1
|
Serag WM, Eysa BE. Diagnosis of portal vein thrombosis in cirrhotic patients with and without hepatocellular carcinoma. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00201-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The levels of Annexin A5 (Annexin V) were measured in patients with and without HCC who had liver cirrhosis. These patients were followed for 12 months to determine the incidence of PVT and to determine the role of Annexin V in the diagnosis of PVT. Our goal was to look at the value of Annexin A5, platelet count, spleen size, portal flow velocity, portal vein width, Fibrosis 4, and APRI score in these individuals to see if they might be used as PVT markers.
Methods
Between March 2017 and August 2018, ninety-one HCV patients with cirrhosis with and without HCC, as well as a control group of twenty healthy people, were included in this longitudinal study at the NHTMRI. The blood anxA5 level was determined using a commercial Hyphen BioMed immunoassay using Stat Fax 4700’s Microstrip Reader l.
Results
Cirrhotic patients with and without HCC who developed PVT had higher Annexin A5 scales (5.75 + 0.18), compared to cirrhotic patients who did not develop PVT (3.63 + 1.08 (P 0.001). PVT was 20% in all cirrhotic patients after a year, 15% in cirrhotic patients without HCC, and 25% in cirrhotic patients with HCC. Cirrhotic patients who had PVT throughout the follow-up period had greater AnxA5 serum levels than cirrhotic patients who did not develop PVT.
Conclusions
In all cirrhotic patients, AnxA5 level, platelet count, spleen size, portal flow velocity, portal vein diameter, and Fibrosis 4 score might be employed as markers for PVT development.
Collapse
|
2
|
Feyaerts D, Hédou J, Gillard J, Chen H, Tsai ES, Peterson LS, Ando K, Manohar M, Do E, Dhondalay GKR, Fitzpatrick J, Artandi M, Chang I, Snow TT, Chinthrajah RS, Warren CM, Wittman R, Meyerowitz JG, Ganio EA, Stelzer IA, Han X, Verdonk F, Gaudillière DK, Mukherjee N, Tsai AS, Rumer KK, Jacobsen DR, Bjornson-Hooper ZB, Jiang S, Saavedra SF, Valdés Ferrer SI, Kelly JD, Furman D, Aghaeepour N, Angst MS, Boyd SD, Pinsky BA, Nolan GP, Nadeau KC, Gaudillière B, McIlwain DR. Integrated plasma proteomic and single-cell immune signaling network signatures demarcate mild, moderate, and severe COVID-19. Cell Rep Med 2022; 3:100680. [PMID: 35839768 PMCID: PMC9238057 DOI: 10.1016/j.xcrm.2022.100680] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/25/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023]
Abstract
The biological determinants underlying the range of coronavirus 2019 (COVID-19) clinical manifestations are not fully understood. Here, over 1,400 plasma proteins and 2,600 single-cell immune features comprising cell phenotype, endogenous signaling activity, and signaling responses to inflammatory ligands are cross-sectionally assessed in peripheral blood from 97 patients with mild, moderate, and severe COVID-19 and 40 uninfected patients. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identify and independently validate a multi-variate model classifying COVID-19 severity (multi-class area under the curve [AUC]training = 0.799, p = 4.2e-6; multi-class AUCvalidation = 0.773, p = 7.7e-6). Examination of informative model features reveals biological signatures of COVID-19 severity, including the dysregulation of JAK/STAT, MAPK/mTOR, and nuclear factor κB (NF-κB) immune signaling networks in addition to recapitulating known hallmarks of COVID-19. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for prevention and/or treatment of COVID-19 progression.
