzae being the most efficient. However, the results on CBS substrates were more contrasted depending on the biomass tested. Altogether, the results highlighted that assessing laccase activities and taking into account the complexity of the biomass to degrade were key in order to provide the best enzymatic cocktails. CONCLUSION The complementary experiments performed in this study showed that different approaches needed to be taken in order to accurately assess the ability of an enzymatic cocktail to be efficient when it comes to lignocellulosic biomass degradation. The saccharification assay proved to be essential to validate the data obtained from both simple and complex substrates.
Collapse
|
9
|
Wheat Fusarium Protease Specificity and Effect on Dough Properties. Foods 2021; 10:foods10071585. [PMID: 34359455 PMCID: PMC8305547 DOI: 10.3390/foods10071585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium infection is a worldwide agricultural problem of billion dollar proportions globally, and it has increasingly threatened entire regional food supplies. In addition to the toxin deoxynivalenol (DON), Fusarium species express digestive enzymes that degrade starch and protein, affecting the quality of infected grains, especially wheat processing performance which depends largely on gluten proteins. In this study, the impact of Fusarium protease on the functionality of Canada Western Red Spring (CWRS) wheat was assessed by adding Fusarium-damaged kernels (FDK) to a FDK-free base wheat sample. Digestion of beta-casein by extracts of flours, milled from sound and FDK-spiked wheat samples, demonstrated elevated cleavage in FDK-spiked flour extracts as follows: N-terminal to lysine (eight-fold), N- and C-terminal to isoleucine (four-fold and three-fold, respectively), N-terminal to tyrosine (three-fold) and C-terminal to arginine at P1' (five-fold). Comparison of abbreviated (45 min) and standard (135 min) extensigraph test results indicated that desirable increases in dough resistance to extension (Rmax) due to gluten re-polymerization after longer resting were partially to completely counteracted in FDK-spiked flours in a dose-dependent manner. Baking tests confirmed that while loaf volume is similar, proofed dough from FDK-spiked samples caused detectable loaf collapse at 3% FDK. Extensigraph Rmax and Fusarium protease levels were inversely related, and effected by both the extent and severity of infection. While the current FDK tolerances for grading Canadian wheat can effectively control protease damage, prevalence of deoxynivalenol (DON) weak- and non-producing Fusarium strains/species (e.g., F. avenaceum) in some growing regions must be considered to protect functionality if grading is solely based on DON content.
Collapse
|
10
|
Geißinger C, Gastl M, Becker T. Enzymes from Cereal and Fusarium Metabolism Involved in the Malting Process – A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1911272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Cajetan Geißinger
- Chair of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| | - Martina Gastl
- Chair of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| | - Thomas Becker
- Chair of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
11
|
Madhu SN, Sharma S, Gajjar DU. Identification of Proteases: Carboxypeptidase and Aminopeptidase as Putative Virulence Factors of Fusarium solani Species Complex. Open Microbiol J 2020. [DOI: 10.2174/1874434602014010266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Fusarium keratitis accounts for around 50% of mycotic keratitis cases. Major virulence factors produced by keratopathogenic fungi are proteases.
Objective:
The aim of the current study was to identify proteases contributing to corneal pathogenicity of Fusarium species.
Methods:
Culture filtrates from fourteen Fusarium solani species complex (FSSC) isolates and three F. delphinoides isolates were evaluated for protease activity and gelatine zymography. Mass spectroscopy was carried out using a partially purified enzyme and total extracellular extract. Protease gene expression in an in-vitro condition and an ex-vivo goat corneal infection model was measured using qRT-PCR. Specific activity was observed in a wide range and at a broad pH range; and isolates Cs1 (maximum) and Cc50 (minimum) were selected for the infection model.
Results:
Gene expression in in-vitro condition showed the highest fold change for proteases (C7YY94, C7Z7U2 and C7Z6W1) while in an ex-vivo infection highest fold change was seen for proteases (C7Z6W1, C7YQJ2 and C7Z7U2); in decreasing order, respectively. Expression of aminopeptidase (C7Z6W1) was 50-fold higher in the infected cornea in both isolates (Cs1 and Cc50); while expression of carboxypeptidase (C7YVF3) was 15-fold higher only in isolate Cs1. Corneal histology showed less penetration of Cc50 than Cs1 into the stroma. Mass spectrometry showed the presence of carboxypeptidase (C7YVF3) and tripeptidyl amino peptidase.
Conclusion:
It can be concluded that clinical isolates of FSSC produce varying amounts of proteases and differ in specific activity and gene expression in both conditions (in vitro and ex vivo). Carboxypeptidase and aminopeptidase contribute to the pathogenic potential of Fusarium solani species complex.
Collapse
|
12
|
Teli B, Purohit J, Rashid MM, Jailani AAK, Chattopadhyay A. Omics Insight on Fusarium Head Blight of Wheat for Translational Research Perspective. Curr Genomics 2020; 21:411-428. [PMID: 33093804 PMCID: PMC7536796 DOI: 10.2174/1389202921999200620222631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 01/11/2023] Open
Abstract
In the scenario of global warming and climate change, an outbreak of new pests and pathogens has become a serious concern owing to the rapid emergence of arms races, their epidemic infection, and the ability to break down host resistance, etc. Fusarium head blight (FHB) is one such evidence that depredates major cereals throughout the world. The symptomatological perplexity and aetiological complexity make this disease very severe, engendering significant losses in the yield. Apart from qualitative and quantitative losses, mycotoxin production solemnly deteriorates the grain quality in addition to life endangerment of humans and animals after consumption of toxified grains above the permissible limit. To minimize this risk, we must be very strategic in designing sustainable management practices constituting cultural, biological, chemical, and host resistance approaches. Even though genetic resistance is the most effective and environmentally safe strategy, a huge genetic variation and unstable resistance response limit the holistic deployment of resistance genes in FHB management. Thus, the focus must shift towards the editing of susceptible (S) host proteins that are soft targets of newly evolving effector molecules, which ultimately could be exploited to repress the disease development process. Hence, we must understand the pathological, biochemical, and molecular insight of disease development in a nutshell. In the present time, the availability of functional genomics, proteomics, and metabolomics information on host-pathogen interaction in FHB have constructed various networks which helped in understanding the pathogenesis and coherent host response(s). So now translation of this information for designing of host defense in the form of desirable resistant variety/genotype is the next step. The insights collected and presented in this review will be aiding in the understanding of the disease and apprise a solution to the multi-faceted problems which are related to FHB resistance in wheat and other cereals to ensure global food safety and food security.
