1
|
Jin X, Yang H, Chen M, Coldea TE, Zhao H. Improved osmotic stress tolerance in brewer's yeast induced by wheat gluten peptides. Appl Microbiol Biotechnol 2022; 106:4995-5006. [PMID: 35819513 DOI: 10.1007/s00253-022-12073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022]
Abstract
The influences of three wheat gluten peptides (WGP-LL, WGP-LML, and WGP-LLL) on the osmotic stress tolerance and membrane lipid component in brewer's yeast were investigated. The results demonstrated that the growth and survival of yeast under osmotic stress were enhanced by WGP supplementation. The addition of WGP upregulated the expressions of OLE1 (encoded the delta-9 fatty acid desaturase) and ERG1 (encoded squalene epoxidase) genes under osmotic stress. At the same time, WGP addition enhanced palmitoleic acid (C16:1) content, unsaturated fatty acids/saturated fatty acids ratio, and the amount of ergosterol in yeast cells under osmotic stress. Furthermore, yeast cells in WGP-LL and WGP-LLL groups were more resistant to osmotic stress. WGP-LL and WGP-LLL addition caused 25.08% and 27.02% increase in membrane fluidity, 22.36% and 29.54% reduction in membrane permeability, 18.38% and 14.26% rise in membrane integrity in yeast cells, respectively. In addition, scanning electron microscopy analysis revealed that the addition of WGP was capable of maintaining yeast cell morphology and reducing cell membrane damage under osmotic stress. Thus, alteration of membrane lipid component by WGP was an effective approach for increasing the growth and survival of yeast cells under osmotic stress. KEY POINTS: •WGP addition enhanced cell growth and survival of yeast under osmotic stress. •WGP addition increased unsaturated fatty acids and ergosterol contents in yeast. •WGP supplementation improved membrane homeostasis in yeast at osmotic stress.
Collapse
Affiliation(s)
- Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca-Napoca, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China. .,Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China.
| |
Collapse
|
2
|
The Toxic Effects of Ppz1 Overexpression Involve Nha1-Mediated Deregulation of K + and H + Homeostasis. J Fungi (Basel) 2021; 7:jof7121010. [PMID: 34946993 PMCID: PMC8704375 DOI: 10.3390/jof7121010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
The alteration of the fine-tuned balance of phospho/dephosphorylation reactions in the cell often results in functional disturbance. In the yeast Saccharomyces cerevisiae, the overexpression of Ser/Thr phosphatase Ppz1 drastically blocks cell proliferation, with a profound change in the transcriptomic and phosphoproteomic profiles. While the deleterious effect on growth likely derives from the alteration of multiple targets, the precise mechanisms are still obscure. Ppz1 is a negative effector of potassium influx. However, we show that the toxic effect of Ppz1 overexpression is unrelated to the Trk1/2 high-affinity potassium importers. Cells overexpressing Ppz1 exhibit decreased K+ content, increased cytosolic acidification, and fail to properly acidify the medium. These effects, as well as the growth defect, are counteracted by the deletion of NHA1 gene, which encodes a plasma membrane Na+, K+/H+ antiporter. The beneficial effect of a lack of Nha1 on the growth vanishes as the pH of the medium approaches neutrality, is not eliminated by the expression of two non-functional Nha1 variants (D145N or D177N), and is exacerbated by a hyperactive Nha1 version (S481A). All our results show that high levels of Ppz1 overactivate Nha1, leading to an excessive entry of H+ and efflux of K+, which is detrimental for growth.
