1
|
Sahoo A, Das PK, Dasu VV, Patra S. Insulin evolution: A holistic view of recombinant production advancements. Int J Biol Macromol 2024; 277:133951. [PMID: 39032893 DOI: 10.1016/j.ijbiomac.2024.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The increased prevalence of diabetes and the growing popularity of non-invasive methods of recombinant human insulin uptake, such as oral insulin, have increased insulin demand, further limiting the affordability of insulin. Over 40 years have passed since the development of engineered microorganisms that replaced the animal pancreas as the primary source of insulin. To stay ahead of the need for insulin in the present and the future, a few drawbacks with the existing expression systems need to be alleviated, including the inclusion body formation, the use of toxic inducers, and high process costs. To address these bottlenecks and improve insulin production, a variety of techniques are being used in bacteria, yeasts, transgenic plants and animals, mammalian cell lines, and cell-free expression systems. Different approaches for the production of insulin, including two-chain, proinsulin or mini-proinsulin, preproinsulin coupled with fusion protein, chaperone, signal peptide, and purification tags, are explored in upstream, whereas downstream processing takes into account the recovery of intact protein in its bioactive form and purity. This article focuses on the strategies used in the upstream and downstream phases of the bioprocess to produce recombinant human insulin. This review also covers a range of analytical methods and tools employed in investigating the genuity of recombinant human insulin.
Collapse
Affiliation(s)
- Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Veeranki Venkata Dasu
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Sanjukta Patra
- Enzyme & Microbial Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| |
Collapse
|
2
|
Bharathi JK, Suresh P, Prakash MAS, Muneer S. Exploring recent progress of molecular farming for therapeutic and recombinant molecules in plant systems. Heliyon 2024; 10:e37634. [PMID: 39309966 PMCID: PMC11416299 DOI: 10.1016/j.heliyon.2024.e37634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/10/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
An excellent technique for producing pharmaceuticals called "molecular farming" enables the industrial mass production of useful recombinant proteins in genetically modified organisms. Protein-based pharmaceuticals are rising in significance because of a variety of factors, including their bioreactivity, precision, safety, and efficacy rate. Heterologous expression methods for the manufacturing of pharmaceutical products have been previously employed using yeast, bacteria, and animal cells. However, the high cost of mammalian cell system, and production, the chance for product complexity, and contamination, and the hurdles of scaling up to commercial production are the limitations of these traditional expression methods. Plants have been raised as a hopeful replacement system for the expression of biopharmaceutical products due to their potential benefits, which include low production costs, simplicity in scaling up to commercial manufacturing levels, and a lower threat of mammalian toxin contaminations and virus infections. Since plants are widely utilized as a source of therapeutic chemicals, molecular farming offers a unique way to produce molecular medicines such as recombinant antibodies, enzymes, growth factors, plasma proteins, and vaccines whose molecular basis for use in therapy is well established. Biopharming provides more economical and extensive pharmaceutical drug supplies, including vaccines for contagious diseases and pharmaceutical proteins for the treatment of conditions like heart disease and cancer. To assess its technical viability and the efficacy resulting from the adoption of molecular farming products, the following review explores the various methods and methodologies that are currently employed to create commercially valuable molecules in plant systems.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Preethika Suresh
- School of Bioscience and Biotechnology, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Sowbiya Muneer
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| |
Collapse
|
3
|
Yu G, Zhao W, Wang Y, Xu N. Molecular farming expression of recombinant fusion proteins applied to skincare strategies. PeerJ 2024; 12:e17957. [PMID: 39308805 PMCID: PMC11416094 DOI: 10.7717/peerj.17957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
This review discusses the current research progress in molecular farming technology in the field of skincare, with an emphasis on molecular farming expression strategies. The strategies of transdermal drug delivery and their advantages are also highlighted. The expression of cosmetically relevant fused proteins has become an important way to enhance the efficacy of the proteins. Therefore, we also discuss the feasibility and strategies for expressing fusion proteins in A. thaliana, specifically the fusion of Epidermal growth factor (EGF) to a cell-penetrating peptide (CPP), in which the production can be greatly enhanced via plant expression systems since these systems offer higher biosecurity, flexibility, and expansibility than prokaryotic, animal and mammalian expression systems. While the fusion of EGF to CCP can enhance its transdermal ability, the effects of the fusion protein on skin repair, melasma, whitening, and anti-aging are poorly explored. Beyond this, fusing proteins with transdermal peptides presents multiple possibilities for the development of tissue repair and regeneration therapeutics, as well as cosmetics and beauty products. As certain plant extracts are known to contain proteins beneficial for skin health, the expression of these proteins in plant systems will better maintain their integrity and biological activities, thereby facilitating the development of more effective skincare products.
