1
|
Son YE, Yu JH, Park HS. Regulators of the Asexual Life Cycle of Aspergillus nidulans. Cells 2023; 12:1544. [PMID: 37296664 PMCID: PMC10253035 DOI: 10.3390/cells12111544] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The genus Aspergillus, one of the most abundant airborne fungi, is classified into hundreds of species that affect humans, animals, and plants. Among these, Aspergillus nidulans, as a key model organism, has been extensively studied to understand the mechanisms governing growth and development, physiology, and gene regulation in fungi. A. nidulans primarily reproduces by forming millions of asexual spores known as conidia. The asexual life cycle of A. nidulans can be simply divided into growth and asexual development (conidiation). After a certain period of vegetative growth, some vegetative cells (hyphae) develop into specialized asexual structures called conidiophores. Each A. nidulans conidiophore is composed of a foot cell, stalk, vesicle, metulae, phialides, and 12,000 conidia. This vegetative-to-developmental transition requires the activity of various regulators including FLB proteins, BrlA, and AbaA. Asymmetric repetitive mitotic cell division of phialides results in the formation of immature conidia. Subsequent conidial maturation requires multiple regulators such as WetA, VosA, and VelB. Matured conidia maintain cellular integrity and long-term viability against various stresses and desiccation. Under appropriate conditions, the resting conidia germinate and form new colonies, and this process is governed by a myriad of regulators, such as CreA and SocA. To date, a plethora of regulators for each asexual developmental stage have been identified and investigated. This review summarizes our current understanding of the regulators of conidial formation, maturation, dormancy, and germination in A. nidulans.
Collapse
Affiliation(s)
- Ye-Eun Son
- Major in Food Biomaterials, School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Hee-Soo Park
- Major in Food Biomaterials, School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Transcriptome Analysis Reveals Candidate Genes Involved in Light-Induced Primordium Differentiation in Pleurotus eryngii. Int J Mol Sci 2021; 23:ijms23010435. [PMID: 35008859 PMCID: PMC8745762 DOI: 10.3390/ijms23010435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022] Open
Abstract
Pleurotus eryngii, a highly valued edible fungus, is one of the major commercially cultivated mushrooms in China. The development of P. eryngii, especially during the stage of primordium differentiation, is easily affected by light. However, the molecular mechanism underlying the response of primordium differentiation to light remains unknown. In the present study, primordium expression profiles under blue-light stimulation, red-light stimulation, and exposure to darkness were compared using high-throughput sequencing. A total of 16,321 differentially expressed genes (DEGs) were identified from three comparisons. GO enrichment analysis showed that a large number of DEGs were related to light stimulation and amino acid biosynthesis. KEGG analyses demonstrated that the MAPK signaling pathway, oxidative phosphorylation pathway, and RNA transport were most active during primordium differentiation. Furthermore, it was predicted that the blue-light photoreceptor WC-1 and Deoxyribodipyrimidine photolyase PHR play important roles in the primordium differentiation of P. eryngii. Taken together, the results of this study provide a speculative mechanism that light induces primordium differentiation and a foundation for further research on fruiting body development in P. eryngii.
Collapse
|
3
|
Ámon J, Keisham K, Bokor E, Kelemen E, Vágvölgyi C, Hamari Z. Sterigmatocystin production is restricted to hyphae located in the proximity of hülle cells. J Basic Microbiol 2018; 58:590-596. [PMID: 29733450 DOI: 10.1002/jobm.201800020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 12/20/2022]
Abstract
Aspergillus nidulans produces sterigmatocystin, a secondary metabolite mycotoxin, for the protection of its reproductive structures. Previous studies on grazing behavior of fungivore arthropods, regulation of sexual development, and secondary metabolite biosynthesis have revealed the association of sterigmatocystin biosynthesis with sexual reproduction, but the spatial distribution of sterigmatocystin producing hyphae within the colony has never been investigated. In this work, we aimed to locate the site of sterigmatocystin production within the colony by employing a yCFP reporter system. We demonstrated that the stcO promoter is active only in vegetative hyphae that surround groups of hülle cells and the activity decreases and eventually ceases as the distance between the hypha and the hülle cells increases. This phenomenon indicates that the vegetative mycelium might consist of morphologically uniform, but functionally different hyphae.
Collapse
Affiliation(s)
- Judit Ámon
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Kabichandra Keisham
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Eszter Bokor
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Evelyn Kelemen
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Hamari
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Guerriero G, Silvestrini L, Legay S, Maixner F, Sulyok M, Hausman JF, Strauss J. Deletion of the celA gene in Aspergillus nidulans triggers overexpression of secondary metabolite biosynthetic genes. Sci Rep 2017; 7:5978. [PMID: 28729615 PMCID: PMC5519750 DOI: 10.1038/s41598-017-05920-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/06/2017] [Indexed: 11/30/2022] Open
Abstract
Although much progress has been made in the study of cell wall biosynthetic genes in the model filamentous fungus Aspergillus nidulans, there are still targets awaiting characterization. An example is the gene celA (ANIA_08444) encoding a putative mixed linkage glucan synthase. To characterize the role of celA, we deleted it in A. nidulans, analyzed the phenotype of the mycelium and performed RNA-Seq. The strain shows a very strong phenotype, namely “balloons” along the hyphae and aberrant conidiophores, as well as an altered susceptibility to cell wall drugs. These data suggest a potential role of the gene in cell wall-related processes. The Gene Ontology term Enrichment analysis shows increased expression of secondary metabolite biosynthetic genes (sterigmatocystin in particular) in the deleted strain. Our results show that the deletion of celA triggers a strong phenotype reminiscent of cell wall-related aberrations and the upregulation of some secondary metabolite gene clusters in A. nidulans.