Collapse
Affiliation(s)
- Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Hédou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Gillard
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eileen S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura S Peterson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kazuo Ando
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Monali Manohar
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Evan Do
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Gopal K R Dhondalay
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jessica Fitzpatrick
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Maja Artandi
- Department of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Iris Chang
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Theo T Snow
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - R Sharon Chinthrajah
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA; Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University, Stanford, CA, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M Warren
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Richard Wittman
- Department of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin G Meyerowitz
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ina A Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoyuan Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| | - Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dyani K Gaudillière
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nilanjan Mukherjee
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristen K Rumer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle R Jacobsen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Zachary B Bjornson-Hooper
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sizun Jiang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergio Fragoso Saavedra
- Departamento de Neurología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Plan de Estudios Combinados en Medicina (MD/PhD Program), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Iván Valdés Ferrer
- Departamento de Neurología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J Daniel Kelly
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA; Institute for Global Health Sciences, UCSF, San Francisco, CA, USA; F.I. Proctor Foundation, UCSF, San Francisco, CA, USA
| | - David Furman
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Austral Institute for Applied Artificial Intelligence, Institute for Research in Translational Medicine (IIMT), Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott D Boyd
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kari C Nadeau
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA; Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | - David R McIlwain
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen Atlas From Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. Front Immunol 2022; 13:831849. [PMID: 35401574 PMCID: PMC8987778 DOI: 10.3389/fimmu.2022.831849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. We used DS-affinity proteomics to define the autoantigen-ome of lung fibroblasts and bioinformatics analyses to study the relationship between autoantigenic proteins and COVID-induced alterations. Using DS-affinity, we identified an autoantigen-ome of 408 proteins from human HFL1 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigen-ome have thus far been found to be altered at protein or RNA levels in SARS-CoV-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a connection between COVID infection and autoimmunity. The vast number of COVID-altered proteins with high intrinsic propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles suggests a need for long-term monitoring of autoimmunity in COVID. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic, such as "long COVID" syndrome. Summary Sentence An autoantigen-ome by dermatan sulfate affinity from human lung HFL1 cells may explain neurological and autoimmune manifestations of COVID-19.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | | | - Michael H. Roehrl
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
4
|
Ercan H, Schrottmaier WC, Pirabe A, Schmuckenschlager A, Pereyra D, Santol J, Pawelka E, Traugott MT, Schörgenhofer C, Seitz T, Karolyi M, Yang JW, Jilma B, Zoufaly A, Assinger A, Zellner M. Platelet Phenotype Analysis of COVID-19 Patients Reveals Progressive Changes in the Activation of Integrin αIIbβ3, F13A1, the SARS-CoV-2 Target EIF4A1 and Annexin A5. Front Cardiovasc Med 2021; 8:779073. [PMID: 34859078 PMCID: PMC8632253 DOI: 10.3389/fcvm.2021.779073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 01/08/2023] Open
Abstract
Background: The fatal consequences of an infection with severe acute respiratory syndrome coronavirus 2 are not only caused by severe pneumonia, but also by thrombosis. Platelets are important regulators of thrombosis, but their involvement in the pathogenesis of COVID-19 is largely unknown. The aim of this study was to determine their functional and biochemical profile in patients with COVID-19 in dependence of mortality within 5-days after hospitalization. Methods: The COVID-19-related platelet phenotype was examined by analyzing their basal activation state via integrin αIIbβ3 activation using flow cytometry and the proteome by unbiased two-dimensional differential in-gel fluorescence electrophoresis. In total we monitored 98 surviving and 12 non-surviving COVID-19 patients over 5 days of hospital stay and compared them to healthy controls (n = 12). Results: Over the observation period the level of basal αIIbβ3 activation on platelets from non-surviving COVID-19 patients decreased compared to survivors. In line with this finding, proteomic analysis revealed a decrease in the total amount of integrin αIIb (ITGA2B), a subunit of αIIbβ3, in COVID-19 patients compared to healthy controls; the decline was even more pronounced for the non-survivors. Consumption of the fibrin-stabilizing factor coagulation factor XIIIA (F13A1) was higher in platelets from COVID-19 patients and tended to be higher in non-survivors; plasma concentrations of the latter also differed significantly. Depending on COVID-19 disease status and mortality, increased amounts of annexin A5 (ANXA5), eukaryotic initiation factor 4A-I (EIF4A1), and transaldolase (TALDO1) were found in the platelet proteome and also correlated with the nasopharyngeal viral load. Dysregulation of these proteins may play a role for virus replication. ANXA5 has also been identified as an autoantigen of the antiphospholipid syndrome, which is common in COVID-19 patients. Finally, the levels of two different protein disulfide isomerases, P4HB and PDIA6, which support thrombosis, were increased in the platelets of COVID-19 patients. Conclusion: Platelets from COVID-19 patients showed significant changes in the activation phenotype, in the processing of the final coagulation factor F13A1 and the phospholipid-binding protein ANXA5 compared to healthy subjects. Additionally, these results demonstrate specific alterations in platelets during COVID-19, which are significantly linked to fatal outcome.