Collapse
Affiliation(s)
- Basavaraj Teli
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Jyotika Purohit
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Md Mahtab Rashid
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - A Abdul Kader Jailani
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Anirudha Chattopadhyay
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
13
|
Martínez M, Ramirez Albuquerque LD, Dinolfo MI, Biganzoli F, F Pinto V, Stenglein SA. Effects of Fusarium graminearum and Fusarium poae on disease parameters, grain quality and mycotoxin contamination in barley (part II). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3182-3191. [PMID: 32100305 DOI: 10.1002/jsfa.10354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Barley is one of the most sown crops in the world, with multiple uses such as human consumption, animal feed and for the malting industry. This crop is affected by different diseases, such as Fusarium Head Blight (FHB), that causes losses in yield and quality. In the last years F. graminearum and F. poae were two of the most frequently isolated species in barley grains, so the aim of this study was to evaluate the interaction between these Fusarium species and the effects on disease parameters, grain quality and mycotoxin contamination on five barley genotypes under field conditions. RESULTS Statistical differences between Fusarium treatments for some parameters depending mainly on the year/genotype were found. The results showed that the germination process was affected by both Fusarium species. As to grain quality and the different hordein fractions, it was observed that F. graminearum affects preferentially D and C-hordeins. Different concentrations of nivalenol, deoxynivalenol and their acetylated derivatives (3-acetyl deoxynivalenol (3-ADON), 15-acetyl deoxynivalenol (15-ADON)) were detected. CONCLUSIONS In the present work, no evidence of synergism between F. graminearum and F. poae were found regarding disease parameters and mycotoxin contamination. However, at least in the years with favorable climatic conditions to FHB development and depending on the barley genotype, a continuous monitoring is deemed necessary to prevent the negative impact on protein composition and germinative parameters © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mauro Martínez
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-UNCPBA-CICBA, Facultad de Agronomía, Buenos Aires, Argentina
| | - Lady D Ramirez Albuquerque
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - María I Dinolfo
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-UNCPBA-CICBA, Facultad de Agronomía, Buenos Aires, Argentina
| | - Fernando Biganzoli
- Departamento de Métodos Cuantitativos y Sistemas de Información., Facultad de Agronomía, UBA, Buenos Aires, Argentina
| | - Virginia F Pinto
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Sabastian A Stenglein
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-UNCPBA-CICBA, Facultad de Agronomía, Buenos Aires, Argentina
| |
Collapse
|
14
|
Khan MK, Pandey A, Athar T, Choudhary S, Deval R, Gezgin S, Hamurcu M, Topal A, Atmaca E, Santos PA, Omay MR, Suslu H, Gulcan K, Inanc M, Akkaya MS, Kahraman A, Thomas G. Fusarium head blight in wheat: contemporary status and molecular approaches. 3 Biotech 2020; 10:172. [PMID: 32206506 PMCID: PMC7080935 DOI: 10.1007/s13205-020-2158-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Fusarium head blight (FHB) disease that occurs in wheat is caused by Fusarium graminearum and is a major risk to wheat yield. Although several research efforts focusing on FHB have been conducted in the past several decades, conditions have become more critical due to the increase in its virulent forms. In such a scenario, conferring complete resistance in plants seems to be difficult for handling this issue. The phenotyping for FHB and finding a solution for it at the genetic level comprises a long-term process as FHB infection is largely affected by environmental conditions. Modern molecular strategies have played a crucial role in revealing the host-pathogen interaction in FHB. The integration of molecular biology-based methods such as genome-wide association studies and marker-based genomic selection has provided potential cultivars for breeding programs. In this review, we aim at outlining the contemporary status of the studies conducted on FHB in wheat. The influence of FHB in wheat on animals and human health is also discussed. In addition, a summary of the advancement in the molecular technologies for identifying and developing the FHB-resistant wheat genetic resources is provided. It also suggests the future measures that are required to reduce the world's vulnerability to FHB which was one of the main goals of the US Wheat and Barley Scab Initiative.
Collapse
Affiliation(s)
- Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Tabinda Athar
- Faculty of Agriculture, Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040 Pakistan
| | - Saumya Choudhary
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007 India
- Biomedical Informatics Centre, National Institute of Pathology–Indian Council of Medical Research, New Delhi, 110029 India
| | - Ravi Deval
- Department of Biotechnology, Invertis University, Bareilly, India
| | - Sait Gezgin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Ali Topal
- Department of Field Crops, Selcuk University, Konya, 42079 Turkey
| | - Emel Atmaca
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Pamela Aracena Santos
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Makbule Rumeysa Omay
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Hatice Suslu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Kamer Gulcan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Merve Inanc
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023 Liaoning China
| | - Abdullah Kahraman
- Department of Field Crops, Faculty of Agriculture, Harran University, Sanliurfa, 63300 Turkey
| | - George Thomas
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007 India
| |
Collapse
|
15
|
Martínez M, Ramírez Albuquerque L, Arata AF, Biganzoli F, Fernández Pinto V, Stenglein SA. Effects of Fusarium graminearum and Fusarium poae on disease parameters, grain quality and mycotoxins contamination in bread wheat (Part I). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:863-873. [PMID: 31646638 DOI: 10.1002/jsfa.10099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/27/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Wheat is the most important winter crop in the world, being affected by the presence of fungal, mainly those belonging to the Fusarium genus. Fusarium head blight (FHB) is a serious disease that causes important economic damage and quantitative/qualitative losses, with Fusarium graminearum and Fusarium poae being two of the most isolated species worldwide. The present study aimed to evaluate the interaction between F. graminearum and F. poae and the effects on disease parameters, grain quality and mycotoxin contamination on five wheat genotypes under field conditions during three growing seasons. RESULTS Statistical differences between Fusarium treatments were found for disease parameters, grain quality and mycotoxin contamination during the 2014/2015 growing season. High values of incidence (58.00 ± 8.00%), severity (6.28 ± 1.51%) and FHB index (4.72 ± 1.35) were observed for F. graminearum + F. poae treatment. Regarding grain quality, the results showed that the degradation of different protein fractions depends on each Fusarium species: glutenins were degraded preferably by F. graminearum (-70.82%), gliadins were degraded preferably by F. poae (-29.42%), whereas both protein fractions were degraded when both Fusarium species were present (-60.91% and -16.51%, respectively). Significant differences were observed for mycotoxin contamination between genotypes, with Proteo being the most affected (DON = 12.01 ± 3.67 μg g-1 ). In addition, we report that 3-ADON predominated over 15-ADON in the three seasons evaluated. CONCLUSION Variations in plant-pathogen interaction (Fusarium-wheat pathosystem) should be considered at least in years with favorable climatic conditions for FHB development, as a result of the potential impact of this disease on grain quality and mycotoxin contamination. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mauro Martínez
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-UNCPBA-CICBA, Facultad de Agronomía, Buenos Aires, Argentina
| | - Lady Ramírez Albuquerque
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Agustin F Arata
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-UNCPBA-CICBA, Facultad de Agronomía, Buenos Aires, Argentina
- Cátedra de Cereales y Oleaginosas, Laboratorio de Valoración de Calidad Industrial de Trigo, Facultad de Agronomía, UNCPBA, Azul, Buenos Aires, Argentina
| | - Fernando Biganzoli
- Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, UBA, Buenos Aires, Argentina
| | - Virginia Fernández Pinto
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Sebastian A Stenglein
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-UNCPBA-CICBA, Facultad de Agronomía, Buenos Aires, Argentina
| |
Collapse
|
16
|
Goubet F, Dupree P, Johansen KS. Carbohydrate Gel Electrophoresis. Methods Mol Biol 2020; 2149:33-44. [PMID: 32617927 DOI: 10.1007/978-1-0716-0621-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) relies on derivatization of reducing ends of sugars with a fluorophore, followed by electrophoresis under optimized conditions in polyacrylamide gels. PACE is a sensitive and simple tool for studying polysaccharide structure or quantity and also has applications in the investigation of enzyme specificity.
Collapse
Affiliation(s)
- Florence Goubet
- BASF Belgium Coordination Center Comm.V., Innovation Center Gent, Ghent, Belgium.