Collapse
|
3
|
Papouskova K, Moravcova M, Masrati G, Ben-Tal N, Sychrova H, Zimmermannova O. C5 conserved region of hydrophilic C-terminal part of Saccharomyces cerevisiae Nha1 antiporter determines its requirement of Erv14 COPII cargo receptor for plasma-membrane targeting. Mol Microbiol 2020; 115:41-57. [PMID: 32864748 DOI: 10.1111/mmi.14595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 08/22/2020] [Indexed: 01/03/2023]
Abstract
Erv14, a conserved cargo receptor of COPII vesicles, helps the proper trafficking of many but not all transporters to the yeast plasma membrane, for example, three out of five alkali-metal-cation transporters in Saccharomyces cerevisiae. Among them, the Nha1 cation/proton antiporter, which participates in cell cation and pH homeostasis, is a large membrane protein (985 aa) possessing a long hydrophilic C-terminus (552 aa) containing six conserved regions (C1-C6) with unknown function. A short Nha1 version, lacking almost the entire C-terminus, still binds to Erv14 but does not need it to be targeted to the plasma membrane. Comparing the localization and function of ScNha1 variants shortened at its C-terminus in cells with or without Erv14 reveals that only ScNha1 versions possessing the complete C5 region are dependent on Erv14. In addition, our broad evolutionary conservation analysis of fungal Na+ /H+ antiporters identified new conserved regions in their C-termini, and our experiments newly show C5 and other, so far unknown, regions of the C-terminus, to be involved in the functionality and substrate specificity of ScNha1. Taken together, our results reveal that also relatively small hydrophilic parts of some yeast membrane proteins underlie their need to interact with the Erv14 cargo receptor.
Collapse
Affiliation(s)
- Klara Papouskova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Michaela Moravcova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hana Sychrova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Olga Zimmermannova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
4
|
The activity of Saccharomyces cerevisiae Na+, K+/H+ antiporter Nha1 is negatively regulated by 14-3-3 protein binding at serine 481. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118534. [DOI: 10.1016/j.bbamcr.2019.118534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022]
|
5
|
Ariño J, Ramos J, Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast 2018; 36:177-193. [PMID: 30193006 DOI: 10.1002/yea.3355] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 01/08/2023] Open
Abstract
Maintenance of proper intracellular concentrations of monovalent cations, mainly sodium and potassium, is a requirement for survival of any cell. In the budding yeast Saccharomyces cerevisiae, monovalent cation homeostasis is determined by the active extrusion of protons through the Pma1 H+ -ATPase (reviewed in another chapter of this issue), the influx and efflux of these cations through the plasma membrane transporters (reviewed in this chapter), and the sequestration of toxic cations into the vacuoles. Here, we will describe the structure, function, and regulation of the plasma membrane transporters Trk1, Trk2, Tok1, Nha1, and Ena1, which play a key role in maintaining physiological intracellular concentrations of Na+ , K+ , and H+ , both under normal growth conditions and in response to stress.
Collapse
Affiliation(s)
- Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José Ramos
- Departamento de Microbiología, Universidad de Córdoba, Córdoba, Spain
| | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Role of the phosphatase Ptc1 in stress responses mediated by CWI and HOG pathways in Fusarium oxysporum. Fungal Genet Biol 2018; 118:10-20. [DOI: 10.1016/j.fgb.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/24/2018] [Accepted: 05/27/2018] [Indexed: 01/09/2023]
|
7
|
Eigenstetter G, Takors R. Dynamic modeling reveals a three-step response of Saccharomyces cerevisiae to high CO2 levels accompanied by increasing ATP demands. FEMS Yeast Res 2018; 17:2975573. [PMID: 28175306 DOI: 10.1093/femsyr/fox008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae is often applied in large-scale bioreactors where gradients of dissolved CO2 exist. Under high CO2 pressure, the dissolved gas enters the microbe, causing multifold intracellular responses such as decrease of pH, increase of HCO3- and changes of ion balance. Effects of varying CO2 concentrations are multifold, hard to scale and hardly investigated. Hence, the multi-level response to CO2 shifts was summarized in a predicting ODE model with mass action kinetics, balancing electrochemical charges in steady-state growth conditions. Compared to experimental observations, the simulated dynamics of ion concentrations were found to be consistent. During CO2 shifts, the model predicts the initial depolarization of the membrane potential, the temporal pH drop and the activation of countermeasures such as Pma1-mediated H+ export and Trk1,2-mediated K+ import. In conclusion, extracellular cation concentrations and the cellular pH regulation are critical factors that determine physiology and cellular energy management. Consequently, pressure-induced CO2 gradients cause peaks of ATP demand which may occur in cells circulating in large-scale industrial bioreactors.
