1
|
Chung G, Piano F, Gunsalus KC. TeloSearchLR: an algorithm to detect novel telomere repeat motifs using long sequencing reads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.617943. [PMID: 39554068 PMCID: PMC11565940 DOI: 10.1101/2024.10.29.617943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Telomeres are eukaryotic chromosome end structures that guard against sequence loss and aberrant chromosome fusions. Telomeric repeat motifs (TRMs), the minimal repeating unit of a telomere, vary from species to species, with some evolutionary clades experiencing a rapid sequence divergence. To explore the full scope of this evolutionary divergence, many bioinformatic tools have been developed to infer novel TRMs using repetitive sequence search on short sequencing reads. However, novel telomeric motifs remain unidentified in up to half of the sequencing libraries assayed with these tools. A possible reason may be that short reads, derived from extensively sheared DNA, preserve little to no positional context of the repetitive sequences assayed. On the other hand, if a sequencing read is sufficiently long, telomeric sequences must appear at either end rather than in the middle. The TeloSearchLR algorithm relies on this to help identify novel TRMs on long reads, in many cases where short-read search tools have failed. In addition, we demonstrate that TeloSearchLR can reveal unusually long telomeric motifs not maintained by telomerase, and it can also be used to anchor terminal scaffolds in new genome assemblies.
Collapse
|
2
|
Jiang Y, Chen Z, Lv H, Jiang L, Fan Z. A Case of Pulmonary Infection Due to Magnusiomyces capitatus in a Non-Immunocompromised Patient with Cerebral Palsy. Infect Drug Resist 2024; 17:4369-4373. [PMID: 39411503 PMCID: PMC11476442 DOI: 10.2147/idr.s471082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Background Magnusiomyces capitatus (M. capitatus) is a dimorphic opportunistic fungus that is a rare yeast and rarely reported in Asia. Owing to the absence of established clinical breakpoints, the treatment of this fungus poses challenges. Case Presentation We report a rare case of a young, non-immunocompromised man with cerebral palsy, spinal deformity, and pulmonary M. capitatus infection. The patient's condition improved after treatment with voriconazole and became stable. Conclusion M. capitatus infection is commonly associated with hematologic tumors and compromised immunity. Reports of M. capitatus infection in patients with non-immunocompromised host are uncommon. Insufficient understanding of these fungi may lead to underdiagnosis of fungal infection and clinical misdiagnosis, potentially resulting in delayed treatment and increased mortality.
Collapse
Affiliation(s)
- Yanyan Jiang
- Medical Laboratory Center, Tongxiang First People’s Hospital, Jiaxing, Zhejiang, People’s Republic of China
| | - Zhengzheng Chen
- Medical Laboratory Center, Tongxiang First People’s Hospital, Jiaxing, Zhejiang, People’s Republic of China
| | - Huoyang Lv
- Medical Laboratory Center, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Lihua Jiang
- Medical Laboratory Center, Tongxiang First People’s Hospital, Jiaxing, Zhejiang, People’s Republic of China
| | - Zhiyuan Fan
- Department of Emergency Medicine, Tongxiang First People’s Hospital, Jiaxing, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Harrison MC, Opulente DA, Wolters JF, Shen XX, Zhou X, Groenewald M, Hittinger CT, Rokas A, LaBella AL. Exploring Saccharomycotina Yeast Ecology Through an Ecological Ontology Framework. Yeast 2024; 41:615-628. [PMID: 39295298 PMCID: PMC11522959 DOI: 10.1002/yea.3981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Yeasts in the subphylum Saccharomycotina are found across the globe in disparate ecosystems. A major aim of yeast research is to understand the diversity and evolution of ecological traits, such as carbon metabolic breadth, insect association, and cactophily. This includes studying aspects of ecological traits like genetic architecture or association with other phenotypic traits. Genomic resources in the Saccharomycotina have grown rapidly. Ecological data, however, are still limited for many species, especially those only known from species descriptions where usually only a limited number of strains are studied. Moreover, ecological information is recorded in natural language format limiting high throughput computational analysis. To address these limitations, we developed an ontological framework for the analysis of yeast ecology. A total of 1,088 yeast strains were added to the Ontology of Yeast Environments (OYE) and analyzed in a machine-learning framework to connect genotype to ecology. This framework is flexible and can be extended to additional isolates, species, or environmental sequencing data. Widespread adoption of OYE would greatly aid the study of macroecology in the Saccharomycotina subphylum.
