1
|
A Review of Signaling Transduction Mechanisms in Osteoclastogenesis Regulation by Autophagy, Inflammation, and Immunity. Int J Mol Sci 2022; 23:ijms23179846. [PMID: 36077242 PMCID: PMC9456406 DOI: 10.3390/ijms23179846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoclastogenesis is an ongoing rigorous course that includes osteoclast precursors fusion and bone resorption executed by degradative enzymes. Osteoclastogenesis is controlled by endogenous signaling and/or regulators or affected by exogenous conditions and can also be controlled both internally and externally. More evidence indicates that autophagy, inflammation, and immunity are closely related to osteoclastogenesis and involve multiple intracellular organelles (e.g., lysosomes and autophagosomes) and certain inflammatory or immunological factors. Based on the literature on osteoclastogenesis induced by different regulatory aspects, emerging basic cross-studies have reported the emerging disquisitive orientation for osteoclast differentiation and function. In this review, we summarize the partial potential therapeutic targets for osteoclast differentiation and function, including the signaling pathways and various cellular processes.
Collapse
|
2
|
Zhao HX, Huang YX, Tao JG. ST1926 Attenuates Steroid-Induced Osteoporosis in Rats by Inhibiting Inflammation Response. J Cell Biochem 2017; 118:2072-2086. [PMID: 27918081 DOI: 10.1002/jcb.25812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Hong-xing Zhao
- Department of Orthopedics; The First Affiliated Hospital of Xinxiang Medical University; Weihui City Henan 453100 China
| | - Yuan-xia Huang
- Department of Orthopedics; The First Affiliated Hospital of Xinxiang Medical University; Weihui City Henan 453100 China
| | - Jin-gang Tao
- Department of Orthopedics; The First Affiliated Hospital of Xinxiang Medical University; Weihui City Henan 453100 China
| |
Collapse
|
3
|
Sharmin F, McDermott C, Lieberman J, Sanjay A, Khan Y. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling. J Orthop Res 2017; 35:1086-1095. [PMID: 27155087 DOI: 10.1002/jor.23287] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/29/2016] [Indexed: 02/04/2023]
Abstract
Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non-unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer-coated allograft that delivers bone morphogenetic protein-2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein-2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short-term (95% release within 2 weeks) and long-term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co-cultured with VEGF released from the coated allograft and showed a statistically significant (p < 0.05) and dose dependent increase in the number of tartrate-resistant acid phosphatase-positive multinucleated osteoclasts. Functionality of these osteoclasts was assessed quantitatively and qualitatively by evaluating resorption pit area from both osteo-assay plates and harvested bone. Data indicated a statistically significant higher resorption area from the cells exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer-coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may enhance allograft incorporation, and thus mitigate long-term clinical complications. © 2017 Orthopedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1086-1095, 2017.
Collapse
Affiliation(s)
- Farzana Sharmin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut.,Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut
| | - Casey McDermott
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Jay Lieberman
- Department of Orthopedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Archana Sanjay
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut.,New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut, 06030
| | - Yusuf Khan
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut.,Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut.,Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut.,New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut, 06030
| |
Collapse
|
4
|
Fu J, Tao YD, Chen J, Zhang Y, He J. Role of RANKL in the regulation of NFATc1 and c‑Src mRNA expression in osteoclast‑like cells. Mol Med Rep 2016; 13:5163-8. [PMID: 27122093 DOI: 10.3892/mmr.2016.5176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 03/22/2016] [Indexed: 11/05/2022] Open
Abstract
This study was designed to determine the effects of receptor activator of nuclear factor κB ligand (RANKL) on the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and c‑Src in rat osteoclast‑like cells. The marrow cells were exposed to macrophage colony-stimulating factor (M‑CSF; 25 ng/ml) and different concentrations of RANKL (0, 50, 75 and 100 ng/ml) for 9 days. The mRNA expression of NFATc1 and c‑Src was determined by polymerase chain reaction. Compared with the M‑CSF (25 ng/ml)+RANKL (0 ng/ml) group, the levels of NFATc1 and c‑Src mRNA expression were significantly increased in the M‑CSF (25 ng/ml)+RANKL (75 and 100 ng/ml) groups (P<0.01, P<0.01, P<0.01 and P<0.01, respectively). Compared with the M‑CSF (25 ng/ml)+RANKL (50 ng/ml) group, the levels of NFATc1 and c‑Src mRNA expression was significantly increased in the M‑CSF (25 ng/ml)+RANKL (75 and 100 ng/ml) groups (P<0.05, P<0.01, P<0.01 and P<0.01, respectively). Compared with M‑CSF (25 ng/ml)+RANKL (75 ng/ml) group, the levels of NFATc1 and c‑Src mRNA expression was significantly increased in the M‑CSF (25 ng/ml)+RANKL (100 ng/ml) group, (P<0.01 and P<0.01, respectively). These data suggest that RANKL could regulate the expression of NFATc1 and c‑Src mRNA in the marrow culture system.