Collapse
Affiliation(s)
- Gea Guerriero
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg.
| | - Lucia Silvestrini
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, BOKU Campus, Tulln/Donau, A-3430, Austria
| | - Sylvain Legay
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Frank Maixner
- European Academy of Bozen/Bolzano (EURAC), Institute for Mummies and the Iceman, Bolzano, 39100, Italy
| | - Michael Sulyok
- University of Natural Resources and Life Sciences Vienna (BOKU), Department for Agrobiotechnology (IFA-Tulln), A-3430, Tulln, Austria
| | - Jean-Francois Hausman
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Joseph Strauss
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, BOKU Campus, Tulln/Donau, A-3430, Austria.
| |
Collapse
|
5
|
Oiartzabal-Arano E, Perez-de-Nanclares-Arregi E, Espeso EA, Etxebeste O. Apical control of conidiation in Aspergillus nidulans. Curr Genet 2016; 62:371-7. [PMID: 26782172 DOI: 10.1007/s00294-015-0556-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 01/30/2023]
Abstract
The infection cycle of filamentous fungi consists of two main stages: invasion (growth) and dispersion (development). After the deposition of a spore on a host, germination, polar extension and branching of vegetative cells called hyphae allow a fast and efficient invasion. Under suboptimal conditions, genetic reprogramming of hyphae results in the generation of asexual spores, allowing dissemination to new hosts and the beginning of a new infection cycle. In the model filamentous fungus Aspergillus nidulans, asexual development or conidiation is induced by the upstream developmental activation (UDA) pathway. UDA proteins transduce signals from the tip, the polarity site of hyphae, to nuclei, where developmental programs are transcriptionally activated. The present review summarizes the current knowledge on this tip-to-nucleus communication mechanism, emphasizing its dependence on hyphal polarity. Future approaches to the topic will also be suggested, as stimulating elements contributing to the understanding of how apical signals are coupled with the transcriptional control of development and pathogenesis in filamentous fungi.
Collapse
Affiliation(s)
- Elixabet Oiartzabal-Arano
- Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), Manuel de Lardizabal, 3, 20018, San Sebastian, Spain
| | - Elixabet Perez-de-Nanclares-Arregi
- Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), Manuel de Lardizabal, 3, 20018, San Sebastian, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Oier Etxebeste
- Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), Manuel de Lardizabal, 3, 20018, San Sebastian, Spain.
| |
Collapse
|
6
|
Abstract
Mycotoxins are natural contaminants of food and feed products, posing a substantial health risk to humans and animals throughout the world. A plethora of filamentous fungi has been identified as mycotoxin producers and most of these fungal species belong to the genera Aspergillus, Fusarium, and Penicillium. A number of studies have been conducted to better understand the molecular mechanisms of biosynthesis of key mycotoxins and the regulatory cascades controlling toxigenesis. In many cases, the mycotoxin biosynthetic genes are clustered and regulated by one or more pathway-specific transcription factor(s). In addition, as biosynthesis of many secondary metabolites is coordinated with fungal growth and development, there are a number of upstream regulators affecting biosynthesis of mycotoxins in fungi. This review presents a concise summary of the regulation of mycotoxin biosynthesis, focusing on the roles of the upstream regulatory elements governing biosynthesis of aflatoxin and sterigmatocystin in Aspergillus.
Collapse
Affiliation(s)
| | - Jae-Hyuk Yu
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Lei Y, Liu G, Li Z, Gao L, Qin Y, Qu Y. Functional characterization of protein kinase CK2 regulatory subunits regulating Penicillium oxalicum asexual development and hydrolytic enzyme production. Fungal Genet Biol 2014; 66:44-53. [PMID: 24613994 DOI: 10.1016/j.fgb.2014.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/15/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
Casein kinase CK2 is a ubiquitous and conserved phosphate transferase that is critical for the growth and development of eukaryotic cells. In Penicillium oxalicum, one catalytic subunit (CK2A) and two regulatory subunits (CK2B1 and CK2B2) of CK2 were annotated. In this study, CK2 regulatory subunit-defective mutants Δck2B1 and Δck2B2 were constructed to investigate the biological function of CK2 in P. oxalicum. The Δck2B1 strain exhibited minimal changes in morphogenesis and conidiation, whereas the Δck2B2 strain showed delayed conidial germination and drastically reduced conidiation compared with the parent strain. The defect in conidiation in Δck2B2 could be attributed to the reduced expression of transcription factor BrlA. Both Δck2B1 and Δck2B2 showed delayed autolysis in carbon-starvation medium compared with the parent strain. Cellulase and amylase production were decreased considerably in both mutants. The transcript abundances of the main extracellular glycoside hydrolase genes cel7A-2, bgl1, and amy15A, as well as those of three related transcriptional activators (i.e., ClrB, XlnR, and AmyR), were reduced or delayed in the mutants. Epistasis analysis suggested that CK2B1 and CK2B2 might function upstream of transcription factor CreA by inhibiting its repressing activity. In summary, CK2 plays important roles in development and extracellular enzyme production in P. oxalicum, with both unique and overlapping functions performed by the two regulatory subunits.
Collapse
Affiliation(s)
- Yunfeng Lei
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, Shandong 250100, PR China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, Shandong 250100, PR China
| | - Zhonghai Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, Shandong 250100, PR China
| | - Liwei Gao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, Shandong 250100, PR China
| | - Yuqi Qin
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, Shandong 250100, PR China; National Glycoengineering Research Center, Shandong University, Shan Da Nan Road 27, Jinan, Shandong 250100, PR China.