Collapse
Affiliation(s)
- Guangdong Yu
- College of Life and Environmental Sciences, Wenzhou University, Wen Zhou, China
| | - Wengang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wen Zhou, China
| | - Yunpeng Wang
- Jilin Academy of Agricultural Sciences, Northeast Innovation Center of China Agricultural Science and Technology, Ji Lin, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wen Zhou, China
| |
Collapse
|
4
|
Klocko AL. Genetic Containment for Molecular Farming. PLANTS (BASEL, SWITZERLAND) 2022; 11:2436. [PMID: 36145835 PMCID: PMC9501302 DOI: 10.3390/plants11182436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
Plant molecular farming can provide humans with a wide variety of plant-based products including vaccines, therapeutics, polymers, industrial enzymes, and more. Some of these products, such as Taxol, are produced by endogenous plant genes, while many others require addition of genes by artificial gene transfer. Thus, some molecular farming plants are transgenic (or cisgenic), while others are not. Both the transgenic nature of many molecular farming plants and the fact that the products generated are of high-value and specific in purpose mean it is essential to prevent accidental cross-over of molecular farming plants and products into food or feed. Such mingling could occur either by gene flow during plant growth and harvest or by human errors in material handling. One simple approach to mitigate possible transfer would be to use only non-food non-feed species for molecular farming purposes. However, given the extent of molecular farming products in development, testing, or approval that do utilize food or feed crops, a ban on use of these species would be challenging to implement. Therefore, other approaches will need to be considered for mitigation of cross-flow between molecular farming and non-molecular-farming plants. This review summarized some of the production systems available for molecular farming purposes and options to implement or improve plant containment.
Collapse
Affiliation(s)
- Amy L Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
5
|
Current advances and future prospects in production of recombinant insulin and other proteins to treat diabetes mellitus. Biotechnol Lett 2022; 44:643-669. [DOI: 10.1007/s10529-022-03247-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
|
6
|
Khan I, Daniell H. Oral delivery of therapeutic proteins bioencapsulated in plant cells: preclinical and clinical advances. Curr Opin Colloid Interface Sci 2021; 54. [PMID: 33967586 DOI: 10.1016/j.cocis.2021.101452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oral delivery of protein drugs (PDs) made in plant cells could revolutionize current approaches of their production and delivery. Expression of PDs reduces their production cost by elimination of prohibitively expensive fermentation, purification, cold transportation/storage, and sterile injections and increases their shelf life for several years. Ability of plant cell wall to protect PDs from digestive acids/enzymes, commensal bacteria to release PDs in gut lumen after lysis of plant cell wall and role of GALT in inducing tolerance facilitate prevention or treatment allergic, autoimmune diseases or anti-drug antibody responses. Delivery of functional proteins facilitate treatment of inherited or metabolic disorders. Recent advances in making PDs free of antibiotic resistance genes in edible plant cells, long-term storage at ambient temperature maintaining their efficacy, production in cGMP facilities, IND enabling studies for clinical advancement and FDA approval of orally delivered PDs augur well for advancing this novel drug delivery platform technology.