Collapse
Affiliation(s)
- Jifan Fu
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - You Di Tao
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jian Chen
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Yongsheng Zhang
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jianquan He
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
5
|
Osteoprotegerin exposure at different stages of osteoclastogenesis differentially affects osteoclast formation and function. Cytotechnology 2015; 68:1325-35. [PMID: 26044733 DOI: 10.1007/s10616-015-9892-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/23/2015] [Indexed: 10/23/2022] Open
Abstract
This study aimed to investigate the effects of osteoprotegerin (OPG), a decoy receptor for receptor activator for nuclear factor κB ligand (RANKL), during the various stages of osteoclast differentiation, and additionally investigate its effects on osteoclast adhesion and activity. RAW264.7 murine monocytic cells were incubated with macrophage colony-stimulating factor and RANKL for 1, 3, 5, or 7 days, followed by an additional 24-h incubation in the presence or absence of OPG (80 ng/mL). We examined osteoclast differentiation and adhesion capacity using the tartrate-resistant acid phosphatase (TRAP) assay and immunofluorescence microscopy, and additionally examined cell growth in real time using the xCELLigence system. Furthermore, the expression levels of TRAP, RANK, integrin β3, matrix metalloproteinase 9, cathepsin K, carbonic anhydrase II, and vesicular-type H(+)-ATPase A1 were examined using western blotting. OPG exposure on day 1 enhanced the osteoclast growth curve as well as adhesion, and increased RANK and integrin β3 expression. In contrast, exposure to OPG at later time points (days 3-7) inhibited osteoclast differentiation, adhesion structure formation, and protease expression. In conclusion, the biological effects of OPG exposure at the various stages of osteoclast differentiation were varied, and included the enhanced adhesion and survival of preosteoclasts, the block of differentiation from the early to the terminal stages of osteoclastogenesis, and suppression of mature osteoclast activation following OPG exposure during the terminal differentiation stage, suggesting that the effects of OPG exposure differ based on the stage of differentiation.
Collapse
|
6
|
Fu YX, Gu JH, Zhang YR, Tong XS, Zhao HY, Yuan Y, Liu XZ, Bian JC, Liu ZP. Inhibitory effects of osteoprotegerin on osteoclast formation and function under serum-free conditions. J Vet Sci 2013; 14:405-12. [PMID: 23820214 PMCID: PMC3885733 DOI: 10.4142/jvs.2013.14.4.405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/16/2013] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to determine whether osteoprotegerin (OPG) could affect osteoclat differentiation and activation under serum-free conditions. Both duck embryo bone marrow cells and RAW264.7 cells were incubated with macrophage colony stimulatory factor (M-CSF) and receptor activator for nuclear factor κB ligand (RANKL) in serum-free medium to promote osteoclastogenesis. During cultivation, 0, 10, 20, 50, and 100 ng/mL OPG were added to various groups of cells. Osteoclast differentiation and activation were monitored via tartrate-resistant acid phosphatase (TRAP) staining, filamentous-actin rings analysis, and a bone resorption assay. Furthermore, the expression osteoclast-related genes, such as TRAP and receptor activator for nuclear factor κB (RANK), that was influenced by OPG in RAW264.7 cells was examined using real-time polymerase chain reaction. In summary, findings from the present study suggested that M-CSF with RANKL can promote osteoclast differentiation and activation, and enhance the expression of TRAP and RANK mRNA in osteoclasts. In contrast, OPG inhibited these activities under serum-free conditions.
Collapse
Affiliation(s)
- Ying-Xiao Fu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
FU YINGXIAO, GU JIANHONG, ZHANG YIRAN, TONG XISHUAI, ZHAO HONGYAN, YUAN YAN, LIU XUEZHONG, BIAN JIANCHUN, LIU ZONGPING. Osteoprotegerin influences the bone resorption activity of osteoclasts. Int J Mol Med 2013; 31:1411-7. [DOI: 10.3892/ijmm.2013.1329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/05/2013] [Indexed: 11/05/2022] Open
|