Collapse
|
8
|
Solieri L, Vezzani V, Cassanelli S, Dakal TC, Pazzini J, Giudici P. Differential hypersaline stress response inZygosaccharomyces rouxiicomplex yeasts: a physiological and transcriptional study. FEMS Yeast Res 2016; 16:fow063. [DOI: 10.1093/femsyr/fow063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 11/13/2022] Open
|
9
|
Rosas-Santiago P, Zimmermannova O, Vera-Estrella R, Sychrová H, Pantoja O. Erv14 cargo receptor participates in yeast salt tolerance via its interaction with the plasma-membrane Nha1 cation/proton antiporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:67-74. [DOI: 10.1016/j.bbamem.2015.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 01/13/2023]
|
10
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Dušková M, Ferreira C, Lucas C, Sychrová H. Two glycerol uptake systems contribute to the high osmotolerance ofZygosaccharomyces rouxii. Mol Microbiol 2015; 97:541-59. [DOI: 10.1111/mmi.13048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Michala Dušková
- Department of Membrane Transport; Institute of Physiology The Czech Academy of Sciences; Prague Czech Republic
- Department of Biochemistry; Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Célia Ferreira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga Portugal
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga Portugal
| | - Hana Sychrová
- Department of Membrane Transport; Institute of Physiology The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
12
|
Duskova M, Borovikova D, Herynkova P, Rapoport A, Sychrova H. The role of glycerol transporters in yeast cells in various physiological and stress conditions. FEMS Microbiol Lett 2014; 362:1-8. [PMID: 25673653 DOI: 10.1093/femsle/fnu041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Small and uncharged glycerol is an important molecule for yeast metabolism and osmoadaptation. Using a series of S. cerevisiae BY4741-derived mutants lacking genes encoding a glycerol exporter (Fps1p) and/or importer (Stl1p) and/or the last kinase of the HOG pathway (Hog1p), we studied their phenotypes and various physiological characteristics with the aim of finding new roles for glycerol transporters. Though the triple mutant hog1Δ stl1Δ fps1Δ was viable, it was highly sensitive to various stresses. Our results showed that the function of both Stl1p and Fps1p transporters contributes to the cell ability to survive during the transfer into the state of anhydrobiosis, and that the deletion of FPS1 decreases the cell's tolerance of hyperosmotic stress. The deletion of STL1 results in a slight increase in cell size and in a substantial increase in intracellular pH. Taken together, our results suggest that the fluxes of glycerol in both directions across the plasma membrane exist in yeast cells simultaneously, and the export or import predominates according to the actual specific conditions.