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Katja Salomon Johansen
- University of Copenhagen, Geosciences and Natural Resources Management, Frederiksberg, Denmark
| |
Collapse
|
17
|
Kaabel S, Friščić T, Auclair K. Mechanoenzymatic Transformations in the Absence of Bulk Water: A More Natural Way of Using Enzymes. Chembiochem 2019; 21:742-758. [PMID: 31651073 DOI: 10.1002/cbic.201900567] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sandra Kaabel
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Tomislav Friščić
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Karine Auclair
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
18
|
Raulo R, Heuson E, Siah A, Phalip V, Froidevaux R. Innovative microscale workflow from fungi cultures to Cell Wall-Degrading Enzyme screening. Microb Biotechnol 2019; 12:1286-1292. [PMID: 31006173 PMCID: PMC6801129 DOI: 10.1111/1751-7915.13405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/17/2019] [Indexed: 11/30/2022] Open
Abstract
This study aimed at developing a complete miniaturized high-throughput screening workflow for the evaluation of the Cell Wall-Degrading Enzyme (CWDE) activities produced by any fungal strain directly cultivated on raw feedstock in a submerged manner. In this study, wheat straw was selected as model substrate as it represents an important carbon source but yet poorly valorised to yield high added value products. Fungi were grown in a microbioreactor in a high-throughput (HT) way to replace the fastidious shaking flask cultivations. Both approaches were compared in order to validate our new methodology. The range of CWDE activities produced from the cultures was assayed using AZO-died and pNP-linked substrates in an SBS plate format using a Biomek FXp pipetting platform. As highlighted in this study, it was shown that the CWDE activities gathered from the microbioreactor cultivations were similar or higher to those obtained from shake flasks cultures, with a lower standard deviation on the measured values, making this new method much faster than the traditional one and suitable for HT CWDE production thanks to its pipetting platform compatibility. Also, the results showed that the enzymatic activities measured were the same when doing the assay manually or using the automated method.
Collapse
Affiliation(s)
- Roxane Raulo
- EA 7394 – ICV – Institut Charles ViolletteUniv. Lille 1ISAINRAUniv. ArtoisUniv. Littoral Côte d'OpaleF‐59000LilleFrance
| | - Egon Heuson
- EA 7394 – ICV – Institut Charles ViolletteUniv. Lille 1ISAINRAUniv. ArtoisUniv. Littoral Côte d'OpaleF‐59000LilleFrance
| | - Ali Siah
- EA 7394 – ICV – Institut Charles ViolletteUniv. Lille 1ISAINRAUniv. ArtoisUniv. Littoral Côte d'OpaleF‐59000LilleFrance
| | - Vincent Phalip
- EA 7394 – ICV – Institut Charles ViolletteUniv. Lille 1ISAINRAUniv. ArtoisUniv. Littoral Côte d'OpaleF‐59000LilleFrance
| | - Renato Froidevaux
- EA 7394 – ICV – Institut Charles ViolletteUniv. Lille 1ISAINRAUniv. ArtoisUniv. Littoral Côte d'OpaleF‐59000LilleFrance
| |
Collapse
|
19
|
Li T, Wu Y, Wang Y, Gao H, Gupta VK, Duan X, Qu H, Jiang Y. Secretome Profiling Reveals Virulence-Associated Proteins of Fusarium proliferatum during Interaction with Banana Fruit. Biomolecules 2019; 9:biom9060246. [PMID: 31234604 PMCID: PMC6628180 DOI: 10.3390/biom9060246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
Secreted proteins are vital for the pathogenicity of many fungi through manipulating their hosts for efficient colonization. Fusarium proliferatum is a phytopathogenic fungus infecting many crops, vegetables, and fruit, including banana fruit. To access the proteins involved in pathogen–host interaction, we used label-free quantitative proteomics technology to comparatively analyze the secretomes of F. proliferatum cultured with and without banana peel in Czapek’s broth medium. By analyzing the secretomes of F. proliferatum, we have identified 105 proteins with 40 exclusively secreted and 65 increased in abundance in response to a banana peel. These proteins were involved in the promotion of invasion of banana fruit, and they were mainly categorized into virulence factors, cell wall degradation, metabolic process, response to stress, regulation, and another unknown biological process. The expressions of corresponding genes confirmed the existence of these secreted proteins in the banana peel. Furthermore, expression pattern suggested variable roles for these genes at different infection stages. This study expanded the current database of F. proliferatum secreted proteins which might be involved in the infection strategy of this fungus. Additionally, this study warranted the further attention of some secreted proteins that might initiate infection of F. proliferatum on banana fruit.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yu Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Yong Wang
- Zhongshan Entry-Exit Inspection and Quarantine Bureau, Zhongshan 528403, China.
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
20
|
Fall LA, Salazar MM, Drnevich J, Holmes JR, Tseng MC, Kolb FL, Mideros SX. Field pathogenomics of Fusarium head blight reveals pathogen transcriptome differences due to host resistance. Mycologia 2019; 111:563-573. [PMID: 31112486 DOI: 10.1080/00275514.2019.1607135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum and other Fusarium species, is a detrimental disease that affects small grains such as wheat around the world. Management of FHB is difficult, and surveillance as well as a better understanding of pathogen aggressiveness is needed for improved control. F. graminearum disease severity varies depending on the resistance of the host genotype. In this study, we used the field pathogenomics method to investigate gene expression and population structure of isolates collected from wheat lines of varying resistance levels (susceptible, intermediate, and resistant) as well as an axenic control. Differential gene expression was found among isolates collected from different host genotypes. Candidate gene sets were identified for both F. graminearum infection of specific host genotypes and general infection to wheat. Population structure of isolates from different resistance level sources was the same, with all isolates belonging to the NA1 population.
Collapse
Affiliation(s)
- Leigh Ann Fall
- a Department of Crop Sciences, University of Illinois at Urbana-Champaign , 1102 S. Goodwin Avenue, Urbana , Illinois 61801
| | - Melissa M Salazar
- a Department of Crop Sciences, University of Illinois at Urbana-Champaign , 1102 S. Goodwin Avenue, Urbana , Illinois 61801
| | - Jenny Drnevich
- b High-Performance Biological Computing and the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign , 1206 W. Gregory Drive, Urbana , Illinois 61801
| | - Jessica R Holmes
- b High-Performance Biological Computing and the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign , 1206 W. Gregory Drive, Urbana , Illinois 61801
| | - Meng-Chun Tseng
- b High-Performance Biological Computing and the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign , 1206 W. Gregory Drive, Urbana , Illinois 61801
| | - Frederic L Kolb
- a Department of Crop Sciences, University of Illinois at Urbana-Champaign , 1102 S. Goodwin Avenue, Urbana , Illinois 61801
| | - Santiago X Mideros
- a Department of Crop Sciences, University of Illinois at Urbana-Champaign , 1102 S. Goodwin Avenue, Urbana , Illinois 61801
| |
Collapse
|
21
|
Fernando U, Chatur S, Joshi M, Thomas Bonner C, Fan T, Hubbard K, Chabot D, Rowland O, Wang L, Subramaniam R, Rampitsch C. Redox signalling from NADPH oxidase targets metabolic enzymes and developmental proteins in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2019; 20:92-106. [PMID: 30113774 PMCID: PMC6430467 DOI: 10.1111/mpp.12742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
NADPH oxidase (NOX) is one of the sources of reactive oxygen species (ROS) that modulates the activity of proteins through modifications of their cysteine residues. In a previous study, we demonstrated the importance of NOX in both the development and pathogenicity of the phytopathogen Fusarium graminearum. In this article, comparative proteomics between the wild-type and a Nox mutant of F. graminearum was used to identify active cysteine residues on candidate redox-sensing proteins. A two-dimensional gel approach based on labelling with monobromobimane (mBBR) identified 19 candidate proteins, and was complemented with a gel-free shotgun approach based on a biotin switch method, which yielded 99 candidates. The results indicated that, in addition to temporal regulation, a large number of primary metabolic enzymes are potentially targeted by NoxAB-generated ROS. Targeted disruption of these metabolic genes showed that, although some are dispensable, others are essential. In addition to metabolic enzymes, developmental proteins, such as the Woronin body major protein (FGSG_08737) and a glycosylphosphatidylinositol (GPI)-anchored protein (FGSG_10089), were also identified. Deletion of either of these genes reduced the virulence of F. graminearum. Furthermore, changing the redox-modified cysteine (Cys325 ) residue in FGSG_10089 to either serine or phenylalanine resulted in a similar phenotype to the FGSG_10089 knockout strain, which displayed reduced virulence and altered cell wall morphology; this underscores the importance of Cys325 to the function of the protein. Our results indicate that NOX-generated ROS act as intracellular signals in F. graminearum and modulate the activity of proteins affecting development and virulence in planta.