Collapse
Affiliation(s)
- Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Dana A. Opulente
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xing-Xing Shen
- Centre for Evolutionary and Organismal Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Abigail Leavitt LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
4
|
Gemeinhardt K, Park H, Won JI, Lee JH, Hwang ET, Angenent LT, Jeon BS. Draft genome sequence of Magnusiomyces sp. LA-1 isolated from a C6-C8 acid-producing bioreactor. Microbiol Resour Announc 2024; 13:e0093523. [PMID: 38682944 PMCID: PMC11237508 DOI: 10.1128/mra.00935-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024] Open
Abstract
Here, we report the draft genome of Magnusiomyces sp. LA-1, which was isolated from a C6-C8 carboxylic acid-producing bioreactor. The draft genome of Magnusiomyces sp. LA-1 is 19,829,165 bp in length, is divided into six contigs that comprise 6,557 CDS regions, and has a GC content of 34.5%.
Collapse
Affiliation(s)
- Kurt Gemeinhardt
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Hyojung Park
- Center of Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Jong In Won
- Center of Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Jin Hyung Lee
- Center of Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan, South Korea
| | - Largus T. Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
- AG Angenent, Max Planck Institute for Biology, Tübingen, Germany
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark
- The Novo Nordisk Foundation CO2 Research Center (CORC), Aarhus University, Aarhus C, Denmark
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Byoung Seung Jeon
- Center of Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do, South Korea
| |
Collapse
|
5
|
Opulente DA, LaBella AL, Harrison MC, Wolters JF, Liu C, Li Y, Kominek J, Steenwyk JL, Stoneman HR, VanDenAvond J, Miller CR, Langdon QK, Silva M, Gonçalves C, Ubbelohde EJ, Li Y, Buh KV, Jarzyna M, Haase MAB, Rosa CA, Čadež N, Libkind D, DeVirgilio JH, Hulfachor AB, Kurtzman CP, Sampaio JP, Gonçalves P, Zhou X, Shen XX, Groenewald M, Rokas A, Hittinger CT. Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts. Science 2024; 384:eadj4503. [PMID: 38662846 PMCID: PMC11298794 DOI: 10.1126/science.adj4503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Two general paradigms have been proposed to explain this variation: (i) trade-offs between performance efficiency and breadth and (ii) the joint influence of extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic, and ecological data from nearly all known species of the ancient fungal subphylum Saccharomycotina (1154 yeast strains from 1051 species), grown in 24 different environmental conditions, to examine niche breadth evolution. We found that large differences in the breadth of carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific metabolic pathways, but we found limited evidence for trade-offs. These comprehensive data argue that intrinsic factors shape niche breadth variation in microbes.