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shan Da Nan Road 27, Jinan, Shandong 250100, PR China; National Glycoengineering Research Center, Shandong University, Shan Da Nan Road 27, Jinan, Shandong 250100, PR China.
| |
Collapse
|
8
|
Shin KS, Park HS, Kim YH, Yu JH. Comparative proteomic analyses reveal that FlbA down-regulates gliT expression and SOD activity in Aspergillus fumigatus. J Proteomics 2013; 87:40-52. [DOI: 10.1016/j.jprot.2013.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/05/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
|
9
|
Krijgsheld P, Bleichrodt R, van Veluw G, Wang F, Müller W, Dijksterhuis J, Wösten H. Development in Aspergillus. Stud Mycol 2013; 74:1-29. [PMID: 23450714 PMCID: PMC3563288 DOI: 10.3114/sim0006] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The genus Aspergillus represents a diverse group of fungi that are among the most abundant fungi in the world. Germination of a spore can lead to a vegetative mycelium that colonizes a substrate. The hyphae within the mycelium are highly heterogeneous with respect to gene expression, growth, and secretion. Aspergilli can reproduce both asexually and sexually. To this end, conidiophores and ascocarps are produced that form conidia and ascospores, respectively. This review describes the molecular mechanisms underlying growth and development of Aspergillus.
Collapse
Affiliation(s)
- P. Krijgsheld
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - R. Bleichrodt
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - G.J. van Veluw
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - F. Wang
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - W.H. Müller
- Biomolecular Imaging, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - J. Dijksterhuis
- Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - H.A.B. Wösten
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
10
|
The putative guanine nucleotide exchange factor RicA mediates upstream signaling for growth and development in Aspergillus. EUKARYOTIC CELL 2012; 11:1399-412. [PMID: 23002107 DOI: 10.1128/ec.00255-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heterotrimeric G proteins (G proteins) govern growth, development, and secondary metabolism in various fungi. Here, we characterized ricA, which encodes a putative GDP/GTP exchange factor for G proteins in the model fungus Aspergillus nidulans and the opportunistic human pathogen Aspergillus fumigatus. In both species, ricA mRNA accumulates during vegetative growth and early developmental phases, but it is not present in spores. The deletion of ricA results in severely impaired colony growth and the total (for A. nidulans) or near (for A. fumigatus) absence of asexual sporulation (conidiation). The overexpression (OE) of the A. fumigatus ricA gene (AfricA) restores growth and conidiation in the ΔAnricA mutant to some extent, indicating partial conservation of RicA function in Aspergillus. A series of double mutant analyses revealed that the removal of RgsA (an RGS protein of the GanB Gα subunit), but not sfgA, flbA, rgsB, or rgsC, restored vegetative growth and conidiation in ΔAnricA. Furthermore, we found that RicA can physically interact with GanB in yeast and in vitro. Moreover, the presence of two copies or OE of pkaA suppresses the profound defects caused by ΔAnricA, indicating that RicA-mediated growth and developmental signaling is primarily through GanB and PkaA in A. nidulans. Despite the lack of conidiation, brlA and vosA mRNAs accumulated to normal levels in the ΔricA mutant. In addition, mutants overexpressing fluG or brlA (OEfluG or OEbrlA) failed to restore development in the ΔAnricA mutant. These findings suggest that the commencement of asexual development requires unknown RicA-mediated signaling input in A. nidulans.
Collapse
|
11
|
mrflbA, encoding a putative FlbA, is involved in aerial hyphal development and secondary metabolite production in Monascus ruber M-7. Fungal Biol 2012; 116:225-33. [DOI: 10.1016/j.funbio.2011.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 11/18/2022]
|
12
|
Leeder AC, Palma-Guerrero J, Glass NL. The social network: deciphering fungal language. Nat Rev Microbiol 2011; 9:440-51. [PMID: 21572459 DOI: 10.1038/nrmicro2580] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been estimated that up to one quarter of the world's biomass is of fungal origin, comprising approximately 1.5 million species. In order to interact with one another and respond to environmental cues, fungi communicate with their own chemical languages using a sophisticated series of extracellular signals and cellular responses. A new appreciation for the linkage between these chemical languages and developmental processes in fungi has renewed interest in these signalling molecules, which can now be studied using post-genomic resources. In this Review, we focus on the molecules that are secreted by the largest phylum of fungi, the Ascomycota, and the quest to understand their biological function.
Collapse
Affiliation(s)
- Abigail C Leeder
- Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
13
|
Bayram O, Braus GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 2011; 36:1-24. [PMID: 21658084 DOI: 10.1111/j.1574-6976.2011.00285.x] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi produce a number of small bioactive molecules as part of their secondary metabolism ranging from benign antibiotics such as penicillin to threatening mycotoxins such as aflatoxin. Secondary metabolism can be linked to fungal developmental programs in response to various abiotic or biotic external triggers. The velvet family of regulatory proteins plays a key role in coordinating secondary metabolism and differentiation processes such as asexual or sexual sporulation and sclerotia or fruiting body formation. The velvet family shares a protein domain that is present in most parts of the fungal kingdom from chytrids to basidiomycetes. Most of the current knowledge derives from the model Aspergillus nidulans where VeA, the founding member of the protein family, was discovered almost half a century ago. Different members of the velvet protein family interact with each other and the nonvelvet protein LaeA, primarily in the nucleus. LaeA is a methyltransferase-domain protein that functions as a regulator of secondary metabolism and development. A comprehensive picture of the molecular interplay between the velvet domain protein family, LaeA and other nuclear regulatory proteins in response to various signal transduction pathway starts to emerge from a jigsaw puzzle of several recent studies.