Collapse
Affiliation(s)
- Ursla Fernando
- Agriculture and Agrifood Canada, Morden Research & Development CentreMordenR6M 1Y5MBCanada
| | - Salima Chatur
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
| | - Manisha Joshi
- Agriculture and Agrifood Canada, Morden Research & Development CentreMordenR6M 1Y5MBCanada
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
| | - Christopher Thomas Bonner
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
- Department of BiologyCarleton UniversityOttawaK1S 5B6ONCanada
| | - Tao Fan
- Agriculture and Agrifood Canada, Morden Research & Development CentreMordenR6M 1Y5MBCanada
| | - Keith Hubbard
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
| | - Denise Chabot
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
| | - Owen Rowland
- Department of BiologyCarleton UniversityOttawaK1S 5B6ONCanada
| | - Li Wang
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
| | - Rajagopal Subramaniam
- Agriculture and Agrifood Canada, Ottawa Research & Development CentreOttawaK1A 0C6ONCanada
| | - Christof Rampitsch
- Agriculture and Agrifood Canada, Morden Research & Development CentreMordenR6M 1Y5MBCanada
| |
Collapse
|
22
|
Figueiredo J, Sousa Silva M, Figueiredo A. Subtilisin-like proteases in plant defence: the past, the present and beyond. MOLECULAR PLANT PATHOLOGY 2018; 19:1017-1028. [PMID: 28524452 PMCID: PMC6638164 DOI: 10.1111/mpp.12567] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/19/2017] [Accepted: 05/13/2017] [Indexed: 05/13/2023]
Abstract
Subtilisin-like proteases (or subtilases) are a very diverse family of serine peptidases present in many organisms, but mostly in plants. With a broad spectrum of biological functions, ranging from protein turnover and plant development to interactions with the environment, subtilases have been gaining increasing attention with regard to their involvement in plant defence responses against the most diverse pathogens. Over the last 5 years, the number of published studies associating plant subtilases with pathogen resistance and plant immunity has increased tremendously. In addition, the observation of subtilases and serine protease inhibitors secreted by pathogens has also gained prominence. In this review, we focus on the active participation of subtilases in the interactions established by plants with the environment, highlighting their role in plant-pathogen communication.
Collapse
Affiliation(s)
- Joana Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI)Faculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
- Laboratório de FTICR e Espectrometria de Massa EstruturalFaculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
- Centro de Química e BioquímicaFaculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa EstruturalFaculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
- Centro de Química e BioquímicaFaculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
| | - Andreia Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI)Faculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
| |
Collapse
|
23
|
Wang Q, Chen L, Yu D, Lin H, Shen Q, Zhao Y. Excellent waste biomass-degrading performance of Trichoderma asperellum T-1 during submerged fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1329-1339. [PMID: 28793402 DOI: 10.1016/j.scitotenv.2017.07.212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/23/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
The random disposal and incineration of agricultural residues cause resources waste and environmental pollution. The potential of waste biomass for the production of alternative liquid fuels is increasing and the bioconversion of lignocellulose to fermentable monomeric sugars is essential for second-generation biofuel production. Here, natural and pretreated switch grass or rice straw were fermented by both Trichoderma asperellum T-1 and Trichoderma reesei QM6a, with the fermentation results highlighted the potential of T. asperellum T-1 in the degradation of natural waste lignocellulosic materials. In fermenting different substrates, the filter paper activity, β-glucosidase activity, xylanase activity and carboxymethyl cellulase activity of T-1 can respectively reach 1.88, 8.00, 7.15 and 20.52 times that of QM6a. Although acid pretreatment could improve the enzyme activities of both T-1 and QM6a, its effect on T-1 was much smaller than that on QM6a. Moreover, strain T-1 fermented the natural rice straw better than the pretreated rice straw. Therefore, T-1 is considered to be more suitable for the degradation of natural biomass, especially for the degradation of rice straw. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and scanning electron microscopy (SEM) showed that the cellulase series secreted by T. asperellum T-1 was more abundant, and its substrate deconstruction ability was stronger than T. reesei QM6a. All these results suggest the potential of T. asperellum T-1 in the degradation of natural waste lignocellulosic material, with practical benefits in terms of cost and pollution reduction.
Collapse
Affiliation(s)
- Qun Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Research Institute of Eco-environmental Science, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Liang Chen
- Zhejiang Gongshang University, Hangzhou 310018, China
| | - Daobing Yu
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an 311300, China
| | - Hui Lin
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agriculture Science, Hangzhou 310021, China
| | - Qi Shen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhua Zhao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential. J Proteomics 2017; 169:153-164. [DOI: 10.1016/j.jprot.2017.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 11/23/2022]
|
25
|
Zeiner CA, Purvine SO, Zink EM, Paša-Tolić L, Chaput DL, Wu S, Santelli CM, Hansel CM. Quantitative iTRAQ-based secretome analysis reveals species-specific and temporal shifts in carbon utilization strategies among manganese(II)-oxidizing Ascomycete fungi. Fungal Genet Biol 2017; 106:61-75. [DOI: 10.1016/j.fgb.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 01/05/2023]
|
26
|
Laurent B, Moinard M, Spataro C, Ponts N, Barreau C, Foulongne-Oriol M. Landscape of genomic diversity and host adaptation in Fusarium graminearum. BMC Genomics 2017; 18:203. [PMID: 28231761 PMCID: PMC5324198 DOI: 10.1186/s12864-017-3524-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/27/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Fusarium graminearum is one of the main causal agents of the Fusarium Head Blight, a worldwide disease affecting cereal cultures, whose presence can lead to contaminated grains with chemically stable and harmful mycotoxins. Resistant cultivars and fungicides are frequently used to control this pathogen, and several observations suggest an adaptation of F. graminearum that raises concerns regarding the future of current plant disease management strategies. To understand the genetic basis as well as the extent of its adaptive potential, we investigated the landscape of genomic diversity among six French isolates of F. graminearum, at single-nucleotide resolution using whole-genome re-sequencing. RESULTS A total of 242,756 high-confidence genetic variants were detected when compared to the reference genome, among which 96% are single nucleotides polymorphisms. One third of these variants were observed in all isolates. Seventy-seven percent of the total polymorphism is located in 32% of the total length of the genome, comprising telomeric/subtelomeric regions as well as discrete interstitial sections, delineating clear variant enriched genomic regions- 7.5 times in average. About 80% of all the F. graminearum protein-coding genes were found polymorphic. Biological functions are not equally affected: genes potentially involved in host adaptation are preferentially located within polymorphic islands and show greater diversification rate than genes fulfilling basal functions. We further identified 29 putative effector genes enriched with non-synonymous effect mutation. CONCLUSIONS Our results highlight a remarkable level of polymorphism in the genome of F. graminearum distributed in a specific pattern. Indeed, the landscape of genomic diversity follows a bi-partite organization of the genome according to polymorphism and biological functions. We measured, for the first time, the level of sequence diversity for the entire gene repertoire of F. graminearum and revealed that the majority are polymorphic. Those assumed to play a role in host-pathogen interaction are discussed, in the light of the subsequent consequences for host adaptation. The annotated genetic variants discovered for this major pathogen are valuable resources for further genetic and genomic studies.