Collapse
Affiliation(s)
- Imran Khan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Govea-Alonso DO, Arevalo-Villalobos JI, Márquez-Escobar VA, Vimolmangkang S, Rosales-Mendoza S. An overview of tolerogenic immunotherapies based on plant-made antigens. Expert Opin Biol Ther 2019; 19:587-599. [PMID: 30892096 DOI: 10.1080/14712598.2019.1597048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Over the last two decades, genetically engineered plants became attractive and mature platforms for producing vaccines and other relevant biopharmaceuticals. Autoimmune and inflammatory disorders demand the availability of accessible treatments, and one alternative therapy is based on therapeutic vaccines able to downregulate immune responses that favor pathology progression. AREAS COVERED The current status of plant-made tolerogenic vaccines is presented with emphasis on the candidates under evaluation in test animals. Nowadays, this concept has been assessed in models of food and pollen allergies, autoimmune diabetes, asthma, arthritis, and prevention of blocking antibodies induction against a biopharmaceutical used in replacement therapies. EXPERT OPINION According to the current evidence generated at the preclinical level, plant-made tolerogenic therapies are a promise to treat several immune-related conditions, and the beginning of clinical trials is envisaged for the next decade. Advantages and limitations for this technology are discussed.
Collapse
Affiliation(s)
- Dania O Govea-Alonso
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Jaime I Arevalo-Villalobos
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Verónica A Márquez-Escobar
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Sornkanok Vimolmangkang
- c Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences , Chulalongkorn University , Bangkok , Thailand.,d Research Unit for Plant-Produced Pharmaceuticals , Chulalongkorn University , Bangkok , Thailand
| | - Sergio Rosales-Mendoza
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| |
Collapse
|
8
|
Oral Administration of Silkworm-Produced GAD65 and Insulin Bi-Autoantigens against Type 1 Diabetes. PLoS One 2016; 11:e0147260. [PMID: 26783749 PMCID: PMC4718521 DOI: 10.1371/journal.pone.0147260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/02/2016] [Indexed: 01/27/2023] Open
Abstract
Induction of mucosal tolerance by oral administration of protein antigens is a potential therapeutic strategy for preventing and treating type 1 diabetes (T1D); however, the requirement for a large dosage of protein limits clinical applications because of the low efficacy. In this study, we generated a fusion protein CTB-Ins-GAD composed of CTB (cholera toxin B subunit), insulin, and three copies of GAD65 peptide 531–545, which were efficiently produced in silkworm pupae, to evaluate its protective effect against T1D. We demonstrate that oral administration of CTB-Ins-GAD suppressed T1D by up to 78%, which is much more effective than GAD65 single-antigen treatment. Strikingly, CTB-Ins-GAD enhance insulin- and GAD65-specific Th2-like immune responses, which repairs the Th1/Th2 imbalance and increases the number of CD4+CD25+Foxp3+ T cell and suppresses insulin- and GAD65-reactive spleen T lymphocyte proliferation and migration. Our results strongly suggest that the combined dual antigens promote the induction of oral tolerance, thus providing an effective and economic immunotherapy against T1D in combination with a silkworm bioreactor.
Collapse
|
9
|
O'Keefe BR, Murad AM, Vianna GR, Ramessar K, Saucedo CJ, Wilson J, Buckheit KW, da Cunha NB, Araújo ACG, Lacorte CC, Madeira L, McMahon JB, Rech EL. Engineering soya bean seeds as a scalable platform to produce cyanovirin-N, a non-ARV microbicide against HIV. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:884-92. [PMID: 25572960 PMCID: PMC4529388 DOI: 10.1111/pbi.12309] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/04/2014] [Accepted: 11/06/2014] [Indexed: 05/03/2023]
Abstract
There is an urgent need to provide effective anti-HIV microbicides to resource-poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost. Here, we report the production of biologically active recombinant cyanovirin-N (rCV-N), an antiviral protein, in genetically engineered soya bean seeds. Pure, biologically active rCV-N was isolated with a yield of 350 μg/g of dry seed weight. The observed amino acid sequence of rCV-N matched the expected sequence of native CV-N, as did the mass of rCV-N (11 009 Da). Purified rCV-N from soya is active in anti-HIV assays with an EC50 of 0.82-2.7 nM (compared to 0.45-1.8 nM for E. coli-produced CV-N). Standard industrial processing of soya bean seeds to harvest soya bean oil does not diminish the antiviral activity of recovered rCV-N, allowing the use of industrial soya bean processing to generate both soya bean oil and a recombinant protein for anti-HIV microbicide development.