Collapse
Affiliation(s)
- Ozgür Bayram
- Institut für Mikrobiologie und Genetik, Abteilung Molekulare Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | | |
Collapse
|
14
|
Rostagno L, Prodi A, Turina M. Cpkk1, MAPKK of Cryphonectria parasitica, is necessary for virulence on chestnut. PHYTOPATHOLOGY 2010; 100:1100-1110. [PMID: 20839945 DOI: 10.1094/phyto-02-10-0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
ABSTRACT The role of Cpkk1, a mitogen-activated protein kinase from Cryphonectria parasitica, was investigated by generating a number of mutant strains that overexpress, under the control of the cryparin promoter, both the wild-type protein and its allele with an extensive deletion in the catalytic domain. Furthermore, a hairpin construct was built and expressed to cause specific silencing of Cpkk1 mRNA transcripts. Specific mRNA silencing or overexpression was confirmed on both Northern and Western blot analysis. Selected C. parasitica strains with Cpkk1 either silenced or overexpressed were evaluated for their biological characteristics, including virulence on European chestnut, growth on different substrates, conidial sporulation, and resistance to cell-wall-degrading enzymes. Silencing of Cpkk1 and the overexpression of a defective Cpkk1 correlated with a marked reduction in virulence on 3-year-old chestnut trees, with no statistically significant effect on fungal growth in the various conditions tested.
Collapse
|
15
|
Ehrlich K, Wei Q, Bhatnagar D. Increased sensitivity of Aspergillus flavus and Aspergillus parasiticus aflatoxin biosynthesis polyketide synthase mutants to UVB light. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One strategy to reduce aflatoxin contamination of maize and cottonseed is to introduce spores of non-aflatoxigenic strains as competitors. Using isogenic mutants we show that, upon 5 or 20 min exposure to 302 nm (UVB) light, the viability of conidia of Aspergillus flavus and Aspergillus parasiticus mutants lacking the ability to accumulate any aflatoxin precursor metabolite is reduced five-fold compared to that of aflatoxin-producing strains or pigmented mutants that accumulate aflatoxin precursors. This result suggests that the long-term viability of introduced non-aflatoxigenic competitor strains may be lower than that of natural aflatoxin-producing isolates when exposed to sunlight.
Collapse
Affiliation(s)
- K. Ehrlich
- Southern Regional Research Center, ARS, USDA, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Q. Wei
- Southern Regional Research Center, ARS, USDA, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - D. Bhatnagar
- Southern Regional Research Center, ARS, USDA, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| |
Collapse
|
16
|
Ehrlich KC. Predicted roles of the uncharacterized clustered genes in aflatoxin biosynthesis. Toxins (Basel) 2009; 1:37-58. [PMID: 22069531 PMCID: PMC3202775 DOI: 10.3390/toxins1010037] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 11/21/2022] Open
Abstract
Biosynthesis of the toxic and carcinogenic aflatoxins (AFs) requires the activity of more than 27 enzymes. The roles in biosynthesis of newly described enzymes are discussed in this review. We suggest that HypC catalyzes the oxidation of norsolorinic acid anthrone; AvfA (AflI), the ring-closure step in formation of hydroxyversicolorone; HypB, the second oxidation step in conversion of O-methylsterigmatocystin to AF; and HypE and NorA (AflE), the final two steps in AFB(1) formation. HypD, an integral membrane protein, affects fungal development and lowers AF production while AflJ (AflS), has a partial methyltransferase domain that may be important in its function as a transcriptional co-activator.
Collapse
Affiliation(s)
- Kenneth C Ehrlich
- Southern Regional Research Center, ARS, USDA/1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| |
Collapse
|
17
|
Han KH, Kim JH, Moon H, Kim S, Lee SS, Han DM, Jahng KY, Chae KS. The Aspergillus nidulans esdC (early sexual development) gene is necessary for sexual development and is controlled by veA and a heterotrimeric G protein. Fungal Genet Biol 2008; 45:310-8. [DOI: 10.1016/j.fgb.2007.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/06/2007] [Accepted: 09/10/2007] [Indexed: 12/29/2022]
|
18
|
Yoshinari T, Akiyama T, Nakamura K, Kondo T, Takahashi Y, Muraoka Y, Nonomura Y, Nagasawa H, Sakuda S. Dioctatin A is a strong inhibitor of aflatoxin production by Aspergillus parasiticus. MICROBIOLOGY-SGM 2007; 153:2774-2780. [PMID: 17660441 DOI: 10.1099/mic.0.2006/005629-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dioctatin A (DotA), a metabolite of Streptomyces, is known to be an inhibitor of human dipeptidyl aminopeptidase II. Here, it was found that DotA strongly inhibited aflatoxin production by Aspergillus parasiticus, with an IC50 value of 4.0 microM. The mycelial growth of the fungus was not affected by the addition of DotA at a concentration of 50 microM, but inhibition of conidiation was observed at the same concentration. DotA inhibited production of norsolorinic acid, an early biosynthetic intermediate of aflatoxin, and it strongly reduced the mRNA levels of genes encoding aflatoxin biosynthetic enzymes, and significantly decreased the mRNA level of aflR, which encodes a key regulatory protein for aflatoxin biosynthesis. In addition to these genes, the mRNA level of brlA, which encodes a conidiation-specific transcription factor, was also reduced by the addition of DotA. It was also found that DotA dramatically enhanced kojic acid production by the fungus. Furthermore, DotA inhibited production of sterigmatocystin, which is a toxic aflatoxin biosynthetic intermediate, and it also inhibited conidiation in Aspergillus nidulans. These results indicate that DotA has pleiotropic effects on regulatory mechanisms of fungal secondary metabolite production and differentiation, leading to inhibition of aflatoxin production.
