1
|
Ohtsuka H, Sakata H, Kitazaki Y, Tada M, Shimasaki T, Otsubo Y, Maekawa Y, Kobayashi M, Imada K, Yamashita A, Aiba H. The ecl family gene ecl3+ is induced by phosphate starvation and contributes to sexual differentiation in fission yeast. J Cell Sci 2023; 136:287015. [PMID: 36779416 PMCID: PMC10038150 DOI: 10.1242/jcs.260759] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 02/14/2023] Open
Abstract
In Schizosaccharomyces pombe, ecl family genes are induced by several signals, such as starvation of various nutrients, including sulfur, amino acids and Mg2+, and environmental stress, including heat or oxidative stress. These genes mediate appropriate cellular responses and contribute to the maintenance of cell viability and induction of sexual differentiation. Although this yeast has three ecl family genes with overlapping functions, any environmental conditions that induce ecl3+ remain unidentified. We demonstrate that ecl3+ is induced by phosphate starvation, similar to its chromosomally neighboring genes, pho1+ and pho84+, which respectively encode an extracellular acid phosphatase and an inorganic phosphate transporter. ecl3+ expression was induced by the transcription factor Pho7 and affected by the cyclin-dependent kinase (CDK)-activating kinase Csk1. Phosphate starvation induced G1 arrest and sexual differentiation via ecl family genes. Biochemical analyses suggested that this G1 arrest was mediated by the stabilization of the CDK inhibitor Rum1, which was dependent on ecl family genes. This study shows that ecl family genes are required for appropriate responses to phosphate starvation and provides novel insights into the diversity and similarity of starvation responses.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroki Sakata
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuto Kitazaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masanobu Tada
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Aichi 444-858, Japan
- National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yasukichi Maekawa
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mikuto Kobayashi
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kazuki Imada
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Aichi 444-858, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
2
|
Zhang S, Nie Y, Fan X, Wei W, Chen H, Xie X, Tang M. A transcriptional activator from Rhizophagus irregularis regulates phosphate uptake and homeostasis in AM symbiosis during phosphorous starvation. Front Microbiol 2023; 13:1114089. [PMID: 36741887 PMCID: PMC9895418 DOI: 10.3389/fmicb.2022.1114089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Phosphorus (P) is one of the most important nutrient elements for plant growth and development. Under P starvation, arbuscular mycorrhizal (AM) fungi can promote phosphate (Pi) uptake and homeostasis within host plants. However, the underlying mechanisms by which AM fungal symbiont regulates the AM symbiotic Pi acquisition from soil under P starvation are largely unknown. Here, we identify a HLH domain containing transcription factor RiPho4 from Rhizophagus irregularis. Methods To investigate the biological functions of the RiPho4, we combined the subcellular localization and Yeast One-Hybrid (Y1H) experiments in yeasts with gene expression and virus-induced gene silencing approach during AM symbiosis. Results The approach during AM symbiosis. The results indicated that RiPho4 encodes a conserved transcription factor among different fungi and is induced during the in planta phase. The transcription of RiPho4 is significantly up-regulated by P starvation. The subcellular localization analysis revealed that RiPho4 is located in the nuclei of yeast cells during P starvation. Moreover, knock-down of RiPho4 inhibits the arbuscule development and mycorrhizal Pi uptake under low Pi conditions. Importantly, RiPho4 can positively regulate the downstream components of the phosphate (PHO) pathway in R. irregularis. Discussion In summary, these new findings reveal that RiPho4 acts as a transcriptional activator in AM fungus to maintain arbuscule development and regulate Pi uptake and homeostasis in the AM symbiosis during Pi starvation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianan Xie
- *Correspondence: Xianan Xie, ; Ming Tang,
| | - Ming Tang
- *Correspondence: Xianan Xie, ; Ming Tang,
| |
Collapse
|
3
|
Guo J, Xie Z, Jiang H, Xu H, Liu B, Meng Q, Peng Q, Tang Y, Duan Y. The Molecular Mechanism of Yellow Mushroom (Floccularia luteovirens) Response to Strong Ultraviolet Radiation on the Qinghai-Tibet Plateau. Front Microbiol 2022; 13:918491. [PMID: 35794915 PMCID: PMC9251379 DOI: 10.3389/fmicb.2022.918491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
The Qinghai-Tibet Plateau (QTP) is the highest plateau in the world, and its ultraviolet (UV) radiation is much greater than that of other regions in the world. Yellow mushroom (Floccularia luteovirens) is a unique and widely distributed edible fungus on the QTP. However, the molecular mechanism of F. luteovirens’s response to strong UV radiation remains unclear. Herein, we reported the 205 environmental adaptation and information processing genes from genome of F. luteovirens. In addition, we assembled the RNA sequence of UV-affected F. luteovirens at different growth stages. The results showed that in response to strong UV radiation, a total of 11,871 significantly different genes were identified, of which 4,444 genes in the vegetative mycelium (VM) stage were significantly different from the young fruiting bodies (YFB) stage, and only 2,431 genes in the YFB stage were significantly different from fruiting bodies (FB) stage. A