Collapse
Affiliation(s)
- Benoit Laurent
- INRA, UR1264 Mycologie et Sécurité des Aliments, bâtiment Qualis, 71 avenue Edouard Bourlaux, CS 20032, F-33882, Villenave d'Ornon cedex, France
| | - Magalie Moinard
- INRA, UR1264 Mycologie et Sécurité des Aliments, bâtiment Qualis, 71 avenue Edouard Bourlaux, CS 20032, F-33882, Villenave d'Ornon cedex, France
| | - Cathy Spataro
- INRA, UR1264 Mycologie et Sécurité des Aliments, bâtiment Qualis, 71 avenue Edouard Bourlaux, CS 20032, F-33882, Villenave d'Ornon cedex, France
| | - Nadia Ponts
- INRA, UR1264 Mycologie et Sécurité des Aliments, bâtiment Qualis, 71 avenue Edouard Bourlaux, CS 20032, F-33882, Villenave d'Ornon cedex, France
| | - Christian Barreau
- INRA, UR1264 Mycologie et Sécurité des Aliments, bâtiment Qualis, 71 avenue Edouard Bourlaux, CS 20032, F-33882, Villenave d'Ornon cedex, France
| | - Marie Foulongne-Oriol
- INRA, UR1264 Mycologie et Sécurité des Aliments, bâtiment Qualis, 71 avenue Edouard Bourlaux, CS 20032, F-33882, Villenave d'Ornon cedex, France.
| |
Collapse
|
27
|
Chen JY, Xiao HL, Gui YJ, Zhang DD, Li L, Bao YM, Dai XF. Characterization of the Verticillium dahliae Exoproteome Involves in Pathogenicity from Cotton-Containing Medium. Front Microbiol 2016; 7:1709. [PMID: 27840627 PMCID: PMC5083787 DOI: 10.3389/fmicb.2016.01709] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022] Open
Abstract
Verticillium wilt, caused by the Verticillium dahliae phytopathogen, is a devastating disease affecting many economically important crops. Previous studies have shown that the exoproteome of V. dahliae plays a significant role in this pathogenic process, but the components and mechanisms that underlie this remain unclear. In this study, the exoproteome of V. dahliae was induced in a cotton-containing C’zapek-Dox (CCD) medium and quantified using the high-throughput isobaric tag technique for relative and absolute quantification (iTRAQ). Results showed that the abundance of 271 secreted proteins was affected by the CCD medium, of which 172 contain typical signal peptides generally produced by the Golgi/endoplasmic reticulum (ER). These enhanced abundance proteins were predominantly enriched in carbohydrate hydrolases; 126 were classified as carbohydrate-active (CAZymes) and almost all were significantly up-regulated in the CCD medium. Results showed that CAZymes proteins 30 and 22 participate in pectin and cellulose degradation pathways, corresponding with the transcription levels of several genes encoded plant cell wall degradation enzyme activated significantly during cotton infection. In addition, targeted deletion of two pectin lyase genes (VdPL3.1 and VdPL3.3) impaired wilt virulence to cotton. This study demonstrates that the V. dahliae exoproteome plays a crucial role in the development of symptoms of wilting and necrosis, predominantly via the pathogenic mechanisms of plant cell wall degradation as part of host plant infection.
Collapse
Affiliation(s)
- Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Hong-Li Xiao
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Yue-Jing Gui
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Lei Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Yu-Ming Bao
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
28
|
Zeiner CA, Purvine SO, Zink EM, Paša-Tolić L, Chaput DL, Haridas S, Wu S, LaButti K, Grigoriev IV, Henrissat B, Santelli CM, Hansel CM. Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi. PLoS One 2016; 11:e0157844. [PMID: 27434633 PMCID: PMC4951024 DOI: 10.1371/journal.pone.0157844] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/06/2016] [Indexed: 01/08/2023] Open
Abstract
Fungal secretomes contain a wide range of hydrolytic and oxidative enzymes, including cellulases, hemicellulases, pectinases, and lignin-degrading accessory enzymes, that synergistically drive litter decomposition in the environment. While secretome studies of model organisms such as Phanerochaete chrysosporium and Aspergillus species have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or conducted side-by-side comparisons of diverse species. Thus, the mechanisms of carbon degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of LC-MS/MS, genomic, and bioinformatic analyses to characterize and compare the protein composition of the secretomes of four recently isolated, cosmopolitan, Mn(II)-oxidizing Ascomycetes (Alternaria alternata SRC1lrK2f, Stagonospora sp. SRC1lsM3a, Pyrenochaeta sp. DS3sAY3a, and Paraconiothyrium sporulosum AP3s5-JAC2a). We demonstrate that the organisms produce a rich yet functionally similar suite of extracellular enzymes, with species-specific differences in secretome composition arising from unique amino acid sequences rather than overall protein function. Furthermore, we identify not only a wide range of carbohydrate-active enzymes that can directly oxidize recalcitrant carbon, but also an impressive suite of redox-active accessory enzymes that suggests a role for Fenton-based hydroxyl radical formation in indirect, non-specific lignocellulose attack. Our findings highlight the diverse oxidative capacity of these environmental isolates and enhance our understanding of the role of filamentous Ascomycetes in carbon turnover in the environment.
Collapse
Affiliation(s)
- Carolyn A. Zeiner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Erika M. Zink
- Biological Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Dominique L. Chaput
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR7257, Centre National de la Recherche Scientifique and Aix-Marseille Université, 13288 Marseille Cedex 9, France
- Department of Biological Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Cara M. Santelli
- Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Colleen M. Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Oh M, Son H, Choi GJ, Lee C, Kim JC, Kim H, Lee YW. Transcription factor ART1 mediates starch hydrolysis and mycotoxin production in Fusarium graminearum and F. verticillioides. MOLECULAR PLANT PATHOLOGY 2016; 17:755-68. [PMID: 26456718 PMCID: PMC6638531 DOI: 10.1111/mpp.12328] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Molecular mechanisms underlying the responses to environmental factors, such as nitrogen, carbon and pH, involve components that regulate the production of secondary metabolites, including mycotoxins. In this study, we identified and characterized a gene in the FGSG_02083 locus, designated as FgArt1, which was predicted to encode a Zn(II)2 Cys6 zinc finger transcription factor. An FgArt1 deletion mutant of Fusarium graminearum exhibited impaired starch hydrolysis as a result of significantly reduced α-amylase gene expression. The deletion strain was unable to produce trichothecenes and exhibited low Tri5 and Tri6 expression levels, whereas the complemented strain showed a similar ability to produce trichothecenes as the wild-type strain. In addition, FgArt1 deletion resulted in impairment of germination in starch liquid medium and reduced pathogenicity on flowering wheat heads. To investigate the roles of the FgArt1 homologue in F. verticillioides, we deleted the FVEG_02083 gene, and the resulting strain showed defects in starch hydrolysis, similar to the FgArt1 deletion strain, and produced no detectable level of fumonisin B1 . Fum1 and Fum12 expression levels were undetectable in the deletion strain. However, when the FvArt1-deleted F. verticillioides strain was complemented with FgArt1, the resulting strain was unable to recover the production of fumonisin B1 , although FgArt1 expression and starch hydrolysis were induced. Thus, our results suggest that there are different regulatory pathways governed by each ART1 transcription factor in trichothecene and fumonisin biosynthesis. Taken together, we suggest that ART1 plays an important role in both trichothecene and fumonisin biosynthesis by the regulation of genes involved in starch hydrolysis.
