1
|
Sakai K, Kondo Y, Goto Y, Aoki K. Cytoplasmic fluidization contributes to breaking spore dormancy in fission yeast. Proc Natl Acad Sci U S A 2024; 121:e2405553121. [PMID: 38889144 PMCID: PMC11214080 DOI: 10.1073/pnas.2405553121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.
Collapse
Affiliation(s)
- Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Integrated Life Science, Department of Gene Mechanisms, Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Integrated Life Science, Department of Gene Mechanisms, Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji-cho, Okazaki, Aichi444-8787, Japan
- Division of Integrated Life Science, Department of Gene Mechanisms, Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8315, Japan
| |
Collapse
|
2
|
Ohtsuka H, Kawai S, Otsubo Y, Shimasaki T, Yamashita A, Aiba H. Metarhizium robertsii COH1 functionally complements Schizosaccharomyces pombe Ecl family proteins. J GEN APPL MICROBIOL 2024; 69:335-338. [PMID: 37813640 DOI: 10.2323/jgam.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The fission yeast Schizosaccharomyces pombe ecl family genes respond to various starvation signals and induce appropriate intracellular responses, including the extension of chronological lifespan and induction of sexual differentiation. Herein, we propose that the colonization of hemocoel 1 (COH1) protein of Metarhizium robertsii, an insect-pathogenic fungus, is a functional homolog of S. pombe Ecl1 family proteins.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Sawa Kawai
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| |
Collapse
|
3
|
Ohtsuka H, Shimasaki T, Aiba H. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Adv Biol (Weinh) 2024; 8:e2400138. [PMID: 38616173 DOI: 10.1002/adbi.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
4
|
Toda T, Kitamura K, Kume K, Yukawa M, Koyano T, Ueno M. The joy of the 11th International Fission Yeast Meeting in Hiroshima (POMBE2023 Hiroshima) after a long wait due to the COVID-19 pandemic. Genes Cells 2023; 28:646-652. [PMID: 37431652 DOI: 10.1111/gtc.13055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
The 11th International Fission Yeast Meeting took place at Astel Plaza in Hiroshima, Japan, from May 28th to June 2nd, 2023. This highly anticipated gathering, originally scheduled for May 2021, had been postponed for 2 years due to the COVID-19 pandemic. Researchers from 21 countries, including 211 overseas and 157 domestic participants (overall gender ratio is roughly 60% male vs. 40% female), eagerly awaited the opportunity to meet in person, as virtual interactions had been the only means of communication during this challenging period. The meeting featured four kick-off special lectures, 101 regular talks, and 152 poster presentations. Additionally, a discussion session on upfront frontier research in fission yeast provided an interactive platform for both speakers and attendees. Throughout the event, participants shared cutting-edge knowledge, celebrated significant research findings, and relished the invaluable experience of an in-person meeting. The vibrant and friendly atmosphere, characteristic of this esteemed international conference, fostered collaboration and reinforced the significance of studying this exceptional model organism. Undoubtedly, the outcomes of this meeting will greatly contribute to our understanding of complex biological systems, not only in fission yeast but also in general eukaryotes.
Collapse
Affiliation(s)
- Takashi Toda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenji Kitamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kazunori Kume
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Masashi Yukawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takayuki Koyano
- Division of Cell Biology, Shigei Medical Research Institute, Okayama, Japan
| | - Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
5
|
Genome-wide quantification of contributions to sexual fitness identifies genes required for spore viability and health in fission yeast. PLoS Genet 2022; 18:e1010462. [DOI: 10.1371/journal.pgen.1010462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Numerous genes required for sexual reproduction remain to be identified even in simple model species like Schizosaccharomyces pombe. To address this, we developed an assay in S. pombe that couples transposon mutagenesis with high-throughput sequencing (TN-seq) to quantitatively measure the fitness contribution of nonessential genes across the genome to sexual reproduction. This approach identified 532 genes that contribute to sex, including more than 200 that were not previously annotated to be involved in the process, of which more than 150 have orthologs in vertebrates. Among our verified hits was an uncharacterized gene, ifs1 (important for sex), that is required for spore viability. In two other hits, plb1 and alg9, we observed a novel mutant phenotype of poor spore health wherein viable spores are produced, but the spores exhibit low fitness and are rapidly outcompeted by wild type. Finally, we fortuitously discovered that a gene previously thought to be essential, sdg1 (social distancing gene), is instead required for growth at low cell densities and can be rescued by conditioned medium. Our assay will be valuable in further studies of sexual reproduction in S. pombe and identifies multiple candidate genes that could contribute to sexual reproduction in other eukaryotes, including humans.
Collapse
|
6
|
Ohtsuka H, Imada K, Shimasaki T, Aiba H. Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. Microbiologyopen 2022; 11:e1303. [PMID: 35765188 PMCID: PMC9214231 DOI: 10.1002/mbo3.1303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis. S. pombe spores are highly resistant to diverse stresses and may survive for a very long time. In this minireview, among the various sexual differentiation processes induced by starvation, we focused on and summarized the findings of the molecular mechanisms of spore formation in fission yeast. Furthermore, comparative measurements of the chronological lifespan of stationary phase cells and G0 cells and the survival period of spore cells revealed that the spore cells survived for a long period, indicating the presence of an effective mechanism for survival. Currently, many molecules involved in sporulation and their functions are being discovered; however, our understanding of these is not complete. Further understanding of spores may not only deepen our comprehension of sexual differentiation but may also provide hints for sustaining life.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistryNational Institute of Technology (KOSEN), Suzuka CollegeSuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversitySumiyoshi‐kuOsakaJapan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| |
Collapse
|