total of 225 differentially expressed genes (DEGs) were found to be involved in environmental signal transduction, biochemical reaction preparation and stress response pathway, pigment metabolism pathway, and growth cycle regulation, so as to sense UV radiation, promote repair damage, regulate intracellular homeostasis, and reduce oxidative damage of UV radiation. On the basis of these results, a molecular regulation model was proposed for the response of F. luteovirens to strong UV radiation. These results revealed the molecular mechanism of adaptation of F. luteovirens adapting to strong UV radiation, and provided novel insights into mechanisms of fungi adapting to extreme environmental conditions on the QTP; the production the riboflavin pigment of the endemic fungi (Yellow mushroom) in the QTP was one of the response to extreme environment of the strong UV radiation.
Collapse
Affiliation(s)
- Jing Guo
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, China
| | - Zhanling Xie
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, China
- *Correspondence: Zhanling Xie,
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Hongyan Xu
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qing Meng
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, China
| | - Qingqing Peng
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, China
| | | | - Yingzhu Duan
- Test Station for Grassland Improvement, Xining, China
| |
Collapse
|
4
|
Bolarin JA, Oluwatoyosi MA, Orege JI, Ayeni EA, Ibrahim YA, Adeyemi SB, Tiamiyu BB, Gbadegesin LA, Akinyemi TO, Odoh CK, Umeobi HI, Adeoye ABE. Therapeutic drugs for SARS-CoV-2 treatment: Current state and perspective. Int Immunopharmacol 2021; 90:107228. [PMID: 33302035 PMCID: PMC7691844 DOI: 10.1016/j.intimp.2020.107228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
The disease caused by viral pneumonia called severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) declared by the World Health Organization is a global pandemic that the world has witnessed since the last Ebola epidemic, SARS and MERS viruses. Many chemical compounds with antiviral activity are currently undergoing clinical investigation in order to find treatments for SARS-CoV-2 infected patients. On-going drug-drug interaction examinations on new, existing, and repurposed antiviral drugs are yet to provide adequate safety, toxicological, and effective monitoring protocols. This review presents an overview of direct and indirect antiviral drugs, antibiotics, and immune-stimulants used in the management of SARS-CoV-2. It also seeks to outline the recent development of drugs with anti-coronavirus effects; their mono and combination therapy in managing the disease vis-à-vis their biological sources and chemistry. Co-administration of these drugs and their interactions were discussed to provide significant insight into how adequate monitoring of patients towards effective health management could be achieved.
Collapse
Affiliation(s)
- Joshua Adedeji Bolarin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mercy Adaramodu Oluwatoyosi
- Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joshua Iseoluwa Orege
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Emmanuel Ayodeji Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu PMB 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yusuf Ajibola Ibrahim
- School of Chemical Sciences, Chinese Academy of Science, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Bashir Bolaji Tiamiyu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanre Anthony Gbadegesin
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Toluwanimi Oluwadara Akinyemi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuks Kenneth Odoh
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Happiness Ijeoma Umeobi
- Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Adenike Bernice-Eloise Adeoye
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Karginov AV, Fokina AV, Kang HA, Kalebina TS, Sabirzyanova TA, Ter-Avanesyan MD, Agaphonov MO. Dissection of differential vanadate sensitivity in two Ogataea species links protein glycosylation and phosphate transport regulation. Sci Rep 2018; 8:16428. [PMID: 30401924 PMCID: PMC6219546 DOI: 10.1038/s41598-018-34888-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/24/2018] [Indexed: 11/08/2022] Open
Abstract
The closely related yeasts Ogataea polymorpha and O. parapolymorpha differ drastically from each other by sensitivity to the toxic phosphate analog vanadate. Search for genes underlying this difference revealed two genes, one designated as ABV1 (Alcian Blue staining, Vanadate resistance), which encodes a homologue of Saccharomyces cerevisiae Mnn4 responsible for attachment of mannosylphosphate to glycoside chains of secretory proteins, and the other designated as its S. cerevisiae homologue PHO87, encoding the plasma membrane low affinity phosphate sensor/transporter. The effect of Pho87 on vanadate resistance was bidirectional, since it decreased the resistance on phosphate-depleted medium, but was required for pronounced protection against vanadate by external phosphate. This highlights the dual function of this protein as a low affinity phosphate transporter and an external phosphate sensor. Involvement of Pho87 in phosphate sensing was confirmed by its effects on regulation of the promoter of the PHO84 gene, encoding a high affinity phosphate transporter. The effect of Abv1 was also complex, since it influenced Pho87 level and enhanced repression of the PHO84 promoter via a Pho87-independent pathway. Role of the identified genes in the difference in vanadate resistance between O. polymorpha and O. parapolymorpha is discussed.