Collapse
Affiliation(s)
- Mira Oh
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 305-600, South Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, 305-350, South Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, 151-921, South Korea
| | - Gyung Ja Choi
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 305-600, South Korea
| | - Chanhui Lee
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin, 446-701, South Korea
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Hun Kim
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 305-600, South Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, 305-350, South Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, 151-921, South Korea
| |
Collapse
|
30
|
Identification of regulated proteins in naked barley grains ( Hordeum vulgare nudum ) after Fusarium graminearum infection at different grain ripening stages. J Proteomics 2016; 133:86-92. [DOI: 10.1016/j.jprot.2015.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 10/13/2015] [Accepted: 11/16/2015] [Indexed: 11/21/2022]
|
31
|
Chu J, Li WF, Cheng W, Lu M, Zhou KH, Zhu HQ, Li FG, Zhou CZ. Comparative analyses of secreted proteins from the phytopathogenic fungus Verticillium dahliae in response to nitrogen starvation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:437-48. [PMID: 25698221 DOI: 10.1016/j.bbapap.2015.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 01/04/2023]
Abstract
The soilborne fungus Verticillium dahliae is the major pathogen that causes the verticillium wilt disease of plants, which leads to huge economic loss worldwide. At the early stage of infection, growth of the pathogen is subject to the nutrition stress of limited nitrogen. To investigate the secreted pathogenic proteins that play indispensable roles during invasion at this stage, we compared the profiles of secreted proteins of V. dahliae under nitrogen starvation and normal conditions by using in-gel and in-solution digestion combined with liquid chromatography-nano-electrospray ionization tandem mass spectrometry (LC-nanoESI-MS). In total, we identified 212 proteins from the supernatant of liquid medium, including 109 putative secreted proteins. Comparative analysis indicated that the expression of 76 proteins was induced, whereas that of 9 proteins was suppressed under nitrogen starvation. Notably, 24 proteins are constitutively expressed. Further bioinformatic exploration enabled us to classify the stress-induced proteins into seven functional groups: cell wall degradation (10.5%), reactive oxygen species (ROS) scavenging and stress response (11.8%), lipid effectors (5.3%), protein metabolism (21.1%), carbohydrate metabolism (15.8%), electron-proton transport and energy metabolism (14.5%), and other (21.0%). In addition, most stress-suppressed proteins are involved in the cell-wall remodeling. Taken together, our analyses provide insights into the pathogenesis of V. dahliae and might give hints for the development of novel strategy against the verticillium wilt disease.
Collapse
Affiliation(s)
- Jun Chu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Wei-Fang Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Wang Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Mo Lu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Ke-Hai Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences (CAAS), Anyang, Henan 455000, People's Republic of China
| | - He-Qin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences (CAAS), Anyang, Henan 455000, People's Republic of China
| | - Fu-Guang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences (CAAS), Anyang, Henan 455000, People's Republic of China.
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.
| |
Collapse
|
32
|
Debeire P, Delalande F, Habrylo O, Jeltsch JM, Van Dorsselaer A, Phalip V. Enzymatic cocktails produced by Fusarium graminearum under submerged fermentation using different lignocellulosic biomasses. FEMS Microbiol Lett 2014; 355:116-23. [PMID: 24828340 DOI: 10.1111/1574-6968.12467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/07/2014] [Accepted: 05/11/2014] [Indexed: 01/09/2023] Open
Abstract
Fusarium graminearum was grown on four lignocellulosic substrates (corn cobs, wheat bran, hop cell walls, and birchwood) and glucose as the sole carbon source. Proteomic studies performed on the resulting enzymatic cocktails highlighted a great diversity in the number and type of proteins secreted. The cell wall-degrading enzymes (CWDE) proportion varied greatly from 20% to 69%. Only one of the 57 CWDEs detected in this study was common to the five proteomes. In contrast, 35 CWDEs were specific to one proteome only. The polysaccharide-degradation activities were different depending on the cocktail and the polysaccharide used. F. graminearum strongly modifies the enzymatic cocktail it secretes as a function of the biomass used for growth.
Collapse
Affiliation(s)
- Philippe Debeire
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (UMR 7515 Strasbourg University/CNRS), ECPM, Strasbourg Cedex 2, France
| | | | | | | | | | | |
Collapse
|
33
|
Fernandes I, Alves A, Correia A, Devreese B, Esteves AC. Secretome analysis identifies potential virulence factors of Diplodia corticola, a fungal pathogen involved in cork oak (Quercus suber) decline. Fungal Biol 2014; 118:516-23. [DOI: 10.1016/j.funbio.2014.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/16/2014] [Accepted: 04/09/2014] [Indexed: 01/06/2023]
|
34
|
Beys-da-Silva WO, Santi L, Berger M, Calzolari D, Passos DO, Guimarães JA, Moresco JJ, Yates JR. Secretome of the biocontrol agent metarhizium anisopliae induced by the cuticle of the cotton pest Dysdercus peruvianus reveals new insights into infection. J Proteome Res 2014; 13:2282-96. [PMID: 24702058 PMCID: PMC4012838 DOI: 10.1021/pr401204y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Metarhizium anisopliae is an entomopathogenic
fungus that has evolved specialized strategies to infect insect hosts.
Here we analyzed secreted proteins related to Dysdercus peruvianus infection. Using shotgun proteomics, abundance changes in 71 proteins
were identified after exposure to host cuticle. Among these proteins
were classical fungal effectors secreted by pathogens to degrade physical
barriers and alter host physiology. These include lipolytic enzymes,
Pr1A, B, C, I, and J proteases, ROS-related proteins, oxidorreductases,
and signaling proteins. Protein interaction networks were generated
postulating interesting candidates for further studies, including
Pr1C, based on possible functional interactions. On the basis of these
results, we propose that M. anisopliae is degrading
host components and actively secreting proteins to manage the physiology
of the host. Interestingly, the secretion of these factors occurs
in the absence of a host response. The findings presented here are
an important step in understanding the host–pathogen interaction
and developing more efficient biocontrol of D. peruvianus by M. anisopliae.
Collapse
Affiliation(s)
- Walter O Beys-da-Silva
- Department of Chemical Physiology and ‡Department of Cell and Molecular Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes. Appl Microbiol Biotechnol 2014; 98:7457-69. [PMID: 24695830 DOI: 10.1007/s00253-014-5698-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 12/13/2022]
Abstract
The genome of the coprophilous fungus Podospora anserina harbors a large and highly diverse set of putative lignocellulose-acting enzymes. In this study, we investigated the enzymatic diversity of a broad range of P. anserina secretomes induced by various carbon sources (dextrin, glucose, xylose, arabinose, lactose, cellobiose, saccharose, Avicel, Solka-floc, birchwood xylan, wheat straw, maize bran, and sugar beet pulp (SBP)). Compared with the Trichoderma reesei enzymatic cocktail, P. anserina secretomes displayed similar cellulase, xylanase, and pectinase activities and greater arabinofuranosidase, arabinanase, and galactanase activities. The secretomes were further tested for their capacity to supplement a T. reesei cocktail. Four of them improved significantly the saccharification yield of steam-exploded wheat straw up to 48 %. Fine analysis of the P. anserina secretomes produced with Avicel and SBP using proteomics revealed a large array of CAZymes with a high number of GH6 and GH7 cellulases, CE1 esterases, GH43 arabinofuranosidases, and AA1 laccase-like multicopper oxidases. Moreover, a preponderance of AA9 (formerly GH61) was exclusively produced in the SBP condition. This study brings additional insights into the P. anserina enzymatic machinery and will facilitate the selection of promising targets for the development of future biorefineries.
