1
|
Chuene LT, Ndlovu T, Rossouw D, Naidoo-Blassoples RK, Bauer FF. Isolation and characterization of Saccharomyces cerevisiae mutants with increased cell wall chitin using fluorescence-activated cell sorting. FEMS Yeast Res 2024; 24:foae028. [PMID: 39270658 PMCID: PMC11421375 DOI: 10.1093/femsyr/foae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
Yeast cell wall chitin has been shown to bind grape pathogenesis-related chitinases that are the primary cause of protein haze in wines, suggesting that yeast cell walls may be applied for haze protection. Here, we present a high-throughput screen to identify yeast strains with high cell wall chitin using a reiterative enrichment strategy and fluorescence-activated cell sorting of cells labelled with either GFP-tagged chitinase or Calcofluor white. To assess the validity of the strategy, we first used a pooled deletion strain library of Saccharomyces cerevisiae. The strategy enriched for deletion mutants with genes that had previously been described as having an impact on chitin levels. Genes that had not previously been linked to chitin biosynthesis or deposition were also identified. These genes are involved in cell wall maintenance and/or membrane trafficking functions. The strategy was then applied to a mutagenized population of a commercial wine yeast strain, S. cerevisiae EC1118. Enriched mutant strains showed significantly higher cell wall chitin than the wild type and significantly reduced the activity of chitinases in synthetic model wine, suggesting that these strains may be able to reduce haze formation in wine.
Collapse
Affiliation(s)
- Lesiba Tyrone Chuene
- South African Grape and Wine Research Institute, University of Stellenbosch, Matieland, Postcode 7600, South Africa
| | - Thulile Ndlovu
- South African Grape and Wine Research Institute, University of Stellenbosch, Matieland, Postcode 7600, South Africa
| | - Debra Rossouw
- South African Grape and Wine Research Institute, University of Stellenbosch, Matieland, Postcode 7600, South Africa
| | | | - Florian Franz Bauer
- South African Grape and Wine Research Institute, University of Stellenbosch, Matieland, Postcode 7600, South Africa
| |
Collapse
|
2
|
Yammine M, Bray F, Flament S, Picavet A, Lacroix JM, Poilpré E, Mouly I, Rolando C. Reliable Approach for Pure Yeast Cell Wall Protein Isolation from Saccharomyces cerevisiae Yeast Cells. ACS OMEGA 2022; 7:29702-29713. [PMID: 36061670 PMCID: PMC9435031 DOI: 10.1021/acsomega.2c02176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Saccharomyces cerevisiae yeast is a fungus presenting a peripheral organelle called the cell wall. The cell wall protects the yeast cell from stress and provides means for communication with the surrounding environment. It has a complex molecular structure, composed of an internal part of cross-linked polysaccharides and an external part of mannoproteins. These latter are very interesting owing to their functional properties, dependent on their molecular features with massive mannosylations. Therefore, the molecular characterization of mannoproteins is a must relying on the optimal isolation and preparation of the cell wall fraction. Multiple methods are well reported for yeast cell wall isolation. The most applied one consists of yeast cell lysis by mechanical disruption. However, applying this classical approach to S288C yeast cells showed considerable contamination with noncell wall proteins, mainly comprising mitochondrial proteins. Herein, we tried to further purify the yeast cell wall preparation by two means: ultracentrifugation and Triton X-100 addition. While the first strategy showed limited outcomes in mitochondrial protein removal, the second strategy showed optimal results when Triton X-100 was added at 5%, allowing the identification of more mannoproteins and significantly enriching their amounts. This promising method could be reliably implemented on the lab scale for identification of mannoproteins and molecular characterization and industrial processes for "pure" cell wall isolation.
Collapse
Affiliation(s)
- Marie Yammine
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Fabrice Bray
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
| | - Stéphanie Flament
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
| | - Antoine Picavet
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Jean-Marie Lacroix
- Univ.
