1
|
Chen C, Wu X, Huang Q, Qin Y, Li C, Zhang X, Wang P, Tan X, Liu Y, Chen Y, Zhang D. Rhodopseudomonas palustris Atp2 Protein Exerts Antifungal Effects by Targeting the Ribosomal Protein MoRpl12 in Magnaporthe oryzae. PHYTOPATHOLOGY 2024; 114:2235-2243. [PMID: 39352788 DOI: 10.1094/phyto-05-24-0169-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Rice blast is one of the most hazardous diseases affecting rice production. Previously, we discovered that the Atp2 protein of Rhodopseudomonas palustris could significantly inhibit the appressorium formation and pathogenicity of Magnaporthe oryzae. However, the molecular mechanism of this fungus has remained unknown. This study revealed that Atp2 can enter the cell and interact with the ribosomal protein MoRpl12 of M. oryzae, directly affecting the expression of the MoRpl12 protein. Silencing the MoRPL12 gene can affect cell wall integrity, growth, conidiogenesis, and fungal pathogenicity. The quantitative reverse transcription PCR results showed significant changes in the expression of conidiation-related genes in the MoRPL12 gene-silenced mutants or in the Atp2 protein-treated plants. We further found that Atp2 treatment can influence the expression of ribosomal-related genes, such as RPL, in M. oryzae. Our study revealed a novel antifungal mechanism by which the Atp2 protein binds to the ribosomal protein MoRpl12 and inhibits the pathogenicity of rice blast fungus, providing a new potential target for rice blast prevention and control.
Collapse
Affiliation(s)
- Chunyan Chen
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiyang Wu
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- LongPing Branch, College of Biology, Hunan University, Changsha, China
| | - Qiang Huang
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yingfei Qin
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- LongPing Branch, College of Biology, Hunan University, Changsha, China
| | - Chenggang Li
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xin Zhang
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Pei Wang
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xinqiu Tan
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- LongPing Branch, College of Biology, Hunan University, Changsha, China
| | - Yong Liu
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- LongPing Branch, College of Biology, Hunan University, Changsha, China
| | - Yue Chen
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- LongPing Branch, College of Biology, Hunan University, Changsha, China
| | - Deyong Zhang
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- LongPing Branch, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
2
|
Yang G, Bi F, Yu D, Wang Y, Ren H, Wei H, Wang Z, Huang B. Engineering Entomopathogenic Fungi Using Thermal-Responsive Polymer to Boost Their Resilience against Abiotic Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20308-20320. [PMID: 39225683 DOI: 10.1021/acs.jafc.4c04400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Entomopathogenic fungi offer an ecologically sustainable and highly effective alternative to chemical pesticides for managing plant pests. However, the efficacy of mycoinsecticides in pest control suffers from environmental abiotic stresses, such as solar UV radiation and temperature fluctuations, which seriously hinder their practical application in the field. Herein, we discovered that the synthetic amphiphilic thermal-responsive polymers are able to significantly enhance the resistance of Metarhizium robertsii conidia against thermal and UV irradiation stresses. The thermosensitive polymers with extremely low cytotoxicity and good biocompatibility can be engineered onto the M. robertsii conidia surface by anchoring hydrophobic alkyl chains. Further investigations revealed that polymer supplementation remarkably augmented the capacity for penetration and the virulence of M. robertsii under heat and UV stresses. Notably, broad-spectrum entomopathogenic fungi can be protected by the polymers. The molecular mechanism was elucidated through exploring RNA sequencing and in vivo/vitro enzyme activity assays. This work provides a novel avenue for fortifying the resilience of entomopathogenic fungi, potentially advancing their practical application as biopesticides.