Collapse
|
36
|
Dong H, Marchetti-Deschmann M, Allmaier G. Characterization of on-target generated tryptic peptides from Giberella zeae conidia spore proteins by means of matrix-assisted laser desorption/ionization mass spectrometry. Mol Cell Probes 2014; 28:91-8. [DOI: 10.1016/j.mcp.2013.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 11/24/2022]
|
37
|
Delaunois B, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. FRONTIERS IN PLANT SCIENCE 2014; 5:249. [PMID: 24917874 PMCID: PMC4042593 DOI: 10.3389/fpls.2014.00249] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 05/14/2023]
Abstract
Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Sylvain Cordelier
- *Correspondence: Sylvain Cordelier, Laboratoire Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne-EA 4707, Université de Reims Champagne-Ardenne, Moulin de la Housse – BP 1039, 51687 Reims cedex 2, France e-mail:
| |
Collapse
|
38
|
Foroud NA, Chatterton S, Reid LM, Turkington TK, Tittlemier SA, Gräfenhan T. Fusarium Diseases of Canadian Grain Crops: Impact and Disease Management Strategies. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Screening of Fusarium graminearum Isolates for Enzymes Extracellular and Deoxynivalenol Production. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/358140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Ji XL, Yan M, Yang ZD, Li AF, Kong LR. Shotgun Analysis of the Secretome of Fusarium graminearum. Indian J Microbiol 2013. [PMID: 24426143 DOI: 10.1007/s12088-013-0392-391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Fusarium head blight, caused predominately by Fusarium graminearum, is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. To characterize the profile of proteins secreted by F. graminearum, the extracellular proteins were collectively obtained from F. graminearum culture supernatants and evaluated using one-dimensional SDS-PAGE and liquid chromatography-tandem mass spectrometry. A total of 87 proteins have been identified, of which 63 were predicted as secretory proteins including those with known functions. Meanwhile, 20 proteins that are not homologous to genomic sequences with known functions have also been detected. Some of the identified proteins are possible virulence factors and may play extracellular roles during F. graminearum infection. This study provides a valuable dataset of F. graminearum extracellular proteins, and a better understanding of the virulence mechanisms of the pathogen.
Collapse
Affiliation(s)
- Xian-Ling Ji
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018 Shandong People's Republic of China
| | - Mei Yan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018 Shandong People's Republic of China
| | - Zai-Dong Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018 Shandong People's Republic of China
| | - An-Fei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018 Shandong People's Republic of China
| | - Ling-Rang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018 Shandong People's Republic of China
| |
Collapse
|
41
|
Marx IJ, van Wyk N, Smit S, Jacobson D, Viljoen-Bloom M, Volschenk H. Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:172. [PMID: 24286470 PMCID: PMC4177139 DOI: 10.1186/1754-6834-6-172] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/22/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme profile of a newly isolated Trichoderma asperellum S4F8 strain with that of Trichoderma reesei Rut C30, cultured on sugarcane bagasse (SCB) using solid-state fermentation (SSF). RESULTS Comparison of the lignocellulolytic enzyme profiles of S4F8 and Rut C30 showed that S4F8 had significantly higher hemicellulase and β-glucosidase enzyme activities. Liquid chromatography tandem mass spectrometry analysis of the two fungal secretomes enabled the detection of 815 proteins in total, with 418 and 397 proteins being specific for S4F8 and Rut C30, respectively, and 174 proteins being common to both strains. In-depth analysis of the associated biological functions and the representation of glycoside hydrolase family members within the two secretomes indicated that the S4F8 secretome contained a higher diversity of main and side chain hemicellulases and β-glucosidases, and an increased abundance of some of these proteins compared with the Rut C30 secretome. CONCLUSIONS In SCB SSF, T. asperellum S4F8 produced a more complex lignocellulolytic cocktail, with enhanced hemicellulose and cellobiose hydrolysis potential, compared with T. reesei Rut C30. This bodes well for the development of a more cost-effective and efficient lignocellulolytic enzyme cocktail from T. asperellum for lignocellulosic feedstock hydrolysis.
Collapse
Affiliation(s)
- Isa Jacoba Marx
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Niël van Wyk
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Salome Smit
- MS Unit, Proteomics Laboratory, Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, PO Box 19063, Tygerberg 7505, South Africa
| | - Daniel Jacobson
- Institute for Wine Biotechnology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, 7602, Matieland, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Heinrich Volschenk
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| |
Collapse
|
42
|
The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum. Fungal Genet Biol 2013; 58-59:42-52. [DOI: 10.1016/j.fgb.2013.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 01/24/2023]
|
43
|
Abstract
Most of the major fungal families including plant-pathogenic fungi, yeasts, and mushrooms are infected by mycoviruses, and many double-stranded RNA (dsRNA) mycoviruses have been recently identified from diverse plant-pathogenic Fusarium species. The frequency of occurrence of dsRNAs is high in Fusarium poae but low in other Fusarium species. Most Fusarium mycoviruses do not cause any morphological changes in the host but some mycoviruses like Fusarium graminearum virus 1 (FgV1) cause hypovirulence. Available genomic data for seven of the dsRNA mycoviruses infecting Fusarium species indicate that these mycoviruses exist as complexes of one to five dsRNAs. According to phylogenetic analysis, the Fusarium mycoviruses identified to date belong to four families: Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae. Proteome and transcriptome analysis have revealed that FgV1 infection of Fusarium causes changes in host transcriptional and translational machineries. Successful transmission of FgV1 via protoplast fusion suggests the possibility that, as biological control agents, mycoviruses could be introduced into diverse species of fungal plant pathogens. Research is now needed on the molecular biology of mycovirus life cycles and mycovirus-host interactions. This research will be facilitated by the further development of omics technologies.
Collapse
Affiliation(s)
- Won Kyong Cho
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
44
|
Habrylo O, Forster A, Jeltsch JM, Phalip V. The characterisation of xyloglucanase inhibitors from Humulus lupulus. PHYTOCHEMISTRY 2013; 90:70-77. [PMID: 23561301 DOI: 10.1016/j.phytochem.2013.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/24/2012] [Accepted: 02/20/2013] [Indexed: 06/02/2023]
Abstract
Phytopathogenic fungi secrete a powerful arsenal of enzymes that are potentially active against each polysaccharide component of the plant cell wall. To defend themselves, plants synthetise a variety of molecules that inhibit the activity of cell wall-degrading enzymes. Xyloglucan-specific endoglucanase inhibitor proteins (XEGIPs) act specifically against the members of fungal glycoside hydrolase family 12 (GH12 in the CAZy database). In the present study, we describe the identification of three XEGIP homologues from hop (Humulus lupulus L.). When incubating each of the recombinant inhibitors with an enzymatic cocktail from Aspergillus aculeatus (Viscozyme®), the xyloglucan-degrading endoglucanase activity decreased to 15% and 5% for HlXEGIP1 and HlXEGIP2, respectively, whereas no inhibition of the Viscozyme® enzymes was observed for the third (also called HlXEGIP homologue 3, or HlXEGIPh3). Fungal enzymatic cocktails from 20 different species also showed xyloglucan-degrading endoglucanase activities, and most of them were inhibited by HlXEGIP1 and -2. Furthermore, a real time RT-PCR analysis revealed variations in the spatial distribution of the genes encoding the three inhibitors and differential expression during development and (a) biotic stress. The role of XEGIPs in the plant-fungus interaction is discussed, and a model suggesting a distinct role of these XEGIP homologues is proposed: HlXEGIP1 may act in cases of abiotic stress, while HlXEGIP2 reacts to biotic stress, and physiological development may be influenced by HlXEGIPh3.