Collapse
Affiliation(s)
- Tomoya Yoshinari
- Department of Applied Biological Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuo Akiyama
- Microbial Chemistry Research Center, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Keita Nakamura
- Department of Applied Biological Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tatsuhiko Kondo
- Department of Applied Bioscience, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshikazu Takahashi
- Microbial Chemistry Research Center, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yasuhiko Muraoka
- Microbial Chemistry Research Center, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yoshiaki Nonomura
- Microbial Chemistry Research Center, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shohei Sakuda
- Department of Applied Biological Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
19
|
Molnár Z, Emri T, Zavaczki E, Pusztahelyi T, Pócsi I. Effects of mutations in the GanB/RgsA G protein mediated signalling on the autolysis of Aspergillus nidulans. J Basic Microbiol 2007; 46:495-503. [PMID: 17139616 DOI: 10.1002/jobm.200610174] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Physiological changes taking place in carbon-starved, autolysing cultures of Aspergillus (Emericella) nidulans strains with mutations in the GanB/RgsA heterotrimeric G protein signalling pathway were studied and compared. Deletion of the ganB, rgsA or both genes did not alter markedly either the autolytic loss of biomass or the extracellular chitinase production. However, they caused a significant decrease in the proteinase formation, which was detected by measuring both extracellular enzyme activity and the transcription of the prtA gene. The deletion mutants also showed significantly higher specific gamma -glutamyltranspeptidase activities than the control strain. Deletion of the rgsA gene affected the glutathione peroxidase and catalase formation, as well as the peroxide content of the cells. The concomitant initiations of cell death and developmental genomic programmes may be interconnected via heterotrimeric G-protein signalling and subsequent changes in intracellular ROS levels in ageing A. nidulans.
Collapse
Affiliation(s)
- Zsolt Molnár
- Department of Microbiology and Biotechnology, Faculty of Science, University of Debrecen, H-4010 Debrecen, P.O. Box: 63, Hungary
| | | | | | | | | |
Collapse
|
20
|
Mah JH, Yu JH. Upstream and downstream regulation of asexual development in Aspergillus fumigatus. EUKARYOTIC CELL 2006; 5:1585-95. [PMID: 17030990 PMCID: PMC1595350 DOI: 10.1128/ec.00192-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The opportunistic human pathogen Aspergillus fumigatus produces a large quantity of asexual spores (conidia), which are the primary agent causing invasive aspergillosis in immunocompromised patients. We investigated the mechanisms controlling asexual sporulation (conidiation) in A. fumigatus via examining functions of four key regulators, GpaA (Galpha), AfFlbA (RGS), AfFluG, and AfBrlA, previously studied in Aspergillus nidulans. Expression analyses of gpaA, AfflbA, AffluG, AfbrlA, and AfwetA throughout the life cycle of A. fumigatus revealed that, while transcripts of AfflbA and AffluG accumulate constantly, the latter two downstream developmental regulators are specifically expressed during conidiation. Both loss-of-function AfflbA and dominant activating GpaA(Q204L) mutations resulted in reduced conidiation with increased hyphal proliferation, indicating that GpaA signaling activates vegetative growth while inhibiting conidiation. As GpaA is the primary target of AfFlbA, the dominant interfering GpaA(G203R) mutation suppressed reduced conidiation caused by loss of AfflbA function. These results corroborate the hypothesis that functions of G proteins and RGSs are conserved in aspergilli. We then examined functions of the two major developmental activators AfFluG and AfBrlA. While deletion of AfbrlA eliminated conidiation completely, null mutation of AffluG did not cause severe alterations in A. fumigatus sporulation in air-exposed culture, implying that, whereas the two aspergilli may have a common key downstream developmental activator, upstream mechanisms activating brlA may be distinct. Finally, both AffluG and AfflbA mutants showed reduced conidiation and delayed expression of AfbrlA in synchronized developmental induction, indicating that these upstream regulators contribute to the proper progression of conidiation.
Collapse
Affiliation(s)
- Jae-Hyung Mah
- Department of Food Microbiology and Toxicology and Food Research Institute, University of Wisconsin, Madison, Madison, WI 53706, USA
| | | |
Collapse
|
21
|
Yu JH, Mah JH, Seo JA. Growth and developmental control in the model and pathogenic aspergilli. EUKARYOTIC CELL 2006; 5:1577-84. [PMID: 17030989 PMCID: PMC1595332 DOI: 10.1128/ec.00193-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jae-Hyuk Yu
- Department of Food Microbiology and Toxicology and Food Research Institute, University of Wisconsin, Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
22
|
Seo JA, Han KH, Yu JH. Multiple roles of a heterotrimeric G-protein gamma-subunit in governing growth and development of Aspergillus nidulans. Genetics 2005; 171:81-9. [PMID: 15944346 PMCID: PMC1456535 DOI: 10.1534/genetics.105.042796] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vegetative growth signaling in the filamentous fungus Aspergillus nidulans is primarily mediated by the heterotrimeric G-protein composed of FadA (G alpha), SfaD (G beta), and a presumed G gamma. Analysis of the A. nidulans genome identified a single gene named gpgA encoding a putative G gamma-subunit. The predicted GpgA protein consists of 90 amino acids showing 72% similarity with yeast Ste18p. Deletion (delta) of gpgA resulted in restricted vegetative growth and lowered asexual sporulation. Moreover, similar to the delta sfaD mutant, the delta gpgA mutant was unable to produce sexual fruiting bodies (cleistothecia) in self-fertilization and was severely impaired with cleistothecial development in outcross, indicating that both SfaD and GpgA are required for fruiting body formation. Developmental and morphological defects caused by deletion of flbA encoding an RGS protein negatively controlling FadA-mediated vegetative growth signaling were suppressed by delta gpgA, indicating that GpgA functions in FadA-SfaD-mediated vegetative growth signaling. However, deletion of gpgA could not bypass the need for the early developmental activator FluG in asexual sporulation, suggesting that GpgA functions in a separate signaling pathway. We propose that GpgA is the only A. nidulans G gamma-subunit and is required for normal vegetative growth as well as proper asexual and sexual developmental progression.