Collapse
Affiliation(s)
- Guang Yang
- Department of Material Science and Engineering, School of Material and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of National Forestry and Grassland Administration on Prevention and Control Technology of Pine Wilt Disease, Hefei, Anhui 230036, China
| | - Feihu Bi
- Department of Material Science and Engineering, School of Material and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Deshui Yu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hui Ren
- Department of Material Science and Engineering, School of Material and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hanchen Wei
- Department of Material Science and Engineering, School of Material and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhangxun Wang
- Department of Plant Pathology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
3
|
Zhang H, Chen H, Zhang J, Wang K, Huang B, Wang Z. The role of MrUbp4, a deubiquitinase, in conidial yield, thermotolerance, and virulence in Metarhizium robertsii. J Invertebr Pathol 2024; 204:108111. [PMID: 38631560 DOI: 10.1016/j.jip.2024.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Ubiquitin-specific proteases (UBPs), the largest subfamily of deubiquitinating enzymes, regulate ubiquitin homeostasis and play diverse roles in eukaryotes. Ubp4 is essential for the growth, development, and pathogenicity of various fungal pathogens. However, its functions in the growth, stress responses, and virulence of entomopathogenic fungi remain unclear. In this study, we elucidated the role of the homolog of Ubp4, MrUbp4, in the entomopathogenic fungus Metarhizium robertsii. Deletion of MrUbp4 led to a notable increase in ubiquitination levels, demonstrating the involvement of MrUbp4 in protein deubiquitination. Furthermore, the ΔMrUbp4 mutant displayed a significant reduction in conidial yield, underscoring the pivotal role of MrUbp4 in conidiation. Additionally, the mutant exhibited heightened resistance to conidial heat treatment, emphasizing the role of MrUbp4 in thermotolerance. Notably, insect bioassays unveiled a substantial impairment in the virulence of the ΔMrUbp4 mutant. This was accompanied by a notable decrease in cuticle penetration ability and appressorium formation upon further analysis. In summary, our findings highlight the essential role of MrUbp4 in regulating the conidial yield, thermotolerance, and contributions to the virulence of M. robertsii.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Hanyuan Chen
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Jianfeng Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Kui Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| | - Zhangxun Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Noman M, Azizullah, Ahmed T, Gao Y, Wang H, Xiong X, Wang J, Lou J, Li D, Song F. Degradation of α-Subunits, Doa1 and Doa4, are Critical for Growth, Development, Programmed Cell Death Events, Stress Responses, and Pathogenicity in the Watermelon Fusarium Wilt Fungus Fusarium oxysporum f. sp. niveum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37486296 DOI: 10.1021/acs.jafc.3c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The ubiquitin-proteasome system (UPS) regulates protein quality or control and plays essential roles in several biological and biochemical processes in fungi. Here, we present the characterization of two UPS components, FonDoa1 and FonDoa4, in watermelon Fusarium wilt fungus, Fusarium oxysporum f. sp. niveum (Fon), and their biological functions. FonDoa1 localizes in both the nucleus and cytoplasm, while FonDoa4 is predominantly present in the cytoplasm. Both genes show higher expression in germinating macroconidia at 12 h. Deletion of FonDoa1 or FonDoa4 affects vegetative growth, conidiation, conidial germination/morphology, apoptosis, and responses to environmental stressors. FonDoa1, but not FonDoa4, positively regulates autophagy. The targeted disruption mutants exhibit significantly attenuated pathogenicity on watermelon due to defects in the infection process and invasive fungal growth. Further results indicate that the WD40, PFU, and PUL domains are essential for the function of FonDoa1 in Fon pathogenicity and environmental stress responses. These findings demonstrate the previously uncharacterized biological functions of FonDoa1 and FonDoa4 in phytopathogenic fungi, providing potential targets for developing strategies to control watermelon Fusarium wilt.