Collapse
Affiliation(s)
- Michala Duskova
- Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| | - Diana Borovikova
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, LV-1586 Riga, Latvia
| | - Pavla Herynkova
- Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, LV-1586 Riga, Latvia
| | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
13
|
Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii. Int J Food Microbiol 2014; 185:140-57. [DOI: 10.1016/j.ijfoodmicro.2014.05.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/18/2014] [Accepted: 05/04/2014] [Indexed: 11/21/2022]
|
14
|
Oliveira BM, Barrio E, Querol A, Pérez-Torrado R. Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii. PLoS One 2014; 9:e87290. [PMID: 24498063 PMCID: PMC3907487 DOI: 10.1371/journal.pone.0087290] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 12/26/2013] [Indexed: 11/18/2022] Open
Abstract
During the evolution of the different species classified within the Saccharomyces genus, each one has adapted to live in different environments. One of the most important parameters that have influenced the evolution of Saccharomyces species is the temperature. Here we have focused on the study of the ability of certain species as Saccharomyces kudriavzevii to grow at low temperatures, in contrast to Saccharomyces cerevisiae. We observed that S. kudriavzevii strains isolated from several regions are able to synthesize higher amounts of glycerol, a molecule that has been shown to accumulate in response to freeze and cold stress. To explain this observation at the molecular level we studied the expression of glycerol biosynthetic pathway genes and we observed a higher expression of GPD1 gene in S. kudriavzevii compared to S. cerevisiae in micro-vinification conditions. We observed higher enzymatic activity of Gpd1p in S. kudriavzevii in response to osmotic and cold stress. Also, we determined that S. kudriavzevii Gpd1p enzyme presents increased catalytic properties that will contribute to increase glycerol production. Finally, we evaluated the glycerol production with S. cerevisiae, S. kudriavzevii or a recombinant Gpd1p variant in the same background and observed that the S. kudriavzevii enzyme produced increased glycerol levels at 12 or 28°C. This suggests that glycerol is increased in S. kudriavzevii mainly due to increased Vmax of the Gpd1p enzyme. All these differences indicate that S. kudriavzevii has changed the metabolism to promote the branch of the glycolytic pathway involved in glycerol production to adapt to low temperature environments and maintain the NAD+/NADH ratio in alcoholic fermentations. This knowledge is industrially relevant due to the potential use, for example, of S. cerevisiae-S. kudriavzevii hybrids in the wine industry where glycerol content is an important quality parameter.
Collapse
Affiliation(s)
- Bruno M. Oliveira
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, E-46980, Paterna (Valencia), Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, E-46980, Paterna (Valencia), Spain
- Institut “Cavanilles” de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, E-46980, Paterna (Valencia), Spain
| | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, E-46980, Paterna (Valencia), Spain
- * E-mail:
| |
Collapse
|
15
|
Wang H, Hu T, Huang J, Lu X, Huang B, Zheng Y. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance. Int J Mol Sci 2013; 14:8775-86. [PMID: 23615469 PMCID: PMC3676755 DOI: 10.3390/ijms14058775] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/18/2013] [Accepted: 04/01/2013] [Indexed: 11/16/2022] Open
Abstract
The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%-86%). Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa), whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1) showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.
Collapse
Affiliation(s)
- Hui Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences, Shenzhen University, Nanhai Ave 3688, Shenzhen 518060, Guangdong, China; E-Mails: (H.W.); (T.H.); (J.H.); (X.L.)
- Institute of Genetics and Cytology, Northeast Normal University, 5268 Renmin Street, Changchun 130024, Jilin, China
| | - Tangjin Hu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences, Shenzhen University, Nanhai Ave 3688, Shenzhen 518060, Guangdong, China; E-Mails: (H.W.); (T.H.); (J.H.); (X.L.)
| | - Jianzi Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences, Shenzhen University, Nanhai Ave 3688, Shenzhen 518060, Guangdong, China; E-Mails: (H.W.); (T.H.); (J.H.); (X.L.)
| | - Xiang Lu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences, Shenzhen University, Nanhai Ave 3688, Shenzhen 518060, Guangdong, China; E-Mails: (H.W.); (T.H.); (J.H.); (X.L.)
| | - Baiqu Huang
- Institute of Genetics and Cytology, Northeast Normal University, 5268 Renmin Street, Changchun 130024, Jilin, China
| | - Yizhi Zheng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences, Shenzhen University, Nanhai Ave 3688, Shenzhen 518060, Guangdong, China; E-Mails: (H.W.); (T.H.); (J.H.); (X.L.)