Collapse
Affiliation(s)
- Barry R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - André M Murad
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
| | - Giovanni R Vianna
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
| | - Koreen Ramessar
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Carrie J Saucedo
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
- Leidos, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jennifer Wilson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | | | - Nicolau B da Cunha
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
| | - Ana Claudia G Araújo
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
| | - Cristiano C Lacorte
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
| | - Luisa Madeira
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
- Division of Clinical Sciences, St. George's, University of London, London, UK
| | - James B McMahon
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Elibio L Rech
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
| |
Collapse
|
10
|
Ko K. Expression of recombinant vaccines and antibodies in plants. Monoclon Antib Immunodiagn Immunother 2015; 33:192-8. [PMID: 24937251 DOI: 10.1089/mab.2014.0049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plants are able to perform post-translational maturations of therapeutic proteins required for their functional biological activity and suitable in vivo pharmacokinetics. Plants can be a low-cost, large-scale production platform of recombinant biopharmaceutical proteins such as vaccines and antibodies. Plants, however, lack mechanisms of processing authentic human N-glycosylation, which imposes a major limitation in their use as an expression system for therapeutic glycoproducts. Efforts have been made to circumvent plant-specific N-glycosylation, as well as to supplement the plant's endogenous system with human glycosyltransferases for non-immunogenic and humanized N-glycan production. Herein we review studies on the potential of plants to serve as production systems for therapeutic and prophylactic biopharmaceuticals. We have especially focused on recombinant vaccines and antibodies and new expression strategies to overcome the existing problems associated with their production in plants.
Collapse
Affiliation(s)
- Kisung Ko
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University , Seoul, Korea
| |
Collapse
|
11
|
Fu G, Grbic V, Ma S, Tian L. Evaluation of somatic embryos of alfalfa for recombinant protein expression. PLANT CELL REPORTS 2015; 34:211-21. [PMID: 25413922 DOI: 10.1007/s00299-014-1700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/13/2014] [Indexed: 05/23/2023]
Abstract
Somatic embryos of alfalfa can accumulate higher levels of recombinant proteins comparing to vegetative organs. Somatic embryos may be explored as a new system for new protein production for plants. Plants have been explored via genetic engineering as an inexpensive system for recombinant protein production. However, protein expression levels in vegetative tissues have been low, which limits the commercial utilization of plant expression systems. Somatic embryos resemble zygotic embryos in many aspects and may accumulate higher levels of proteins as true seed. In this study, somatic embryo of alfalfa (Medicago sativa L.) was investigated for the expression of recombinant proteins. Three heterologous genes, including the standard scientific reporter uid that codes for β-glucuronidase and two genes of interest: ctb coding for cholera toxin B subunit (CTB), and hIL-13 coding for human interleukin 13, were independently introduced into alfalfa via Agrobacterium-mediated transformation. Somatic embryos were subsequently induced from transgenic plants carrying these genes. Somatic embryos accumulated approximately twofold more recombinant proteins than vegetative organs including roots, stems, and leaves. The recombinant proteins of CTB and hIL-13 accumulated up to 0.15 and 0.18 % of total soluble protein in alfalfa somatic embryos, respectively. The recombinant proteins expressed in somatic embryos also exhibited biological activities. As somatic embryos can be induced in many plant species and their production can be scaled up via different avenues, somatic embryos may be developed as an efficient expression system for recombinant protein production.
Collapse
Affiliation(s)
- Guohua Fu
- Department of Biology, University of Western Ontario, London, ON, Canada
| | | | | | | |
Collapse
|
12
|
Yarbakht M, Jalali-Javaran M, Nikkhah M, Mohebodini M. Dicistronic expression of human proinsulin-protein A fusion in tobacco chloroplast. Biotechnol Appl Biochem 2015; 62:55-63. [PMID: 24716841 DOI: 10.1002/bab.1230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/01/2014] [Indexed: 11/10/2022]
Abstract
Different expression systems such as bacteria and mammalian cells have been used to produce pharmaceutical proteins. In recent years, the use of plants as bioreactors offers efficient and economical systems in recombinant protein production. Furthermore, because of the large number of plastid copies in plants, chloroplast engineering functions as an effective method to increase recombinant protein expression. Because the commercially available insulin for treatment does not contain C-peptide, which is of great importance for type 1 diabetic patients, the current study introduces the human proinsulin gene fused with protein A into the tobacco chloroplast genome using the biolistic method. To achieve homoplasmy, three rounds of selection and regeneration of transforming cells were performed on the medium that contained spectinomycin antibiotic and hormones. The PCR analysis indicated the presence of the proinsulin gene in transplastomic plants. The reverse-transcription PCR analysis confirmed the expression of the proinsulin-protein A fusion at the transcription level. Immunoblot assays of leaf-derived protein extracts confirmed that the target gene expression is up to 0.2% of the total soluble protein. Our study showed that protein A fusion is not as efficient as other reported fusions. The transplastomic plants were also confirmed for homoplasmy using Southern blot analysis.