Collapse
Affiliation(s)
- Huriye Ercan
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Waltraud Cornelia Schrottmaier
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - David Pereyra
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- Division of Visceral Surgery, Department of General Surgery, General Hospital Vienna, Medical University of Vienna, Vienna, Austria
| | - Jonas Santol
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- Division of Visceral Surgery, Department of General Surgery, General Hospital Vienna, Medical University of Vienna, Vienna, Austria
| | - Erich Pawelka
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | | | - Christian Schörgenhofer
- Department of Clinical Pharmacology, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Tamara Seitz
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Mario Karolyi
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Jae-Won Yang
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | | | - Alice Assinger
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Maria Zellner
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Wang JY, Roehrl MW, Roehrl VB, Roehrl MH. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.30.454526. [PMID: 34373855 PMCID: PMC8351778 DOI: 10.1101/2021.07.30.454526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. The autoantigen-ome is significantly associated with various processes in viral infections, such as translation, protein processing, and vesicle transport. Interestingly, the coding genes of autoAgs predominantly contain multiple exons with many possible alternative splicing variants, short transcripts, and short UTR lengths. These observations and the finding that numerous autoAgs involved in RNA-splicing showed altered expression in viral infections suggest that viruses exploit alternative splicing to reprogram host cell machinery to ensure viral replication and survival. While each cell type gives rise to a unique pool of autoAgs, 39 common autoAgs associated with cell stress and apoptosis were identified from all six cell types, with several being known markers of systemic autoimmune diseases. In particular, the common autoAg UBA1 that catalyzes the first step in ubiquitination is encoded by an X-chromosome escape gene. Given its essential function in apoptotic cell clearance and that X-inactivation escape tends to increase with aging, UBA1 dysfunction can therefore predispose aging women to autoimmune disorders. In summary, we propose a model of how viral infections lead to extensive molecular alterations and host cell death, autoimmune responses facilitated by autoAg-DS complexes, and ultimately autoimmune diseases. Overall, this master autoantigen-ome provides a molecular guide for investigating the myriad of autoimmune sequalae to COVID-19 and clues to the rare but reported adverse effects of the currently available COVID vaccines.
Collapse
Affiliation(s)
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
6
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An autoantigen profile of human A549 lung cells reveals viral and host etiologic molecular attributes of autoimmunity in COVID-19. J Autoimmun 2021; 120:102644. [PMID: 33971585 PMCID: PMC8075847 DOI: 10.1016/j.jaut.2021.102644] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae. Our work provides a rich resource for studies into “long COVID” and related autoimmune sequelae.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
7
|
Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen-ome from HS-Sultan B-Lymphoblasts Offers a Molecular Map for Investigating Autoimmune Sequelae of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.05.438500. [PMID: 33851168 PMCID: PMC8043459 DOI: 10.1101/2021.04.05.438500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To understand how COVID-19 may induce autoimmune diseases, we have been compiling an atlas of COVID-autoantigens (autoAgs). Using dermatan sulfate (DS) affinity enrichment of autoantigenic proteins extracted from HS-Sultan lymphoblasts, we identified 362 DS-affinity proteins, of which at least 