| |
Collapse
|
16
|
Ke R, Ingram PJ, Haynes K. An integrative model of ion regulation in yeast. PLoS Comput Biol 2013; 9:e1002879. [PMID: 23341767 PMCID: PMC3547829 DOI: 10.1371/journal.pcbi.1002879] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/27/2012] [Indexed: 12/03/2022] Open
Abstract
Yeast cells are able to tolerate and adapt to a variety of environmental stresses. An essential aspect of stress adaptation is the regulation of monovalent ion concentrations. Ion regulation determines many fundamental physiological parameters, such as cell volume, membrane potential, and intracellular pH. It is achieved through the concerted activities of multiple cellular components, including ion transporters and signaling molecules, on both short and long time scales. Although each component has been studied in detail previously, it remains unclear how the physiological parameters are maintained and regulated by the concerted action of all components under a diverse range of stress conditions. In this study, we have constructed an integrated mathematical model of ion regulation in Saccharomyces cerevisiae to understand this coordinated adaptation process. Using this model, we first predict that the interaction between phosphorylated Hog1p and Tok1p at the plasma membrane inhibits Tok1p activity and consequently reduces Na+ influx under NaCl stress. We further characterize the impacts of NaCl, sorbitol, KCl and alkaline pH stresses on the cellular physiology and the differences between the cellular responses to these stresses. We predict that the calcineurin pathway is essential for maintaining a non-toxic level of intracellular Na+ in the long-term adaptation to NaCl stress, but that its activation is not required for maintaining a low level of Na+ under other stresses investigated. We provide evidence that, in addition to extrusion of toxic ions, Ena1p plays an important role, in some cases alongside Nha1p, in re-establishing membrane potential after stress perturbation. To conclude, this model serves as a powerful tool for both understanding the complex system-level properties of the highly coordinated adaptation process and generating further hypotheses for experimental investigation. Ion regulation is fundamental to cell physiology. The concentrations of monovalent ions, such as H+, K+ and Na+, determine many physiological parameters such as cell volume, plasma membrane potential and intracellular pH. In yeast cells, these parameters are maintained within a narrow range during the adaptation to external perturbations, including ionic, osmotic and alkaline pH stress. This is achieved by the remarkably coordinated activities of ion transporters, regulatory molecules and signaling pathways. The response characteristics of individual components in adaptation have been studied extensively. However, a coherent understanding of the coordinated adaptation process is lacking. In this study, we address this gap by constructing a mathematical model that integrates the characteristics of the ion transporters, regulatory molecules, signaling pathways and changes in cell volume. Using this model, we characterize the impact of ionic, osmotic and alkaline pH stresses on cellular physiology and analyze the role that individual components play in the cellular adaptation processes. Our results also reveal system level properties achieved by the concerted regulatory responses. Therefore, this integrated model serves as a suitable tool to understand the coordinated processes of ion regulation in response to environmental stresses, and to make predictions that are experimentally testable.
Collapse
Affiliation(s)
- Ruian Ke
- Department of Mathematics, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|
17
|
Yeast 14-3-3 proteins participate in the regulation of cell cation homeostasis via interaction with Nha1 alkali-metal-cation/proton antiporter. Biochim Biophys Acta Gen Subj 2012; 1820:849-58. [DOI: 10.1016/j.bbagen.2012.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 11/18/2022]
|
18
|
Marquina M, González A, Barreto L, Gelis S, Muñoz I, Ruiz A, Álvarez MC, Ramos J, Ariño J. Modulation of yeast alkaline cation tolerance by Ypi1 requires calcineurin. Genetics 2012; 190:1355-64. [PMID: 22367039 PMCID: PMC3316648 DOI: 10.1534/genetics.112.138370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/29/2012] [Indexed: 12/24/2022] Open
Abstract
Ypi1 was discovered as an essential protein able to act as a regulatory subunit of the Saccharomyces cerevisiae type 1 protein phosphatase Glc7 and play a key role in mitosis. We show here that partial depletion of Ypi1 causes lithium sensitivity and that high levels of this protein confer a lithium-tolerant phenotype to yeast cells. Remarkably, this phenotype was independent of the role of Ypi1 as a Glc7 regulatory subunit. Lithium tolerance in cells overexpressing Ypi1 was caused by a combination of increased efflux of lithium, mediated by augmented expression of the alkaline cation ATPase ENA1, and decreased lithium influx through the Trk1,2 high-affinity potassium transporters. Deletion of CNB1, encoding the regulatory subunit of the calcineurin phosphatase, blocked Ypi1-induced expression of ENA1, normalized Li(+) fluxes, and abolished the Li(+) hypertolerant phenotype of Ypi1-overexpressing cells. These results point to a complex role of Ypi1 on the regulation of cation homeostasis, largely mediated by the calcineurin phosphatase.