Collapse
Affiliation(s)
- Jeong-Ah Seo
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
23
|
Chang MH, Chae KS, Han DM, Jahng KY. The GanB Galpha-protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans. Genetics 2005; 167:1305-15. [PMID: 15280244 PMCID: PMC1470946 DOI: 10.1534/genetics.103.025379] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We isolated the ganB gene encoding the Galpha-protein homolog from Aspergillus nidulans. To investigate the cellular function of GanB, various mutant strains were isolated. Deletion of constitutively inactive ganB mutants showed conidiation and derepressed brlA expression in a submerged culture. Constitutive activation of GanB caused a reduction in hyphal growth and a severe defect in asexual sporulation. We therefore propose that GanB may negatively regulate asexual sporulation through the BrlA pathway. In addition, deletion or constitutive inactivation of GanB reduced germination rate while constitutive activation led to precocious germination. Furthermore, conidia of a constitutively active mutant could germinate even without carbon source. Taken together, these results indicated that GanB plays a positive role during germination, possibly through carbon source sensing, and negatively regulates asexual conidiation in A. nidulans.
Collapse
Affiliation(s)
- Mi-Hee Chang
- Division of Biological Sciences, Chonbuk National University, Chonju 561-756, Republic of Korea
| | | | | | | |
Collapse
|
24
|
Seo JA, Guan Y, Yu JH. Suppressor Mutations Bypass the Requirement of fluG for Asexual Sporulation and Sterigmatocystin Production in Aspergillus nidulans. Genetics 2003; 165:1083-93. [PMID: 14668366 PMCID: PMC1462808 DOI: 10.1093/genetics/165.3.1083] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Asexual sporulation (conidiation) in the filamentous fungus Aspergillus nidulans requires the early developmental activator fluG. Loss of fluG results in the blockage of both conidiation and production of the mycotoxin sterigmatocystin (ST). To investigate molecular mechanisms of fluG-dependent developmental activation, 40 suppressors of fluG (SFGs) that conidiate without fluG have been isolated and characterized. Genetic analyses showed that an individual suppression is caused by a single second-site mutation, and that all sfg mutations but one are recessive. Pairwise meiotic crosses grouped mutations to four loci, 31 of them to sfgA, 6 of them to sfgB, and 1 each to sfgC and sfgD, respectively. The only dominant mutation, sfgA38, also mapped to the sfgA locus, suggesting a dominant negative mutation. Thirteen sfgA and 1 sfgC mutants elaborated conidiophores in liquid submerged culture, indicating that loss of either of these gene functions not only bypasses fluG function but also results in hyperactive conidiation. While sfg mutants show varying levels of restored conidiation, all recovered the ability to produce ST at near wild-type levels. The fact that at least four loci are defined by recessive sfg mutations indicates that multiple genes negatively regulate conidiation downstream of fluG and that the activity of fluG is required to remove such repressive effects.
Collapse
Affiliation(s)
- Jeong-Ah Seo
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, Wisconsin 53706-1187, USA
| | | | | |
Collapse
|
25
|
Andrianopoulos A. Control of morphogenesis in the human fungal pathogen Penicillium marneffei. Int J Med Microbiol 2002; 292:331-47. [PMID: 12452280 DOI: 10.1078/1438-4221-00217] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fungal pathogens are an increasing threat to human health due to the increasing population of immunocompromised individuals and the increased incidence of treatment-derived infections. Penicillium marneffei is an emerging fungal pathogen endemic to South-east Asia, where it is AIDS defining. Like many other fungal pathogens, P. marneffei is capable of alternating between a filamentous and a yeast growth form, known as dimorphic switching, in response to environmental stimuli. P. marneffei grows in the filamentous form at 25 degrees C and in the yeast form at 37 degrees C. During filamentous growth and in response to environmental cues, P. marneffei undergoes asexual development to form complex multicellular structures from which the infectious agents, the conidia, are produced. At 37 degrees C, P. marneffei undergoes the dimorphic switching program to produce the pathogenic yeast cells. These yeast cells are found intracellularly in the mononuclear phagocyte system of the host and divide by fission, in contrast to the budding mode of division exhibited by most other fungal pathogens. In addition, P. marneffei is evolutionarily distinct from most other dimorphic fungal pathogens and is the only known Penicillium species which exhibits dimorphic growth. The unique evolutionary history of P. marneffei and the rapidly increasing incidence of infection, coupled with the presence of both complex asexual development and dimorphic switching programs in one organism, makes this system a valuable one for the study of morphogenesis and pathogenicity. Recent development of molecular genetic techniques for P. marneffei, including DNA-mediated transformation, have greatly facilitated the study of these two important morphogenetic programs, asexual development and dimorphic switching, and we are beginning to uncover important determinants which control these events. Understand these programs is providing insights into the biology of P. marneffei and its pathogenic capacity.