201 (56%) are confirmed autoAgs. Comparison with available multi-omic COVID data shows that 315 (87%) of the 362 proteins are affected in SARS-CoV-2 infection via altered expression, interaction with viral components, or modification by phosphorylation or ubiquitination, at least 186 (59%) of which are known autoAgs. These proteins are associated with gene expression, mRNA processing, mRNA splicing, translation, protein folding, vesicles, and chromosome organization. Numerous nuclear autoAgs were identified, including both classical ANAs and ENAs of systemic autoimmune diseases and unique autoAgs involved in the DNA replication fork, mitotic cell cycle, or telomerase maintenance. We also identified many uncommon autoAgs involved in nucleic acid and peptide biosynthesis and nucleocytoplasmic transport, such as aminoacyl-tRNA synthetases. In addition, this study found autoAgs that potentially interact with multiple SARS-CoV-2 Nsp and Orf components, including CCT/TriC chaperonin, insulin degrading enzyme, platelet-activating factor acetylhydrolase, and the ezrin-moesin-radixin family. Furthermore, B-cell-specific IgM-associated ER complex (including MBZ1, BiP, heat shock proteins, and protein disulfide-isomerases) is enriched by DS-affinity and up-regulated in B-cells of COVID-19 patients, and a similar IgH-associated ER complex was also identified in autoreactive pre-B1 cells in our previous study, which suggests a role of autoreactive B1 cells in COVID-19 that merits further investigation. In summary, this study demonstrates that virally infected cells are characterized by alterations of proteins with propensity to become autoAgs, thereby providing a possible explanation for infection-induced autoimmunity. The COVID autoantigen-ome provides a valuable molecular resource and map for investigation of COVID-related autoimmune sequelae and considerations for vaccine design.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
8
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Profile of Human A549 Lung Cells Reveals Viral and Host Etiologic Molecular Attributes of Autoimmunity in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.21.432171. [PMID: 33655248 PMCID: PMC7924268 DOI: 10.1101/2021.02.21.432171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
9
|
Feyaerts D, Hédou J, Gillard J, Chen H, Tsai ES, Peterson LS, Ando K, Manohar M, Do E, Dhondalay GK, Fitzpatrick J, Artandi M, Chang I, Snow TT, Chinthrajah RS, Warren CM, Wittman R, Meyerowitz JG, Ganio EA, Stelzer IA, Han X, Verdonk F, Gaudillière DK, Mukherjee N, Tsai AS, Rumer KK, Jiang S, Valdés Ferrer SI, Kelly JD, Furman D, Aghaeepour N, Angst MS, Boyd SD, Pinsky BA, Nolan GP, Nadeau KC, Gaudillière B, McIlwain DR. Integrated plasma proteomic and single-cell immune signaling network signatures demarcate mild, moderate, and severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.09.430269. [PMID: 33594362 PMCID: PMC7885914 DOI: 10.1101/2021.02.09.430269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The biological determinants of the wide spectrum of COVID-19 clinical manifestations are not fully understood. Here, over 1400 plasma proteins and 2600 single-cell immune features comprising cell phenotype, basal signaling activity, and signaling responses to inflammatory ligands were assessed in peripheral blood from patients with mild, moderate, and severe COVID-19, at the time of diagnosis. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identified and independently validated a multivariate model classifying COVID-19 severity (multi-class AUCtraining = 0.799, p-value = 4.2e-6; multi-class AUCvalidation = 0.773, p-value = 7.7e-6). Features of this high-dimensional model recapitulated recent COVID-19 related observations of immune perturbations, and revealed novel biological signatures of severity, including the mobilization of elements of the renin-angiotensin system and primary hemostasis, as well as dysregulation of JAK/STAT, MAPK/mTOR, and NF-κB immune signaling networks. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for the prevention of COVID-19 progression.