Collapse
Affiliation(s)
- Muhammad Noman
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Azizullah
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Temoor Ahmed
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yizhou Gao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Xiong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiajing Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiajun Lou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
5
|
Appressoria-Small but Incredibly Powerful Structures in Plant-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24032141. [PMID: 36768468 PMCID: PMC9917257 DOI: 10.3390/ijms24032141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Plant-pathogenic fungi are responsible for many of the most severe crop diseases in the world and remain very challenging to control. Improving current protection strategies or designating new measures based on an overall understanding of molecular host-pathogen interaction mechanisms could be helpful for disease management. The attachment and penetration of the plant surface are the most important events among diverse plant-fungi interactions. Fungi evolved as small but incredibly powerful infection structure appressoria to facilitate attachment and penetration. Appressoria are indispensable for many diseases, such as rusts, powdery mildews, and blast diseases, as well as devastating oomycete diseases. Investigation into the formation of plant-pathogen appressoria contributes to improving the understanding of the molecular mechanisms of plant-pathogen interactions. Fungal host attachment is a vital step of fungal pathogenesis. Here, we review recent advances in the molecular mechanisms regulating the formation of appressoria. Additionally, some biocontrol agents were revealed to act on appressorium. The regulation of fungal adhesion during the infective process by acting on appressoria formation is expected to prevent the occurrence of crop disease caused by some pathogenic fungi.
Collapse
|
6
|
Batool W, Liu C, Fan X, Zhang P, Hu Y, Wei Y, Zhang SH. AGC/AKT Protein Kinase SCH9 Is Critical to Pathogenic Development and Overwintering Survival in Magnaporthe oryzae. J Fungi (Basel) 2022; 8:jof8080810. [PMID: 36012798 PMCID: PMC9410157 DOI: 10.3390/jof8080810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
Primary inoculum that survives overwintering is one of the key factors that determine the outbreak of plant disease. Pathogenic resting structures, such as chlamydospores, are an ideal inoculum for plant disease. Puzzlingly, Magnaporthe oryzae, a devastating fungal pathogen responsible for blast disease in rice, hardly form any morphologically changed resting structures, and we hypothesize that M. oryzae mainly relies on its physiological alteration to survive overwintering or other harsh environments. However, little progress on research into regulatory genes that facilitate the overwintering of rice blast pathogens has been made so far. Serine threonine protein kinase AGC/AKT, MoSch9, plays an important role in the spore-mediated pathogenesis of M. oryzae. Building on this finding, we discovered that in genetic and biological terms, MoSch9 plays a critical role in conidiophore stalk formation, hyphal-mediated pathogenesis, cold stress tolerance, and overwintering survival of M. oryzae. We discovered that the formation of conidiophore stalks and disease propagation using spores was severely compromised in the mutant strains, whereas hyphal-mediated pathogenesis and the root infection capability of M. oryzae were completely eradicated due to MoSch9 deleted mutants’ inability to form an appressorium-like structure. Most importantly, the functional and transcriptomic study of wild-type and MoSch9 mutant strains showed that MoSch9 plays a regulatory role in cold stress tolerance of M. oryzae through the transcription regulation of secondary metabolite synthesis, ATP hydrolyzing, and cell wall integrity proteins during osmotic stress and cold temperatures. From these results, we conclude that MoSch9 is essential for fungal infection-related morphogenesis and overwintering of M. oryzae.
Collapse
|
7
|
Cai X, Xiang S, He W, Tang M, Zhang S, Chen D, Zhang X, Liu C, Li G, Xing J, Li Y, Chen X, Nie Y. Deubiquitinase Ubp3 regulates ribophagy and deubiquitinates Smo1 for appressorium-mediated infection by Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:832-844. [PMID: 35220670 PMCID: PMC9104258 DOI: 10.1111/mpp.13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The Ubp family of deubiquitinating enzymes has been found to play important roles in plant-pathogenic fungi, but their regulatory mechanisms are still largely unknown. In this study, we revealed the regulatory mechanism of the deubiquitinating enzyme Ubp3 during the infection process of Magnaporthe oryzae. AUBP3 deletion mutant was severely defective in appressorium turgor accumulation, leading to the impairment of appressorial penetration. During appressorium formation, the mutant was also defective in glycogen and lipid metabolism. Interestingly, we found that nitrogen starvation and rapamycin treatment induced the ribophagy process in M. oryzae, which is closely dependent on Ubp3. In the ∆ubp3 mutant, the ribosome proteins and rRNAs were not well degraded on nitrogen starvation and rapamycin treatment. We also found that Ubp3 interacted with the GTPase-activating protein Smo1 and regulated its de-ubiquitination. Ubp3-dependent de-ubiquitination of Smo1 may be required for Smo1 to coordinate Ras signalling. Taken together, our results showed at least two roles of Ubp3 in M. oryzae: it regulates the ribophagy process and it regulates de-ubiquitination of GTPase-activating protein Smo1 for appressorium-mediated infection.