Collapse
Affiliation(s)
- Alex Andrianopoulos
- Department of Genetics, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
26
|
Ehrlich KC, Montalbano BG, Cary JW, Cotty PJ. Promoter elements in the aflatoxin pathway polyketide synthase gene. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:171-5. [PMID: 12031498 DOI: 10.1016/s0167-4781(02)00282-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PksA catalyzes the formation of the polyketide backbone necessary for aflatoxin biosynthesis. Based on reporter assays and sequence comparisons of the nor1-pksA intergenic region in different aflatoxin-producing Aspergillus species, cis-acting elements for the aflatoxin pathway-specific regulatory protein, AflR, and the global-acting regulatory proteins BrlA and PacC are involved in pksA promoter activity.
Collapse
Affiliation(s)
- Kenneth C Ehrlich
- Southern Regional Research Center, United States Department of Agriculture, P.O. Box 19687, 1100 R.E. Lee Blvd., New Orleans, LA 70179, USA.
| | | | | | | |
Collapse
|
27
|
Lengeler KB, Davidson RC, D'souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 2000; 64:746-85. [PMID: 11104818 PMCID: PMC99013 DOI: 10.1128/mmbr.64.4.746-785.2000] [Citation(s) in RCA: 657] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular differentiation, mating, and filamentous growth are regulated in many fungi by environmental and nutritional signals. For example, in response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous growth referred to as pseudohyphal differentiation. Yeast filamentous growth is regulated, in part, by two conserved signal transduction cascades: a mitogen-activated protein kinase cascade and a G-protein regulated cyclic AMP signaling pathway. Related signaling cascades play an analogous role in regulating mating and virulence in the plant fungal pathogen Ustilago maydis and the human fungal pathogens Cryptococcus neoformans and Candida albicans. We review here studies on the signaling cascades that regulate development of these and other fungi. This analysis illustrates both how the model yeast S. cerevisiae can serve as a paradigm for signaling in other organisms and also how studies in other fungi provide insights into conserved signaling pathways that operate in many divergent organisms.
Collapse
Affiliation(s)
- K B Lengeler
- Departments of Genetics, Pharmacology and Cancer Biology, Microbiology, and Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Brock M, Fischer R, Linder D, Buckel W. Methylcitrate synthase from Aspergillus nidulans: implications for propionate as an antifungal agent. Mol Microbiol 2000; 35:961-73. [PMID: 10712680 DOI: 10.1046/j.1365-2958.2000.01737.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aspergillus nidulans was used as a model organism to investigate the fungal propionate metabolism and the mechanism of growth inhibition by propionate. The fungus is able to grow slowly on propionate as sole carbon and energy source. Propionate is oxidized to pyruvate via the methylcitrate cycle. The key enzyme methylcitrate synthase was purified and the corresponding gene mcsA, which contains two introns, was cloned, sequenced and overexpressed in A. nidulans. The derived amino acid sequence of the enzyme shows more than 50% identity to those of most eukaryotic citrate synthases, but only 14% identity to the sequence of the recently detected bacterial methylcitrate synthase from Escherichia coli. A mcsA deletion strain was unable to grow on propionate. The inhibitory growth effect of propionate on glucose medium was enhanced in this strain, which led to the assumption that trapping of the available CoA as propionyl-CoA and/or the accumulating propionyl-CoA itself interferes with other biosynthetic pathways such as fatty acid and polyketide syntheses. In the wild-type strain, however, the predominant inhibitor may be methylcitrate. Propionate (100 mM) not only impaired hyphal growth of A. nidulans but also synthesis of the green polyketide-derived pigment of the conidia, whereas in the mutant pigmentation was abolished with 20 mM propionate.
Collapse
Affiliation(s)
- M Brock
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, D-35032 Marburg, Germany
| | | | | | | |
Collapse
|
29
|
Mukhopadhyay S, Ross EM. Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins. Proc Natl Acad Sci U S A 1999; 96:9539-44. [PMID: 10449728 PMCID: PMC22244 DOI: 10.1073/pnas.96.17.9539] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptor-promoted GTP binding and GTPase-activating protein (GAP)-promoted GTP hydrolysis determine the onset and termination of G protein signaling; they coordinately control signal amplitude. The mechanisms whereby cells independently regulate signal kinetics and signal amplitude are therefore central to understanding G protein function. We have used quench-flow kinetic methods to measure the rates of the individual reactions of the agonist-stimulated GTPase cycle for G(q) during steady-state signaling. G(q) and m1 muscarinic cholinergic receptor were co-reconstituted into proteoliposomes with one of two GAPs: phospholipase C (PLC)-beta1, the major G(q)-regulated effector protein, and RGS4, a GAP commonly thought to be an inhibitor of G(q) signaling. In this system, the rate constant for GAP-stimulated hydrolysis of Galpha(q)-bound GTP at 30 degrees C was 9-12 s(-1) for PLC-beta1 and 22-27 s(-1) for RGS4. These rates are 1,000- to 2,000-fold faster than in the absence of a GAP and far faster than measured previously. G(q) can thus hydrolyze bound GTP with deactivation half-times of 25-75 ms at 30 degrees C, commensurate with physiological rates of signal termination. GDP/GTP exchange, which reactivates G(q), was the principal rate-limiting step for the GTPase cycle and was also faster than previously thought. At physiological concentrations of GTP, exchange was limited by the rate of dissociation of GDP from the receptor-G(q) complex, with a maximal rate of 1.8 s(-1) at 30 degrees C. Comparison of activation and deactivation rates help explain how GDP/GTP exchange balance rapid GTP hydrolysis to maintain steady-state signal amplitude.