Collapse
Affiliation(s)
- Melina Yarbakht
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
13
|
Salazar-Gonzalez JA, Rosales-Mendoza S, Romero-Maldonado A, Monreal-Escalante E, Uresti-Rivera EE, Bañuelos-Hernández B. Production of a plant-derived immunogenic protein targeting ApoB100 and CETP: toward a plant-based atherosclerosis vaccine. Mol Biotechnol 2014; 56:1133-42. [PMID: 25143122 DOI: 10.1007/s12033-014-9793-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In an effort to initiate the development of a plant-based vaccination model against atherosclerosis, a cholera toxin B subunit (CTB)-based chimeric protein was designed to target both ApoB100 and CETP epitopes associated with immunotherapeutic effects in atherosclerosis. Epitopes were fused at the C-terminus of CTB to yield a protein called CTB:p210:CETPe. A synthetic gene coding for CTB:p210:CETPe was successfully transferred to tobacco plants with no phenotypic alterations. Plant-derived CTB:p210:CETPe was expressed and assembled in the pentameric form. This protein retained the target antigenic determinants, as revealed by GM1-ELISA and Western blot analyses. Higher expresser lines reached recombinant protein accumulation levels up to 10 µg/g fresh weight in leaf tissues and these lines carry a single insertion of the transgene as determined by qPCR. Moreover, when subcutaneously administered, the biomass from these CTB:p210:CETPe-producing plants was able to elicit humoral responses in mice against both ApoB100 and CETP epitopes and human serum proteins. These findings evidenced for the first time that atherosclerosis-related epitopes can be expressed in plants retaining immunogenicity, which opens a new path in the molecular farming field for the development of vaccines against atherosclerosis.
Collapse
Affiliation(s)
- Jorge Alberto Salazar-Gonzalez
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
| | | | | | | | | | | |
Collapse
|
14
|
Stoykova P, Radkova M, Stoeva-Popova P, Atanasov N, Chassovnikarova T, Wang X, Iantcheva A, Vlahova M, Atanassov A. Expression of The Human Acidic Fibroblast Growth Factor in Transgenic Tomato and Safety Assessment of Transgenic Lines. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Dobhal S, Chaudhary VK, Singh A, Pandey D, Kumar A, Agrawal S. Expression of recombinant antibody (single chain antibody fragment) in transgenic plant Nicotiana tabacum cv. Xanthi. Mol Biol Rep 2013; 40:7027-37. [PMID: 24218164 DOI: 10.1007/s11033-013-2822-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 10/25/2013] [Indexed: 11/27/2022]
Abstract
Plants offer an alternative inexpensive and convenient technology for large scale production of recombinant proteins especially recombinant antibodies (plantibodies). In this paper, we describe the expression of a model single chain antibody fragment (B6scFv) in transgenic tobacco. Four different gene constructs of B6scFv with different target signals for expression in different compartments of a tobacco plant cell with and without endoplasmic reticulum (ER) retention signal were used. Agrobacterium mediated plant transformation of B6scFv gene was performed with tobacco leaf explants and the gene in regenerated plants was detected using histochemical GUS assay and PCR. The expression of B6scFv gene was detected by western blotting and the recombinant protein was purified from putative transgenic tobacco plants using metal affinity chromatography. The expression level of recombinant protein was determined by indirect enzyme-linked immunosorbent assay. The highest accumulation of protein was found up to 3.28 % of the total soluble protein (TSP) in plants expressing B6scFv 1003 targeted to the ER, and subsequently expression of 2.9 % of TSP in plants expressing B6scFv 1004 (with target to apoplast with ER retention signal). In contrast, lower expression of 0.78 and 0.58 % of TSP was found in plants expressing antibody fragment in cytosol and apoplast, without ER retention signal. The described method/system could be used in the future for diverse applications including expression of other recombinant molecules in plants for immunomodulation, obtaining pathogen resistance against plant pathogens, altering metabolic pathways and also for the expression of different antibodies of therapeutic and diagnostic uses.