Collapse
Affiliation(s)
- Dana A. Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department Villanova University, Villanova, PA 19085, USA
| | - Abigail Leavitt LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- North Carolina Research Center (NCRC), Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - John F. Wolters
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Chao Liu
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Yonglin Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jacek Kominek
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- LifeMine Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hayley R. Stoneman
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jenna VanDenAvond
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Caroline R. Miller
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Quinn K. Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Margarida Silva
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Emily J. Ubbelohde
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Kelly V. Buh
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Martin Jarzyna
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Graduate Program in Neuroscience and Department of Biology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Max A. B. Haase
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Vilcek Institute of Graduate Biomedical Sciences and Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Neža Čadež
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Jeremy H. DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Cletus P. Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - José Paulo Sampaio
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | | | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
6
|
Zhu HY, Shang YJ, Wei XY, Groenewald M, Robert V, Zhang RP, Li AH, Han PJ, Ji F, Li JN, Liu XZ, Bai FY. Taxonomic revision of Geotrichum and Magnusiomyces, with the descriptions of five new Geotrichum species from China. Mycology 2024; 15:400-423. [PMID: 39247897 PMCID: PMC11376286 DOI: 10.1080/21501203.2023.2294945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/09/2023] [Indexed: 09/10/2024] Open
Abstract
The arthroconidial yeast-like species currently classified in the asexual genera Geotrichum and Saprochaete and the sexual genera Dipodascus, Galactomyces and Magnusiomyces are frequently associated with dairy and cosmetics production, fruit rot and human infection. However, the taxonomic system of these fungi has not been updated to accommodate the new nomenclature code adopting the "one fungus, one name" principle. Here, we performed phylogenetic analyses of these yeast-like species based on the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit of the rRNA gene. Two monophyletic groups were recognised from these species. One group contained Dipodascus, Galactomyces, and Geotrichum species and the other Magnusiomyces and Saprochaete species. We thus assigned the species in each group into one genus and selected the genus name Geotrichum for the first group and Magnusiomyces for the second one based on the principle of priority of publication. Five new Geotrichum species were identified from arthroconidial yeast strains recently isolated from various sources in China. The new species are described as Ge. dehoogii sp. nov., Ge. fujianense sp. nov., Ge. maricola sp. nov., Ge. smithiae sp. nov., and Ge. sinensis sp. nov.
Collapse
Affiliation(s)
- Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Jie Shang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Yang Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | | | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Ri-Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ai-Hua Li
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fang Ji
- Jiangsu King's Luck Brewery Co, Ltd., Huai'an, China
| | - Jun-Ning Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin-Zhan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Antonov IV, O’Loughlin S, Gorohovski AN, O’Connor PB, Baranov PV, Atkins JF. Streptomyces rare codon UUA: from features associated with 2 adpA related locations to candidate phage regulatory translational bypassing. RNA Biol 2023; 20:926-942. [PMID: 37968863 PMCID: PMC10732093 DOI: 10.1080/15476286.2023.2270812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/02/2023] [Indexed: 11/17/2023] Open
Abstract
In Streptomyces species, the cell cycle involves a switch from an early and vegetative state to a later phase where secondary products including antibiotics are synthesized, aerial hyphae form and sporulation occurs. AdpA, which has two domains, activates the expression of numerous genes involved in the switch from the vegetative growth phase. The adpA mRNA of many Streptomyces species has a UUA codon in a linker region between 5' sequence encoding one domain and 3' sequence encoding its other and C-terminal domain. UUA codons are exceptionally rare in Streptomyces, and its functional cognate tRNA is not present in a fully modified and acylated form, in the early and vegetative phase of the cell cycle though it is aminoacylated later. Here, we report candidate recoding signals that may influence decoding of the linker region UUA. Additionally, a short ORF 5' of the main ORF has been identified with a GUG at, or near, its 5' end and an in-frame UUA near its 3' end. The latter is commonly 5 nucleotides 5' of the main ORF start. Ribosome profiling data show translation of that 5' region. Ten years ago, UUA-mediated translational bypassing was proposed as a sensor by a Streptomyces phage of its host's cell cycle stage and an effector of its lytic/lysogeny switch. We provide the first experimental evidence supportive of this proposal.
Collapse
Affiliation(s)
- Ivan V. Antonov
- Russian Academy of Science, Institute of Bioengineering, Research Center of Biotechnology, Moscow, Russia
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sinéad O’Loughlin
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Alessandro N. Gorohovski
- Russian Academy of Science, Institute of Bioengineering, Research Center of Biotechnology, Moscow, Russia
- Structural Biology and BioComputing Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Selection of Yeast and Lactic Acid Bacteria Strains, Isolated from Spontaneous Raw Milk Fermentation, for the Production of a Potential Probiotic Fermented Milk. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Probiotic milk is a class of fermented milk that possesses health-promoting effects, not only due to the lactic acid bacteria (LAB) presence but potentially also to yeast activity. Hence, the aim of this work was to isolate and select yeasts from spontaneous milk fermentations to be used as inoculum, together with LAB, for manufacturing a potentially probiotic acidic low-alcohol fermented milk. Six yeast species were detected from the spontaneous milk fermentation. A screening of 13 yeast strains and 14 previously isolated LAB strains, based on the resistance to bile salts and to acidic conditions, was carried out. The best performing strains were successively tested for in vitro gastrointestinal tolerance. A strain of Kluyveromyces marxianus and a strain of Lactococcus lactis were selected for the manufacturing of two different fermented milk. The values of the main technological and microbiological parameters (pH, organic acids, ethanol, and microbial concentrations) of the experimental milk were in the range of those reported for this category of products. The evaluation of microorganism survival in fermented milk samples subjected to simulated gastrointestinal conditions highlighted a high resistance of both strains. In conclusion, the selected microbial starter culture enabled the setting up of potential probiotic fermented milk.