Collapse
Affiliation(s)
- S Mukhopadhyay
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9041, USA
| | | |
Collapse
|
30
|
Brown MP, Brown-Jenco CS, Payne GA. Genetic and molecular analysis of aflatoxin biosynthesis. Fungal Genet Biol 1999; 26:81-98. [PMID: 10328980 DOI: 10.1006/fgbi.1998.1114] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M P Brown
- InterLink Associates, 11930 Heritage Oak Place, Suite 4, Auburn, California 95603, USA
| | | | | |
Collapse
|
31
|
Yu JH, Rosén S, Adams TH. Extragenic suppressors of loss-of-function mutations in the aspergillus FlbA regulator of G-protein signaling domain protein. Genetics 1999; 151:97-105. [PMID: 9872951 PMCID: PMC1460443 DOI: 10.1093/genetics/151.1.97] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We showed previously that two genes, fl bA and fadA, have a major role in determining the balance between growth, sporulation, and mycotoxin (sterigmatocystin; ST) production by the filamentous fungus Aspergillus nidulans. fadA encodes the alpha subunit for a heterotrimeric G-protein, and continuous activation of FadA blocks sporulation and ST production while stimulating growth. fl bA encodes an A. nidulans regulator of G-protein signaling (RGS) domain protein that antagonizes FadA-mediated signaling to allow development. To better understand FlbA function and other aspects of FadA-mediated growth control, we have isolated and characterized mutations in four previously undefined genes designated as sfaA, sfaC, sfaD, and sfaE (suppressors of flbA), and a new allele of fadA (fadAR205H), all of which suppress a fl bA loss-of-function mutation ( fl bA98). These suppressors overcome fl bA losses of function in both sporulation and ST biosynthesis. fadAR205H, sfaC67, sfaD82, and sfaE83 mutations are dominant to wild type whereas sfaA1 is semidominant. sfaA1 also differs from other suppressor mutations in that it cannot suppress a fl bA deletion mutation (and is therefore allele specific) whereas all the dominant suppressors can bypass complete loss of fl bA. Only sfaE83 suppressed dominant activating mutations in fadA, indicating that sfaE may have a unique role in fadA- fl bA interactions. Finally, none of these suppressor mutations bypassed fl uG loss-of-function mutations in development-specific activation.
Collapse
Affiliation(s)
- J H Yu
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
32
|
Adams TH, Yu JH. Coordinate control of secondary metabolite production and asexual sporulation in Aspergillus nidulans. Curr Opin Microbiol 1998; 1:674-7. [PMID: 10066549 DOI: 10.1016/s1369-5274(98)80114-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Microbial secondary metabolite production is frequently associated with developmental processes such as sporulation, but there are few cases where this correlation is understood. Recent work with the filamentous fungus Aspergillus nidulans has provided new insights into the mechanisms coordinating production of the toxic secondary metabolite sterigmatocystin with asexual sporulation. These processes have been shown to be linked through a common need to inactivate a heterotrimeric G protein dependent signaling pathway that, when active, serves to stimulate growth while blocking both sporulation and sterigmatocystin biosynthesis.
Collapse
Affiliation(s)
- T H Adams
- Cereon Genomics, LLC 270 Albang Sq, Cambridge, MA 02139, USA. tom.h.
| | | |
Collapse
|
33
|
Abstract
The formation of mitotically derived spores, called conidia, is a common reproductive mode in filamentous fungi, particularly among the large fungal class Ascomycetes. Asexual sporulation strategies are nearly as varied as fungal species; however, the formation of conidiophores, specialized multicellular reproductive structures, by the filamentous fungus Aspergillus nidulans has emerged as the leading model for understanding the mechanisms that control fungal sporulation. Initiation of A. nidulans conidiophore formation can occur either as a programmed event in the life cycle in response to intrinsic signals or to environmental stresses such as nutrient deprivation. In either case, a development-specific set of transcription factors is activated and these control the expression of each other as well as genes required for conidiophore morphogenesis. Recent progress has identified many of the earliest-acting genes needed for initiating conidiophore development and shown that there are at least two antagonistic signaling pathways that control this process. One pathway is modulated by a heterotrimeric G protein that when activated stimulates growth and represses both asexual and sexual sporulation as well as production of the toxic secondary metabolite, sterigmatocystin. The second pathway apparently requires an extracellular signal to induce sporulation-specific events and to direct the inactivation of the first pathway, removing developmental repression. A working model is presented in which the regulatory interactions between these two pathways during the fungal life cycle determine whether cells grow or develop.
Collapse
Affiliation(s)
- T H Adams
- Department of Biology, Texas A&M University, College Station 77843, USA.
| | | | | |
Collapse
|
34
|
Payne GA, Brown MP. Genetics and physiology of aflatoxin biosynthesis. ANNUAL REVIEW OF PHYTOPATHOLOGY 1998; 36:329-62. [PMID: 15012504 DOI: 10.1146/annurev.phyto.36.1.329] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Aflatoxins are the most thoroughly studied mycotoxins. Elegant early research on the biosynthetic scheme of the pathway has allowed a molecular characterization of aflatoxin biosynthesis and its regulation. Genetic studies on aflatoxin biosynthesis in Aspergillus flavus and A. parasiticus, and sterigmatocystin biosynthesis in A. nidulans, led to the cloning of 17 genes responsible for 12 enzymatic conversions in the AF/ST pathways. Pathway-specific regulation is by a Zn(II)2Cys6 DNA-binding protein that regulates the transcription of all pathway genes. Less is known about the global factors that regulate aflatoxin biosynthesis, but there is a clear link between development and aflatoxin biosynthesis. There is also a large body of information on physiological factors involved in aflatoxin biosynthesis, but it has been difficult to understand their role in the regulation of this pathway. This chapter discusses current knowledge on the molecular biology and genetics of the pathway, and provides a summary of the physiological factors known to influence aflatoxin formation.
Collapse
Affiliation(s)
- G A Payne
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616, USA.
| | | |
Collapse
|