Collapse
Affiliation(s)
- S Dobhal
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India,
| | | | | | | | | | | |
Collapse
|
16
|
Xu CP, Xiao Y, Mao DB. Antioxidant activity potential of Virginia (flue-cured) tobacco flower polysaccharide fractions obtained by ultrasound-assisted extraction. Biosci Biotechnol Biochem 2013; 77:2100-4. [PMID: 24096655 DOI: 10.1271/bbb.130461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ultrasound-assisted extraction was employed to extract polysaccharide from Virginia (flue-cured) tobacco flowers. The orthogonal matrix method (L9(3)(4)) was used to determine the optimal extraction conditions as to ultrasound power, extraction time, ratio of solvent to solid, and extraction temperature at 300 W, 4 min, 35 (mL/g), and 70 °C respectively. The crude extract was successively purified by chromatography, yielding two major polysaccharide fractions, termed Fr-I and Fr-II. Both fractions are heteropolysaccharides, mainly containing glucose, mannose, and allose with an a-configuration. Thermo gravimetric analysis (TGA) indicated that the degradation temperatures (Td) of Fr-I and Fr-II were 185 °C and 190 °C respectively. The preliminary antioxidant activity test in vitro showed both fractions could potentialize the scavenging effect on hydroxyl and DPPH radicals in a dose-dependent manner. In conclusion, the two polysaccharides may be useful as naturally potential antioxidant agents for application in food and medicinal fields.
Collapse
Affiliation(s)
- Chun-Ping Xu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry
| | | | | |
Collapse
|
17
|
Guan ZJ, Guo B, Huo YL, Guan ZP, Dai JK, Wei YH. Recent advances and safety issues of transgenic plant-derived vaccines. Appl Microbiol Biotechnol 2013; 97:2817-40. [PMID: 23447052 PMCID: PMC7080054 DOI: 10.1007/s00253-012-4566-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 01/08/2023]
Abstract
Transgenic plant-derived vaccines comprise a new type of bioreactor that combines plant genetic engineering technology with an organism's immunological response. This combination can be considered as a bioreactor that is produced by introducing foreign genes into plants that elicit special immunogenicity when introduced into animals or human beings. In comparison with traditional vaccines, plant vaccines have some significant advantages, such as low cost, greater safety, and greater effectiveness. In a number of recent studies, antigen-specific proteins have been successfully expressed in various plant tissues and have even been tested in animals and human beings. Therefore, edible vaccines of transgenic plants have a bright future. This review begins with a discussion of the immune mechanism and expression systems for transgenic plant vaccines. Then, current advances in different transgenic plant vaccines will be analyzed, including vaccines against pathogenic viruses, bacteria, and eukaryotic parasites. In view of the low expression levels for antigens in plants, high-level expression strategies of foreign protein in transgenic plants are recommended. Finally, the existing safety problems in transgenic plant vaccines were put forward will be discussed along with a number of appropriate solutions that will hopefully lead to future clinical application of edible plant vaccines.