Collapse
Affiliation(s)
- Azamat V Karginov
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation
| | - Anastasia V Fokina
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Tatyana S Kalebina
- Department of Molecular Biology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatyana A Sabirzyanova
- Department of Molecular Biology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Michael D Ter-Avanesyan
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation
| | - Michael O Agaphonov
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation.
| |
Collapse
|
6
|
Evolutionary conservation of a core fungal phosphate homeostasis pathway coupled to development in Blastocladiella emersonii. Fungal Genet Biol 2018; 115:20-32. [PMID: 29627365 DOI: 10.1016/j.fgb.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/08/2023]
Abstract
The model yeast Saccharomyces cerevisiae elicits a transcriptional response to phosphate (Pi) depletion. To determine the origins of the phosphate response (PHO) system, we bioinformatically identified putative PHO components in the predicted proteomes of diverse fungi. Our results suggest that the PHO system is ancient; however, components have been expanded or lost in different fungal lineages. To show that a similar physiological response is present in deeply-diverging fungi we examined the transcriptional and physiological response of PHO genes to Pi depletion in the blastocladiomycete Blastocladiella emersonii. Our physiological experiments indicate that B. emersonii relies solely on high-affinity Na+-independent Pho84-like transporters. In response to Pi depletion, BePho84 paralogues were 4-8-fold transcriptionally upregulated, whereas several other PHO homologues like phosphatases and vacuolar transporter chaperone (VTC) complex components show 2-3-fold transcriptional upregulation. Since Pi has been shown to be important during the development of B. emersonii, we sought to determine if PHO genes are differentially regulated at different lifecycle stages. We demonstrate that a similar set of PHO transporters and phosphatases are upregulated at key points during B. emersonii development. Surprisingly, some genes upregulated during Pi depletion, including VTC components, are repressed at these key stages of development indicating that PHO genes are regulated by different pathways in different developmental and environmental situations. Overall, our findings indicate that a complex PHO network existed in the ancient branches of the fungi, persists in diverse extant fungi, and that this ancient network is likely to be involved in development and cell cycle regulation.
Collapse
|
7
|
Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J Biosci Bioeng 2017; 124:487-492. [PMID: 28666889 DOI: 10.1016/j.jbiosc.2017.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 11/30/2022]
Abstract
The methylotrophic yeast Ogataea polymorpha (syn. Hansenula polymorpha) is an attractive industrial non-conventional yeast showing high thermo-tolerance (up to 50°C) and xylose assimilation. However, genetic manipulation of O. polymorpha is often laborious and time-consuming because it has lower homologous recombination efficiency relative to Saccharomyces cerevisiae. To overcome this disadvantage, we applied the CRISPR/Cas9 system as a powerful genome editing tool in O. polymorpha. In this system, both single guide RNA (sgRNA) and endonuclease Cas9 were expressed by a single autonomously-replicable plasmid and the sgRNA portion could be easily changed by using PCR and In-Fusion cloning techniques. Because the mutation efficiency of the CRISPR/Cas9 system was relatively low when the sgRNA was expressed under the control of the OpSNR6 promoter, the tRNACUG gene was used for sgRNA expression. The editing efficiency of this system ranged from 17% to 71% of transformants in several target genes tested (ADE12, PHO1, PHO11, and PHO84). These findings indicate that genetic manipulation of O. polymorpha will be more convenient and accelerated by using this CRISPR/Cas9 system.
Collapse
|