Lille, CNRS, UMR 8765, UGSF, Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Emmanuel Poilpré
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Isabelle Mouly
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Christian Rolando
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
- Shrieking
sixties, 1-3 Allée
Lavoisier, F-59650 Villeneuve-d’Ascq, France
| |
Collapse
|
3
|
Tsai K, Britton S, Nematbakhsh A, Zandi R, Chen W, Alber M. Role of combined cell membrane and wall mechanical properties regulated by polarity signals in cell budding. Phys Biol 2020; 17:065011. [PMID: 33085651 DOI: 10.1088/1478-3975/abb208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Budding yeast, Saccharomyces cerevisiae, serves as a prime biological model to study mechanisms underlying asymmetric growth. Previous studies have shown that prior to bud emergence, polarization of a conserved small GTPase Cdc42 must be established on the cell membrane of a budding yeast. Additionally, such polarization contributes to the delivery of cell wall remodeling enzymes and hydrolase from cytosol through the membrane, to change the mechanical properties of the cell wall. This leads to the hypothesis that Cdc42 and its associated proteins at least indirectly regulate cell surface mechanical properties. However, how the surface mechanical properties in the emerging bud are changed and whether such change is important are not well understood. To test several hypothesised mechanisms, a novel three-dimensional coarse-grained particle-based model has been developed which describes inhomogeneous mechanical properties of the cell surface. Model simulations predict alternation of the levels of stretching and bending stiffness of the cell surface in the bud region by the polarized Cdc42 signals is essential for initiating bud formation. Model simulations also suggest that bud shape depends strongly on the distribution of the polarized signaling molecules while the neck width of the emerging bud is strongly impacted by the mechanical properties of the chitin and septin rings. Moreover, the temporal change of the bud mechanical properties is shown to affect the symmetry of the bud shape. The 3D model of asymmetric cell growth can also be used for studying viral budding and other vegetative reproduction processes performed via budding, as well as detailed studies of cell growth.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Mathematics, University of California, Riverside, CA, United States of America. Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
| | | | | | | | | | | |
Collapse
|
4
|
Sarto-Jackson I, Tomaska L. How to bake a brain: yeast as a model neuron. Curr Genet 2016; 62:347-70. [PMID: 26782173 DOI: 10.1007/s00294-015-0554-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
More than 30 years ago Dan Koshland published an inspirational essay presenting the bacterium as a model neuron (Koshland, Trends Neurosci 6:133-137, 1983). In the article he argued that there are several similarities between neurons and bacterial cells in "how signals are processed within a cell or how this processing machinery can be modified to produce plasticity". He then explored the bacterial chemosensory system to emphasize its attributes that are analogous to information processing in neurons. In this review, we wish to expand Koshland's original idea by adding the yeast cell to the list of useful models of a neuron. The fact that yeasts and neurons are specialized versions of the eukaryotic cell sharing all principal components sets the stage for a grand evolutionary tinkering where these components are employed in qualitatively different tasks, but following analogous molecular logic. By way of example, we argue that evolutionarily conserved key components involved in polarization processes (from budding or mating in Saccharomyces cervisiae to neurite outgrowth or spinogenesis in neurons) are shared between yeast and neurons. This orthologous conservation of modules makes S. cervisiae an excellent model organism to investigate neurobiological questions. We substantiate this claim by providing examples of yeast models used for studying neurological diseases.
Collapse
Affiliation(s)
- Isabella Sarto-Jackson
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstraße 12, 3400, Klosterneuburg, Austria.
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B-1, Ilkovicova 6, 842 15, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Jiang C, Xu JR, Liu H. Distinct cell cycle regulation during saprophytic and pathogenic growth in fungal pathogens. Curr Genet 2015; 62:185-9. [PMID: 26337287 DOI: 10.1007/s00294-015-0515-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 01/26/2023]
Abstract
In a number of dimorphic and hemibiotrophic pathogens, cell cycle regulation has been shown to be important for morphological changes related to infectious growth or infection-related morphogenesis. However, the role of mitotic CDK kinase Cdc2, the key regulator of cell cycle, in pathogenic growth is not clear, because most fungal pathogens have a single CDC2 gene that is essential for cell cycle progression and viability. Interestingly, the wheat scab fungus Fusarium graminearum has two CDC2 genes. Although CDC2A and CDC2B have redundant functions in vegetative growth and asexual production, only CDC2A is required for invasive growth and plant infection. In this study, we showed that Cdc2A and Cdc2B interacted with each other and may form homo- and heterodimers in vegetative hyphae. We also identified sequence and structural differences between Cdc2A and Cdc2B that may be related to their functional divergence. These results, together with earlier studies with cyclins, important for differentiation and infection in Candida albicans and Ustilago maydis, indicated that dimorphic and hemibiotrophic fungal pathogens may have stage-specific cyclin-CDK combinations or CDK targets during saprophytic and pathogenic growth.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Chu XL, Feng MG, Ying SH. Qualitative ubiquitome unveils the potential significances of protein lysine ubiquitination in hyphal growth of Aspergillus nidulans. Curr Genet 2015; 62:191-201. [PMID: 26328806 DOI: 10.1007/s00294-015-0517-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022]
Abstract
Protein ubiquitination is an evolutionarily conserved post-translational modification process in eukaryotes, and it plays an important role in many biological processes. Aspergillus nidulans, a model filamentous fungus, contributes to our understanding of cellular physiology, metabolism and genetics, but its ubiquitination is not completely revealed. In this study, the ubiquitination sites in the proteome of A. nidulans were identified using a highly sensitive mass spectrometry combined with immuno-affinity enrichment of the ubiquitinated peptides. The 4816 ubiquitination sites were identified in 1913 ubiquitinated proteins, accounting for 18.1% of total proteins in A. nidulans. Bioinformatic analysis suggested that the ubiquitinated proteins associated with a number of biological functions and displayed various sub-cellular localisations. Meanwhile, seven motifs were revealed from the ubiquitinated peptides, and significantly over-presented in the different pathways. Comparison of the enriched functional catalogues indicated that the ubiquitination functions divergently during growth of A. nidulans and Saccharomyces cerevisiae. Additionally, the proteins in A. nidulans-specific sub-category (cell growth/morphogenesis) were subjected to the protein interaction analysis which demonstrated that ubiquitination is involved in the comprehensive protein interactions. This study presents a first proteomic view of ubiquitination in the filamentous fungus, and provides an initial framework for exploring the physiological roles of ubiquitination in A. nidulans.
Collapse
Affiliation(s)
- Xin-Ling Chu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
| |
Collapse
|