Collapse
Affiliation(s)
- Xuan Cai
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shikun Xiang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wenhui He
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Mengxi Tang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shimei Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deng Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xinrong Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Caiyun Liu
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Junjie Xing
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yunfeng Li
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Xiao‐Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanfang Nie
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
- College of Materials and EnergySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
8
|
Wang Z, Chen H, Li H, Chen H, Huang B. The Deubiquitinating Enzyme MrUbp14 Is Involved in Conidiation, Stress Response, and Pathogenicity in Metarhizium robertsii. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:896466. [PMID: 37746165 PMCID: PMC10512391 DOI: 10.3389/ffunb.2022.896466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 09/26/2023]
Abstract
Protein ubiquitination, which is involved in various biological processes in eukaryotic cells, is a reversible modification of proteins. Deubiquitinases can maintain ubiquitin homeostasis by removing ubiquitin or modulating protein degradation via the ubiquitin-proteasome system (UPS). Metarhizium robertsii, an entomopathogenic fungus, has become a model fungus for investigating the interactions between insects and fungal pathogens. To explore the possible effects of the deubiquitination process on the development, stress response, and virulence of M. robertsii, disruption of MrUbp14 (an ortholog of the yeast ubiquitin-specific protease gene, Ubp14) was performed. The results of this study showed that the deletion of MrUbp14 led to accelerated conidial germination, reduced conidial yields, and decreased expression levels of some genes involved in conidiation. Furthermore, the MrUbp14 mutant (ΔMrUbp14) exhibited decreased tolerance to cell wall-damaging stressors (Congo red and SDS) and heat stress. Importantly, the results of the bioassay demonstrated that the fungal virulence of the ΔMrUbp14 strain was largely reduced in cuticle infection, but not in direct injection, which was accompanied by a significant decline in appressorium formation and cuticle penetration. Moreover, our results demonstrated that the disruption of MrUbp14 resulted in significantly increased ubiquitination levels of total protein, suggesting that MrUbp14 acts as a deubiquitinating enzyme in M. robertsii. In summary, our phenotypic changes in the gene disruption mutants suggest that MrUbp14 is important for conidiation, stress response, and fungal virulence in M. robertsii.
Collapse
Affiliation(s)
- Zhangxun Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hua Chen
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hao Li
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hanyuan Chen
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Cao C, Xue C. More Than Just Cleaning: Ubiquitin-Mediated Proteolysis in Fungal Pathogenesis. Front Cell Infect Microbiol 2021; 11:774613. [PMID: 34858882 PMCID: PMC8631298 DOI: 10.3389/fcimb.2021.774613] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin-proteasome mediated protein turnover is an important regulatory mechanism of cellular function in eukaryotes. Extensive studies have linked the ubiquitin-proteasome system (UPS) to human diseases, and an array of proteasome inhibitors have been successfully developed for cancer therapy. Although still an emerging field, research on UPS regulation of fungal development and virulence has been rapidly advancing and has generated considerable excitement in its potential as a target for novel drugs. In this review, we summarize UPS composition and regulatory function in pathogenic fungi, especially in stress responses, host adaption, and fungal pathogenesis. Emphasis will be given to UPS regulation of pathogenic factors that are important for fungal pathogenesis. We also discuss future potential therapeutic strategies for fungal infections based on targeting UPS pathways.