Collapse
Affiliation(s)
- Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Hédou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Gillard
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eileen S. Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura S. Peterson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kazuo Ando
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Monali Manohar
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Evan Do
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Gopal K.R. Dhondalay
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jessica Fitzpatrick
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Maja Artandi
- Department of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Iris Chang
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Theo T. Snow
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - R. Sharon Chinthrajah
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Christopher M. Warren
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rich Wittman
- Department of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin G. Meyerowitz
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward A. Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ina A. Stelzer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoyuan Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| | - Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dyani K. Gaudillière
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nilanjan Mukherjee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy S. Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristen K. Rumer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergio Iván Valdés Ferrer
- Departamento de Neurología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
- Institute of Global Health Sciences, UCSF, San Francisco, CA, USA
- F.I. Proctor Foundation, UCSF, San Francisco, CA, USA
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA
- Austral Institute for Applied Artificial Intelligence, Institute for Research in Translational Medicine (IIMT), Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Informatics, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin S. Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott D. Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Garry P. Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kari C. Nadeau
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Stanford University, Stanford, CA, USA
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David R. McIlwain
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
10
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Atlas from Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.24.427965. [PMID: 33501444 PMCID: PMC7836114 DOI: 10.1101/2021.01.24.427965] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. Using DS affinity, we identified an autoantigenome of 408 proteins from human fetal lung fibroblast HFL11 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigenome have thus far been found to be altered at protein or RNA levels in SARS-Cov-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a strong connection between viral infection and autoimmunity. The vast number of COVID-altered proteins with propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles raises concerns about potential adverse effects of mRNA vaccines. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
11
|
Serag WM, Mohammed BSE, Mohamed MM, Elsayed BE. Predicting the risk of portal vein thrombosis in patients with liver cirrhosis and hepatocellular carcinoma. Heliyon 2020; 6:e04677. [PMID: 32904199 PMCID: PMC7452450 DOI: 10.1016/j.heliyon.2020.e04677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 01/24/2023] Open
Abstract
The mechanisms of the hypercoagulable state in cirrhotics with and without hepatocellular carcinoma are incompetently comprehended. Objective: We aimed to explore the plasma Annexin A5/PS + MP ratio in these patients. Higher levels of Annexin A5 and PhosphatidylSerine bearing microparticles have been observed in cases of inflammation and increased coagulation but there are no studies which explore if there is an association between them and PVT in cirrhotics with and without HCC. So, our goal is to estimate their role in predicting PVT within HCV cirrhotics with and without HCC. 91 HCV cirrhotics with and without HCC and 20 healthy people (controls) were enlisted. Cirrhotics with and without HCC who developed PVT displayed higher levels of PS + MPs and lower Annexin A5/PS + MPs ratio (38.73 ± 1.92) and (0.00238 ± 0.00047) than cirrhotics who didn't develop PVT (22.19 ± 10.58) and (0.00451 ± 0.0023) (P < 0.001). Among the tested factors, lower Annexin A5/PS + MPs ratio show higher performance in predicting PVT in total cirrhotics, AUC, 0.919 followed by PS + MPs level, 0.876, Portal flow velocity, 0.842, Plasma Annexin A5 level, 0.509. In our hypothesis, As phosphatidylserine exposure increase due to increased level of circulating microparticles in cirrhotics with and without HCC, anenxin-A5 may be secreted by platelets and endothelial cells into the circulation as a physiological response to inactivate the elevated levels of PS bearing MPs produced in these patients but the increase in anenxin-A5 level isn't equivalent to the increase in PS bearing MPs levels. The equilibrium between plasma annexin A5 and PS bearing MPs levels is defected.
Collapse
Affiliation(s)
| | | | | | - Basem Eysa Elsayed
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| |
Collapse
|
12
|
Abstract
OBJECTIVE Annexin A5 (AnxA5) has been previously linked to the presence of carotid and cardiac target organ damage (TOD) in the context of heart failure and rheumatologic patients. However, information is scant in the context of hypertension. Aim of our study was to evaluate AnxA5 in treated hypertension patients compared with normotensive controls and to determine whether it is associated with vascular and heart TOD evaluated as arterial stiffness, carotid plaque and left ventricular hypertrophy. METHODS We enrolled 123 consecutive treated hypertension and 124 normotensive controls. TOD was evaluated as pulse wave velocity (PWV, complior), left ventricular hypertrophy (echocardiography) and intima-media thickness and carotid plaque presence (ecographic methods). AnxA5 levels was dosed and compared in patients with and without hypertension and with and without TOD. RESULTS With similar age hypertension patients showed higher SBP, DBP and AnxA5 levels (13.9 ± 11.1 vs 10.1 ± 8.4 ng/ml, P < 0.001) compared with controls. Regarding TOD hypertension showed higher PWV (8.5 ± 1.8 vs 7.6 ± 1.5 m/s, P < 0.001) and LVMI (121.7 ± 29.3 vs 113.5 ± 21.1 g/m, P < 0.05), whereas carotid intima-media thickness was superimposable. AnxA5 correlates with PWV (r = 0.13, P < 0.05) and DBP (r = 0.15, P < 0.01), whereas it has never been found as a significant independent predictor of TOD in linear regression analysis. CONCLUSION Our data have shown that AnxA5 levels are increased in treated hypertension patients. In this condition, it is probably released in the plasma as a defensive mechanism through its anti-inflammatory and anticoagulants effects. We found a significant association with arterial stiffness, but AnxA5 was not found to be a significant predictor of TOD.