Collapse
Affiliation(s)
- Maribel Marquina
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Asier González
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Lina Barreto
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Samuel Gelis
- Departamento de Microbiología, Universidad de Córdoba, Campus Rabanales, 14071 Córdoba, Spain
| | - Iván Muñoz
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Amparo Ruiz
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Mari Carmen Álvarez
- Departamento de Microbiología, Universidad de Córdoba, Campus Rabanales, 14071 Córdoba, Spain
| | - José Ramos
- Departamento de Microbiología, Universidad de Córdoba, Campus Rabanales, 14071 Córdoba, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
19
|
Abstract
The maintenance of appropriate intracellular concentrations of alkali metal cations, principally K(+) and Na(+), is of utmost importance for living cells, since they determine cell volume, intracellular pH, and potential across the plasma membrane, among other important cellular parameters. Yeasts have developed a number of strategies to adapt to large variations in the concentrations of these cations in the environment, basically by controlling transport processes. Plasma membrane high-affinity K(+) transporters allow intracellular accumulation of this cation even when it is scarce in the environment. Exposure to high concentrations of Na(+) can be tolerated due to the existence of an Na(+), K(+)-ATPase and an Na(+), K(+)/H(+)-antiporter, which contribute to the potassium balance as well. Cations can also be sequestered through various antiporters into intracellular organelles, such as the vacuole. Although some uncertainties still persist, the nature of the major structural components responsible for alkali metal cation fluxes across yeast membranes has been defined within the last 20 years. In contrast, the regulatory components and their interactions are, in many cases, still unclear. Conserved signaling pathways (e.g., calcineurin and HOG) are known to participate in the regulation of influx and efflux processes at the plasma membrane level, even though the molecular details are obscure. Similarly, very little is known about the regulation of organellar transport and homeostasis of alkali metal cations. The aim of this review is to provide a comprehensive and up-to-date vision of the mechanisms responsible for alkali metal cation transport and their regulation in the model yeast Saccharomyces cerevisiae and to establish, when possible, comparisons with other yeasts and higher plants.
Collapse
|
20
|
Takahashi R, Liu S, Takano T. Isolation and characterization of plasma membrane Na(+)/H(+) antiporter genes from salt-sensitive and salt-tolerant reed plants. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:301-9. [PMID: 18565619 DOI: 10.1016/j.jplph.2008.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 05/08/2023]
Abstract
We isolated cDNAs for Na(+)/H(+) antiporter genes (PhaNHA1s) from salt-sensitive and salt-tolerant reed plants. A phylogenetic analysis and localization analysis using yeast strains expressing PhaNHA1-GFP protein showed that PhaNHA1s were plasma membrane Na(+)/H(+) antiporters. Yeast strains expressing PhaNHA1 from salt-tolerant reed plants (PhaNHA1-n) grew well than yeast strains expressing PhaNHA1 from salt-sensitive reed plants (PhaNHA1-u) in the presence of 100mM NaCl. Furthermore, Na(+) contents of yeast cells expressing PhaNHA1-n were less than half of those of yeast cells expressing PhaNHA1-u. These results suggest that PhaNHA1-n is more efficient at excluding Na(+) from the cells than PhaNHA1-u.