Collapse
|
9
|
Domán M, Makrai L, Bali K, Lengyel G, Laukó T, Bányai K. Unexpected Diversity of Yeast Species in Esophageal Mycosis of Waterfowls. Avian Dis 2021; 64:532-535. [PMID: 33570102 DOI: 10.1637/aviandiseases-d20-00053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/17/2020] [Indexed: 11/05/2022]
Abstract
This study was performed to evaluate the diversity and prevalence of yeasts associated with esophageal mycosis in domestic ducks and geese. Fungi were isolated from esophageal lesions of dead animals sent for microbiologic laboratory diagnosis. Species identification using a culture-dependent method was carried out by sequencing of the internal transcribed spacer (ITS)1-5.8S rRNA-ITS2 region. The most frequently isolated yeast was Candida albicans (43.1%) followed by Saccharomyces cerevisiae (17.6%), Candida kefyr (11.7%), Kazachstania bovina (11.7%), Candida lambica (3.9%), and single isolates (1.9%) representing Candida inconspicua, Candida rugosa, Candida pelliculosa, Candida krusei, Magnusiomyces capitatus, and Trichosporon asahii. Our results indicate that a number of potentially pathogenic yeast species can be isolated from esophageal mycosis of waterfowls, but additional studies are needed to make conclusions regarding their possible etiologic role in disease.
Collapse
Affiliation(s)
- Marianna Domán
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Budapest, Hungary
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, H-1143 Budapest, Hungary
| | - Krisztina Bali
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Budapest, Hungary
| | - György Lengyel
- Laboratory of Epidemiological Virology, Hungarian Defence Forces Military Medical Centre, H-1134 Budapest, Hungary
| | - Tibor Laukó
- Veterinary Diagnostic Laboratory for Animal Health Ltd., H-5600 Békéscsaba, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Budapest, Hungary
| |
Collapse
|
10
|
Development and Analysis of qPCR for the Identification of Arthroconidial Yeasts of the Genus Magnusiomyces. Mycopathologia 2021; 186:41-51. [PMID: 33392857 DOI: 10.1007/s11046-020-00510-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/19/2020] [Indexed: 10/20/2022]
Abstract
The arthroconidial yeasts Magnusiomyces capitatus and M. clavatus are emerging opportunistic pulmonary pathogens. They are closely related and difficult to distinguish based on morphological and physiological traits. We applied an SYBR® green-based quantitative PCR (qPCR) assay to identify the species. We analyzed 30 reference strains originating from clinical and environmental sources by targeting the Rpb2 gene encoding the second largest subunit of RNA polymerase II. The qPCR assays were tested by direct identification of M. capitatus and M. clavatus in spiked sputum and household dishwasher swabs, respectively, as models for clinical and environmental samples. The assays were proved to be reliable for species-level identification of both species, with 100% sensitivity and 100% specificity, lowest inter-assay deviations (RSDr ≤ 1.65%, R2 values >0.99), detection limit of 10 theoretical copy number of target DNA, and detection cell limit of ≥5000 yeast cells from spiked sputum samples. The developed qPCR assay is a practical molecular approach for the detection of M. capitatus and M. clavatus that can be used as a stand-alone assay or in conjunction with culture-dependent approaches.