Collapse
|
13
|
Abstract
Recognition and removal of apoptotic and necrotic cells must be efficient and highly controlled to avoid excessive inflammation and autoimmune responses to self. The complement system, a crucial part of innate immunity, plays an important role in this process. Thus, apoptotic and necrotic cells are recognized by complement initiators such as C1q, mannose binding lectin, ficolins, and properdin. This triggers complement activation and opsonization of cells with fragments of C3b, which enhances phagocytosis and thus ensures silent removal. Importantly, the process is tightly controlled by the binding of complement inhibitors C4b-binding protein and factor H, which attenuates late steps of complement activation and inflammation. Furthermore, factor H becomes actively internalized by apoptotic cells, where it catalyzes the cleavage of intracellular C3 to C3b. The intracellularly derived C3b additionally opsonizes the cell surface further supporting safe and fast clearance and thereby aids to prevent autoimmunity. Internalized factor H also binds nucleosomes and directs monocytes into production of anti-inflammatory cytokines upon phagocytosis of such complexes. Disturbances in the complement-mediated clearance of dying cells result in persistence of autoantigens and development of autoimmune diseases like systemic lupus erythematosus, and may also be involved in development of age-related macula degeneration.
Collapse
Affiliation(s)
- Myriam Martin
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
14
|
Hrycek E, Banasiewicz‐Szkróbka I, Żurakowski A, Buszman P, Hrycek A. Accelerated Atherosclerosis in Patients with Systemic Lupus Erythematosus and the Role of Selected Adipocytokines in This Process. Lupus 2017. [DOI: 10.5772/68016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Avriel A, Fleischer S, Friger M, Shovman O, Neuman G, Shoenfeld Y, Abu-Shakra M. Prediction of Antiphospholipid syndrome using Annexin A5 competition assay in patients with SLE. Clin Rheumatol 2016; 35:2933-2938. [PMID: 27704312 DOI: 10.1007/s10067-016-3428-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 01/04/2023]
Abstract
A significantly high correlation between reduced activity of Annexin A5 by the flow cytometric assay (FCA) and the diagnosis of antiphospholipid syndrome (APS) has been reported. The aim of this study was to assess the clinical and laboratory significance of the Annexin A5 competition assay among patients with systemic lupus erythematosus (SLE). The FCA competition assay was performed on blood samples from 57 consecutive SLE patients. The FCA was performed according to a previously validated method. Forty-seven patients (82.5 %) had SLE without APS and ten (17.5 %) had SLE with APS. Twenty-four (42 %) of the patients had mean levels of AnxA5 fluorescence below the mean and standard deviation of the controls and were considered positive. SLE patients with a positive FCA were found to have an increased risk for a hypercoagulable or vascular state (86 % of the patients had cerebrovascular disease, 89 % had Raynaud's phenomenon, and 80 % had deep vein thrombosis). The risk for any hypercoagulable or vascular state was significantly increased (P = 0.012, RR-2.3, 95 % CI 1.4-3.8). A positive FCA assay was found in 90 % of the patients with APS (P < 0.001), with a sensitivity of 90 % and a specificity of 68 % for this diagnosis. The positive and negative predictive values were 0.4 and 0.97, respectively. Correlations were found between positive FCA and positive Anti-Cardiolipin antibody (P < 0.001), and Anti-β2 glycoprotein I levels (P = 0.013). Our findings suggest that the FCA is a practical assay for the detection of clinically relevant APS among patients with SLE.