Collapse
Affiliation(s)
- Ryuichi Takahashi
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1, Midori-cho, Nishitokyo-shi, Tokyo 188-0002, Japan
| | | | | |
Collapse
|
21
|
Krauke Y, Sychrova H. Functional comparison of plasma-membrane Na+/H+ antiporters from two pathogenic Candida species. BMC Microbiol 2008; 8:80. [PMID: 18492255 PMCID: PMC2424070 DOI: 10.1186/1471-2180-8-80] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 05/20/2008] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The virulence of Candida species depends on many environmental conditions. Extracellular pH and concentration of alkali metal cations belong among important factors. Nevertheless, the contribution of transporters mediating the exchange of alkali metal cations for protons across the plasma membrane to the cell salt tolerance and other physiological properties of various Candida species has not been studied so far. RESULTS The tolerance/sensitivity of four pathogenic Candida species to alkali metal cations was tested and the role of one of the cation transporters in that tolerance (presumed to be the plasma-membrane Na+/H+ antiporter) was studied. The genes encoding these antiporters in the most and least salt sensitive species, C. dubliniensis and C. parapsilosis respectively, were identified, cloned and functionally expressed in the plasma membranes of Saccharomyces cerevisiae cells lacking their own cation exporters. Both CpCnh1 and CdCnh1 antiporters had broad substrate specificity and transported Na+, K+, Li+, and Rb+. Their activity in S. cerevisiae cells differed; CpCnh1p provided cells with a much higher salt tolerance than the CdCnh1 antiporter. The observed difference in activity was confirmed by direct measurements of sodium and potassium efflux mediated by these antiporters. CONCLUSION We have cloned two genes encoding putative Na+/H+ antiporters in C. parapsilosis and C. dubliniensis, and characterized the transport properties of encoded proteins. Our results show that the activity of plasma-membrane Na+/H+ antiporters is one of the factors determining the tolerance of pathogenic Candida species to high external concentrations of alkali metal cations.
Collapse
Affiliation(s)
- Yannick Krauke
- Department of Membrane Transport, Institute of Physiology AS CR, v,v,i,, Videnska 1083, 14220 Prague 4, Czech Republic.
| | | |
Collapse
|
22
|
Kinclova-Zimmermannova O, Sychrová H. Plasma-membrane Cnh1 Na+/H+ antiporter regulates potassium homeostasis in Candida albicans. MICROBIOLOGY-SGM 2007; 153:2603-2612. [PMID: 17660424 DOI: 10.1099/mic.0.2007/008011-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The physiological role of Candida albicans Cnh1, a member of the Na+/H+ antiporter family, was characterized. Though CaCnh1p had broad substrate specificity and mediated efflux of at least four alkali metal cations upon heterologous expression in Saccharomyces cerevisiae, its presence in C. albicans cells was important especially for potassium homeostasis. In C. albicans, CaCnh1p tagged with GFP was localized in the plasma membrane of cells growing as both yeasts and hyphae. Deletion of CNH1 alleles did not affect tolerance to NaCl, LiCl or CsCl, but resulted in increased sensitivity to high external concentrations of KCl and RbCl. The potassium and rubidium tolerance of a cnh1 homozygous mutant was fully restored by reintegration of CNH1 into the genome. The higher sensitivity of the cnh1/cnh1 mutant to external KCl was caused by a lower K+ efflux from these cells. Together, the functional characterization of the CaCnh1 antiporter in C. albicans revealed that this antiporter plays a significant role in C. albicans physiology. It ensures potassium and rubidium tolerance and participates in the regulation of intracellular potassium content of C. albicans cells.
Collapse
Affiliation(s)
- Olga Kinclova-Zimmermannova
- Department of Membrane Transport, Institute of Physiology AS CR, v.v.i., Videnska 1083, 142 20 Prague 4-Krc, Czech Republic
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology AS CR, v.v.i., Videnska 1083, 142 20 Prague 4-Krc, Czech Republic
| |
Collapse
|
23
|
Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1311-40. [PMID: 17604854 PMCID: PMC2031910 DOI: 10.1016/j.bbamcr.2007.05.003] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells.
Collapse
Affiliation(s)
- Raymond E Chen
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|