Collapse
Affiliation(s)
- Chengjun Cao
- Public Health Research Institute, Rutgers University, New Brunswick, NJ, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, New Brunswick, NJ, United States
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, Newark, NJ, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
10
|
Xu M, Jin P, Liu T, Gao S, Zhang T, Zhang F, Han X, He L, Chen J, Yang J. Genome-wide identification and characterization of UBP gene family in wheat ( Triticum aestivum L.). PeerJ 2021; 9:e11594. [PMID: 34178465 PMCID: PMC8212830 DOI: 10.7717/peerj.11594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Ubiquitination is essential for plant growth and development. Deubiquitination cooperates with ubiquitination to regulate the ubiquitination levels of target proteins. The ubiquitin-specific protease (UBP) family is the largest group of deubiquitinases (DUBs), which perform extensive and significant roles in eukaryotic organisms. However, the UBP genes in wheat (TaUBPs) are not identified, and the functions of TaUBPs are unknown. The present study identified 97 UBP genes in the whole genome of T. aestivum. These genes were divided into 15 groups and non-randomly distributed on chromosomes of T. aestivum. Analyses of evolutionary patterns revealed that TaUBPs mainly underwent purification selection. The studies of cis-acting regulatory elements indicated that they might be involved in response to hormones. Quantitative real-time PCR (qRT-PCR) results showed that TaUBPs were differentially expressed in different tissues. Besides, several TaUBPs were significantly up-regulated when plants were treated with salicylic acid (SA), implying that these DUBs may play a role in abiotic stress responses in plants and few TaUBPs displayed differential expression after viral infection. Furthermore, TaUBP1A.1 (TraesCS1A02G432600.1) silenced by virus-induced gene silencing (VIGS) facilitates Chinese wheat mosaic virus (CWMV) infection in wheat, indicating that TaUBP1A.1 may be involved in a defense mechanism against viruses. This study comprehensively analyzed the UBP gene family in wheat and provided a basis for further research of TaUBPs functions in wheat plant response to viral infection.
Collapse
Affiliation(s)
- Miaoze Xu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Jin
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tingting Liu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shiqi Gao
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiaolei Han
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Long He
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Mbinda W, Masaki H. Breeding Strategies and Challenges in the Improvement of Blast Disease Resistance in Finger Millet. A Current Review. FRONTIERS IN PLANT SCIENCE 2021; 11:602882. [PMID: 33488650 PMCID: PMC7820394 DOI: 10.3389/fpls.2020.602882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/08/2020] [Indexed: 05/11/2023]
Abstract
Climate change has significantly altered the biodiversity of crop pests and pathogens, posing a major challenge to sustainable crop production. At the same time, with the increasing global population, there is growing pressure on plant breeders to secure the projected food demand by improving the prevailing yield of major food crops. Finger millet is an important cereal crop in southern Asia and eastern Africa, with excellent nutraceutical properties, long storage period, and a unique ability to grow under arid and semi-arid environmental conditions. Finger millet blast disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae is the most devastating disease affecting the growth and yield of this crop in all its growing regions. The frequent breakdown of blast resistance because of the susceptibility to rapidly evolving virulent genes of the pathogen causes yield instability in all finger millet-growing areas. The deployment of novel and efficient strategies that provide dynamic and durable resistance against many biotypes of the pathogen and across a wide range of agro-ecological zones guarantees future sustainable production of finger millet. Here, we analyze the breeding strategies currently being used for improving resistance to disease and discuss potential future directions toward the development of new blast-resistant finger millet varieties, providing a comprehensive understanding of promising concepts for finger millet breeding. The review also includes empirical examples of how advanced molecular tools have been used in breeding durably blast-resistant cultivars. The techniques highlighted are cost-effective high-throughput methods that strongly reduce the generation cycle and accelerate both breeding and research programs, providing an alternative to conventional breeding methods for rapid introgression of disease resistance genes into favorable, susceptible cultivars. New information and knowledge gathered here will undoubtedly offer new insights into sustainable finger millet disease control and efficient optimization of the crop's productivity.
Collapse
Affiliation(s)
- Wilton Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Hosea Masaki
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| |
Collapse
|