Collapse
Affiliation(s)
- Avital Avriel
- Department of Medicine, Soroka Medical Center, Faculty of Health Sciences Ben-Gurion University, Beer-Sheva, Israel
| | - Stela Fleischer
- Blood Bank and Transfusion Medicine, Soroka University Medical Centre, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael Friger
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ora Shovman
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Sackler Faculty of Medicine in Tel-Aviv University, Tel-Aviv, Israel
| | - Gal Neuman
- Rambam Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Sackler Faculty of Medicine in Tel-Aviv University, Tel-Aviv, Israel
| | - Mahmoud Abu-Shakra
- Department of Medicine, Soroka Medical Center, Faculty of Health Sciences Ben-Gurion University, Beer-Sheva, Israel. .,Rheumatic Diseases Unit, Soroka University Medical Centre, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
16
|
Imbalance between endothelial damage and repair: a gateway to cardiovascular disease in systemic lupus erythematosus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:178721. [PMID: 24790989 PMCID: PMC3984775 DOI: 10.1155/2014/178721] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/21/2014] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is accelerated in patients with systemic lupus erythematosus (SLE) and it leads to excessive cardiovascular complications in these patients. Despite the improved awareness of cardiovascular disease and advent of clinical diagnostics, the process of atherogenesis in most patients remains clinically silent until symptoms and signs of cardiovascular complications develop. As evidence has demonstrated that vascular damage is already occurring before clinically overt cardiovascular disease develops in lupus patients, intervention at the preclinical stage of atherogenesis would be plausible. Indeed, endothelial dysfunction, one of the earliest steps of atherogenesis, has been demonstrated to occur in lupus patients even when they are naïve for cardiovascular disease. Currently known “endothelium-toxic” factors including type 1 interferon, proinflammatory cytokines, inflammatory cells, immune complexes, costimulatory molecules, neutrophils extracellular traps, lupus-related autoantibodies, oxidative stress, and dyslipidemia, coupled with the aberrant functions of the endothelial progenitor cells (EPC) which are crucial to vascular repair, likely tip the balance towards endothelial dysfunction and propensity to develop cardiovascular disease in lupus patients. In this review, altered physiology of the endothelium, factors leading to perturbed vascular repair contributed by lupus EPC and the impact of proatherogenic factors on the endothelium which potentially lead to atherosclerosis in lupus patients will be discussed.
Collapse
|
17
|
An ultrastructural analysis of platelets, erythrocytes, white blood cells, and fibrin network in systemic lupus erythematosus. Rheumatol Int 2013; 34:1005-9. [PMID: 23832292 DOI: 10.1007/s00296-013-2817-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 06/25/2013] [Indexed: 12/16/2022]
Abstract
The study suggests that patients with systemic lupus erythematosus (SLE) present with distinct inflammatory ultrastructural changes such as platelets blebbing, generation of platelet-derived microparticles, spontaneous formation of massive fibrin network and fusion of the erythrocytes membranes. Lupoid platelets actively interact with other inflammatory cells, particularly with white blood cells (WBCs), and the massive fibrin network facilitates such an interaction. It is possible that the concerted actions of platelets, erythrocytes and WBC, caught in the inflammatory fibrin network, predispose to pro-thrombotic states in patients with SLE.