Collapse
Affiliation(s)
- Olivier Habrylo
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, Université de Strasbourg, ECPM, 25 rue Becquerel, 67 087 Strasbourg Cedex 2, France
| | | | | | | |
Collapse
|
45
|
Armengaud J, Christie-Oleza JA, Clair G, Malard V, Duport C. Exoproteomics: exploring the world around biological systems. Expert Rev Proteomics 2013. [PMID: 23194272 DOI: 10.1586/epr.12.52] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term 'exoproteome' describes the protein content that can be found in the extracellular proximity of a given biological system. These proteins arise from cellular secretion, other protein export mechanisms or cell lysis, but only the most stable proteins in this environment will remain in abundance. It has been shown that these proteins reflect the physiological state of the cells in a given condition and are indicators of how living systems interact with their environments. High-throughput proteomic approaches based on a shotgun strategy, and high-resolution mass spectrometers, have modified the authors' view of exoproteomes. In the present review, the authors describe how these new approaches should be exploited to obtain the maximum useful information from a sample, whatever its origin. The methodologies used for studying secretion from model cell lines derived from eukaryotic, multicellular organisms, virulence determinants of pathogens and environmental bacteria and their relationships with their habitats are illustrated with several examples. The implication of such data, in terms of proteogenomics and the discovery of novel protein functions, is discussed.
Collapse
Affiliation(s)
- Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France.
| | | | | | | | | |
Collapse
|
46
|
Rampitsch C, Day J, Subramaniam R, Walkowiak S. Comparative secretome analysis of Fusarium graminearum and two of its non-pathogenic mutants upon deoxynivalenol induction in vitro. Proteomics 2013; 13:1913-21. [PMID: 23512867 DOI: 10.1002/pmic.201200446] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/20/2012] [Accepted: 02/07/2013] [Indexed: 12/23/2022]
Abstract
To understand early events in plant-pathogen interactions, it is necessary to explore the pathogen secretome to identify secreted proteins that help orchestrate pathology. The secretome can be obtained from pathogens grown in vitro, and then characterized using standard proteomic approaches based on protein extraction and subsequent identification of tryptic peptides by LC-MS. A subset of the secretome is composed of proteins whose presence is required to initiate infection and their removal from the secretome would result in pathogens with reduced or no virulence. We present here comparative secretome from Fusarium graminearum. This filamentous fungus causes Fusarium head blight on wheat, a serious cereal disease found in many cereal-growing regions. Affected grain is contaminated with mycotoxins and cannot be used for food or feed. We used label-free quantitative MS to compare the secretomes of wild-type with two nonpathogenic deletion mutants of F. graminearum, Δtri6, and Δtri10. These mutations in mycotoxin-regulating transcription factors revealed a subset of 29 proteins whose relative abundance was affected in their secretomes, as measured by spectral counting. Proteins that decreased in abundance are potential candidate virulence factors and these included cell wall-degrading enzymes, metabolic enzymes, pathogenesis-related proteins, and proteins of unknown function.
Collapse
Affiliation(s)
- Christof Rampitsch
- Department of Molecular Genetics, Cereal Research Centre, Agriculture and Agrifood Canada, Winnipeg, MB, Canada.
| | | | | | | |
Collapse
|
47
|
Shotgun Analysis of the Secretome of Fusarium graminearum. Indian J Microbiol 2013; 53:400-9. [PMID: 24426143 DOI: 10.1007/s12088-013-0392-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/16/2013] [Indexed: 10/27/2022] Open
Abstract
Fusarium head blight, caused predominately by Fusarium graminearum, is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. To characterize the profile of proteins secreted by F. graminearum, the extracellular proteins were collectively obtained from F. graminearum culture supernatants and evaluated using one-dimensional SDS-PAGE and liquid chromatography-tandem mass spectrometry. A total of 87 proteins have been identified, of which 63 were predicted as secretory proteins including those with known functions. Meanwhile, 20 proteins that are not homologous to genomic sequences with known functions have also been detected. Some of the identified proteins are possible virulence factors and may play extracellular roles during F. graminearum infection. This study provides a valuable dataset of F. graminearum extracellular proteins, and a better understanding of the virulence mechanisms of the pathogen.
Collapse
|
48
|
Girard V, Dieryckx C, Job C, Job D. Secretomes: The fungal strike force. Proteomics 2013; 13:597-608. [DOI: 10.1002/pmic.201200282] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Vincent Girard
- Bayer CropScience Joint Laboratory (UMR5240); CNRS, University Lyon1; Lyon; France
| | - Cindy Dieryckx
- Bayer CropScience Joint Laboratory (UMR5240); CNRS, University Lyon1; Lyon; France
| | - Claudette Job
- Bayer CropScience Joint Laboratory (UMR5240); CNRS, University Lyon1; Lyon; France
| | - Dominique Job
- Bayer CropScience Joint Laboratory (UMR5240); CNRS, University Lyon1; Lyon; France
| |
Collapse
|
49
|
Carapito R, Vorwerk S, Jeltsch JM, Phalip V. Genome-wide transcriptional responses of Fusarium graminearum to plant cell wall substrates. FEMS Microbiol Lett 2013; 340:129-34. [PMID: 23311999 DOI: 10.1111/1574-6968.12079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 11/28/2022] Open
Abstract
We report a genome-wide transcriptomic study of Fusarium graminearum grown on four different substrates based on plant cell wall components. About 5% of the genes were differentially expressed in at least one condition. Analysis of upregulated cell wall-degrading enzymes highlights a sharp growth medium-specific adaptation process. In particular, the nature of the polysaccharides available for fungal growth induced a specific transcriptional response aiming at the targeted enzymatic degradation of the given polysaccharides.
Collapse
Affiliation(s)
- Raphaël Carapito
- Laboratoire d'Ingénierie des Polymères pour les Hautes Technologies, Université de Strasbourg, ECPM, Strasbourg Cedex, France
| | | | | | | |
Collapse
|
50
|
Pasquali M, Serchi T, Renaut J, Hoffmann L, Bohn T. 2D difference gel electrophoresis reference map of a Fusarium graminearum nivalenol producing strain. Electrophoresis 2013; 34:505-9. [PMID: 23172383 DOI: 10.1002/elps.201200256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 10/03/2012] [Accepted: 10/11/2012] [Indexed: 11/12/2022]
Abstract
Fusarium graminearum is widely studied as a model for toxin production among plant pathogenic fungi. A 2D DIGE reference map for the nivalenol-producing strain 453 was established. Based on a whole protein extract, all reproducible spots were systematically picked and analyzed by MALDI-TOF/TOF, leading to the identification of 1102 protein species. The obtained map contributes to the annotation of the genome by identifying previously nondescribed hypothetical proteins and will serve as a reference for future studies aiming at deciphering F. graminearum biology and chemotype diversity.
Collapse
Affiliation(s)
- Matias Pasquali
- Centre de Recherche Public-Gabriel Lippmann, Belvaux, Luxembourg
| | | | | | | | | |
Collapse
|