Collapse
|
11
|
Genome Sequence of the Yeast Saprochaete ingens CBS 517.90. Microbiol Resour Announc 2019; 8:8/50/e01366-19. [PMID: 31831616 PMCID: PMC6908801 DOI: 10.1128/mra.01366-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosome-scale genome assembly of the yeast Saprochaete ingens CBS 517.90 was determined by a combination of technologies producing short (HiSeq X; Illumina) and long (MinION; Oxford Nanopore Technologies) reads. The 21.2-Mbp genome sequence has a GC content of 36.9% and codes for 6,475 predicted proteins. Chromosome-scale genome assembly of the yeast Saprochaete ingens CBS 517.90 was determined by a combination of technologies producing short (HiSeq X; Illumina) and long (MinION; Oxford Nanopore Technologies) reads. The 21.2-Mbp genome sequence has a GC content of 36.9% and codes for 6,475 predicted proteins.
Collapse
|
12
|
Makałowski W, Shabardina V. Bioinformatics of nanopore sequencing. J Hum Genet 2019; 65:61-67. [PMID: 31451715 DOI: 10.1038/s10038-019-0659-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Nanopore sequencing is one of the most exciting new technologies that undergo dynamic development. With its development, a growing number of analytical tools are becoming available for researchers. To help them better navigate this ever changing field, we discuss a range of software available to analyze sequences obtained using nanopore technology.
Collapse
Affiliation(s)
- Wojciech Makałowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, 48149, Münster, Germany.
| | - Victoria Shabardina
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, 48149, Münster, Germany
| |
Collapse
|
13
|
Brejová B, Lichancová H, Hodorová V, Neboháčová M, Tomáška Ľ, Vinař T, Nosek J. Genome Sequence of an Arthroconidial Yeast, Saprochaete fungicola CBS 625.85. Microbiol Resour Announc 2019; 8:e00092-19. [PMID: 30975801 PMCID: PMC6460024 DOI: 10.1128/mra.00092-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/11/2019] [Indexed: 11/20/2022] Open
Abstract
Saprochaete fungicola is an arthroconidial yeast classified in the Magnusiomyces/Saprochaete clade of the subphylum Saccharomycotina. Here, we report the genome sequence of holotype strain CBS 625.85, assembled to five putative chromosomes. The genome sequence is 20.2 Mbp long and codes for 6,138 predicted proteins.
Collapse
Affiliation(s)
- Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina, Bratislava, Slovak Republic
| | - Hana Lichancová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova, Bratislava, Slovak Republic
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova, Bratislava, Slovak Republic
| | - Martina Neboháčová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova, Bratislava, Slovak Republic
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova, Bratislava, Slovak Republic
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina, Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova, Bratislava, Slovak Republic
| |
Collapse
|
14
|
Lichancová H, Hodorová V, Sienkiewicz K, Penir SMU, Afanasyev P, Boceck D, Bonnin S, Hakobyan S, Krawczyk PS, Smyczynska U, Zhivkoplias E, Zlatohurska M, Odrzywolski A, Tralle E, Frolova A, Pryszcz LP, Brejová B, Vinař T, Nosek J. Genome Sequence of Flavor-Producing Yeast Saprochaete suaveolens NRRL Y-17571. Microbiol Resour Announc 2019; 8:e00094-19. [PMID: 30834381 PMCID: PMC6395866 DOI: 10.1128/mra.00094-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 12/01/2022] Open
Abstract
Saprochaete suaveolens is an ascomycetous yeast that produces a range of fruity flavors and fragrances. Here, we report the high-contiguity genome sequence of the ex-holotype strain, NRRL Y-17571 (CBS 152.25). The nuclear genome sequence contains 24.4 Mbp and codes for 8,119 predicted proteins.
Collapse
Affiliation(s)
- Hana Lichancová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Karolina Sienkiewicz
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Sarah Mae U. Penir
- Philippine Genome Center, National Science Complex, University of the Philippines Diliman, Quezon City, Philippines
| | - Philipp Afanasyev
- Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Moscow, Russia
| | - Dominic Boceck
- Algorithms in Bioinformatics, ZBIT Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Sarah Bonnin
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Pawel S. Krawczyk
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Smyczynska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Maryna Zlatohurska
- Institute of Microbiology and Virology, National Academy of Science of Ukraine, Kyiv, Ukraine
| | | | - Eugeniusz Tralle
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Alina Frolova
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Leszek P. Pryszcz
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|