Collapse
|
18
|
Lai CTM, Chow PC, Wong SJ, Chan KW, Cheung YF. Circulating annexin A5 levels after atrial switch for transposition of the great arteries: relationship with ventricular deformation and geometry. PLoS One 2012; 7:e52125. [PMID: 23284897 PMCID: PMC3527428 DOI: 10.1371/journal.pone.0052125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/09/2012] [Indexed: 01/01/2023] Open
Abstract
Background Inflammatory cytokines, cardiomyocyte apoptosis, and altered collagen turnover may contribute to unfavourable ventricular remodeling. This unfavourable ventricular remodelling is well documented in patients after atrial switch operation for complete transposition of the great arteries. We therefore tested if levels of circulating markers of inflammation, apoptosis, collagen synthesis, and extracellular matrix degradation are altered in patients after atrial switch operation for transposition of the great arteries. Methods and Results Circulating tumour necrosis factor (TNF)-α, annexin A5 (AnxA5), carboxy-terminal propeptide of type I procollagen (PICP), amino-terminal propeptide of type III procollagen (PIIINP), matrix metalloproteinase-1 (MMP-1), and tissue inhibitor of metalloproteinase-1 (TIMP-1) levels were determined in 27 patients aged 25.2±3.1 years and 20 controls. Ventricular myocardial deformation and left ventricular eccentricity index (EI) were determined by speckle tracking and two-dimensional echocardiography, respectively. Compared with controls, patients had significantly higher circulating AnxA5 (p<0.001) and TNF-α (p = 0.018) levels, but similar PICP, PIIINP, MMP-1 and TIMP-1 levels. For the whole cohort, plasma AnxA5 correlated with serum TNF-α (p = 0.002), systemic ventricular global longitudinal strain (GLS) and systolic and early diastolic strain rate (all p<0.001), and subpulmonary ventricular GLS and early diastolic strain rate (both p<0.001). In patients, plasma AnxA5 level correlated positively with subpulmonary ventricular EI (p = 0.027). Multiple linear regression analysis identified systemic ventricular GLS (β = −0.50, p<0.001) and serum TNF-α (β = 0.29, p = 0.022) as significant correlates of plasma AnxA5. Conclusions Elevated plasma AnxA5 level in patients after atrial switch operation is associated with impaired systemic myocardial deformation, increased subpulmonary ventricular eccentricity, and increased serum TNF-α level.
Collapse
Affiliation(s)
- Clare T. M. Lai
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Pak-cheong Chow
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Sophia J. Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Koon-wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Yiu-fai Cheung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
19
|
Martin M, Leffler J, Blom AM. Annexin A2 and A5 serve as new ligands for C1q on apoptotic cells. J Biol Chem 2012; 287:33733-44. [PMID: 22879587 PMCID: PMC3460470 DOI: 10.1074/jbc.m112.341339] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 08/01/2012] [Indexed: 12/11/2022] Open
Abstract
C1q is the initiator of the classical complement pathway and opsonizes apoptotic cells to facilitate phagocytosis. Deficiency of C1q is the strongest known risk factor for development of systemic lupus erythematosus (SLE), which appears to be related to ensuing impaired clearance of apoptotic material. The objective of the current study was to investigate new ligands for C1q on the surface of apoptotic cells. We revealed that the two phospholipid-binding proteins annexin A2 and A5 are, beside DNA, significant C1q ligands. We furthermore, demonstrated that C1q binds directly to histones exposed on the surface of dying cells but we did not detect significant interaction with phosphatidylserine. The complement inhibitors C4b-binding protein and factor H also interact with dying cells, most likely to decrease complement activation beyond the level of C3 to allow noninflammatory clearance. Despite the fact that C4b-binding protein, factor H, and C1q share some ligands on dying cells, we showed that these three proteins did not compete with one another for binding to apoptotic cells. We additionally demonstrated that the way in which apoptosis is induced influenced both the degree of apoptosis and the binding of C1q. The knowledge, that annexin A2 and A5 act as ligands for C1q on apoptotic cells, sheds new light on the pathophysiology of autoimmune diseases.
Collapse
Affiliation(s)
- Myriam Martin
- From the Department of Laboratory Medicine Malmö, Lund University, Medical Protein Chemistry, Inga Marie Nilssons gata 53, S-205 02 Malmö, Sweden
| | - Jonatan Leffler
- From the Department of Laboratory Medicine Malmö, Lund University, Medical Protein Chemistry, Inga Marie Nilssons gata 53, S-205 02 Malmö, Sweden
| | - Anna M. Blom
- From the Department of Laboratory Medicine Malmö, Lund University, Medical Protein Chemistry, Inga Marie Nilssons gata 53, S-205 02 Malmö, Sweden
| |
Collapse
|