Collapse
Affiliation(s)
- Zheng-jun Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China
- Department of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000 China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Bin Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China
| | - Yan-lin Huo
- Centre of Biological and Chemical Exiperiment, Yuncheng University, Yuncheng, Shanxi 044000 China
| | - Zheng-ping Guan
- Department of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangshu 210095 China
| | - Jia-kun Dai
- Enzyme Engineering Institute of Shaanxi, Academy of Sciences, Xi’an, Shaanxi 710600 People’s Republic of China
| | - Ya-hui Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China
| |
Collapse
|
18
|
Chunfeng G, Xiaozhou L, Gang W, Jing J, Chao J, Josine TL. Expression of Cholera Toxin B–Lumbrokinase Fusion Protein in Pichia pastoris—The Use of Transmucosal Carriers in the Delivery of Therapeutic Proteins to Protect Rats Against Thrombosis. Appl Biochem Biotechnol 2012; 169:636-50. [DOI: 10.1007/s12010-012-0004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/30/2012] [Indexed: 11/28/2022]
|
19
|
Soria-Guerra RE, Moreno-Fierros L, Rosales-Mendoza S. Two decades of plant-based candidate vaccines: a review of the chimeric protein approaches. PLANT CELL REPORTS 2011; 30:1367-1382. [PMID: 21505834 DOI: 10.1007/s00299-011-1065-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/20/2011] [Accepted: 03/22/2011] [Indexed: 05/30/2023]
Abstract
Genetic engineering revolutionized the concept of traditional vaccines since subunit vaccines became reality. Additionally, over the past two decades plant-derived antigens have been studied as potential vaccines with several advantages, including low cost and convenient administration. More specifically, genetic fusions allowed the expression of fusion proteins carrying two or more components with the aim to elicit immune responses against different targets, including antigens from distinct pathogens or strains. This review aims to provide an update in the field of the production of plant-based vaccine, focusing on those approaches based on the production of chimeric proteins comprising antigens from human pathogens, emphasizing the case of cholera toxin/E. coli enterotoxin fusions, chimeric viruses like particles approaches as well as the possible use of adjuvant-producing plants as expression hosts. Challenges for the near future in this field are also discussed.
Collapse
Affiliation(s)
- Ruth Elena Soria-Guerra
- Laboratorio de biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosi, SLP, Mexico
| | | | | |
Collapse
|
20
|
Huy NX, Yang MS, Kim TG. Expression of a cholera toxin B subunit-neutralizing epitope of the porcine epidemic diarrhea virus fusion gene in transgenic lettuce (Lactuca sativa L.). Mol Biotechnol 2011; 48:201-9. [PMID: 21153716 DOI: 10.1007/s12033-010-9359-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transgenic plants have been used as a safe and economic expression system for the production of edible vaccines. A synthetic cholera toxin B subunit gene (CTB) was fused with a synthetic neutralizing epitope gene of the porcine epidemic diarrhea virus (sCTB-sCOE), and the sCTB-sCOE fusion gene was introduced into a plant expression vector under the control of the ubiquitin promoter. This plant expression vector was transformed into lettuce (Lactuca sativa L.) using the Agrobacterium-mediated transformation method. Stable integration and transcriptional expression of the sCTB-sCOE fusion gene was confirmed using genomic DNA PCR analysis and northern blot analysis, respectively. The results of western blot analysis with anti-cholera toxin and anti-COE antibody showed the synthesis and assembly of CTB-COE fusion protein into oligomeric structures with pentameric sizing. The biological activity of CTB-COE fusion protein to its receptor, G(M1)-ganglioside, in transgenic plants was confirmed via G(M1)-ELISA with anti-cholera toxin and anti-COE antibody. Based on G(M1)-ELISA, the expression level of CTB-COE fusion proteins reached 0.0065% of the total soluble protein in transgenic lettuce leaf tissues. Transgenic lettuce successfully expressing CTB-COE fusion protein will be tested to induce efficient immune responses against porcine epidemic diarrhea virus infection by administration with raw material.
Collapse
Affiliation(s)
- Nguyen-Xuan Huy
- Department of Molecular Biology, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | | | | |
Collapse
|
21
|
Boyhan D, Daniell H. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:585-98. [PMID: 21143365 PMCID: PMC3480330 DOI: 10.1111/j.1467-7652.2010.00582.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Current treatment for type I diabetes includes delivery of insulin via injection or pump, which is highly invasive and expensive. The production of chloroplast-derived proinsulin should reduce cost and facilitate oral delivery. Therefore, tobacco and lettuce chloroplasts were transformed with the cholera toxin B subunit fused with human proinsulin (A, B, C peptides) containing three furin cleavage sites (CTB-PFx3). Transplastomic lines were confirmed for site-specific integration of transgene and homoplasmy. Old tobacco leaves accumulated proinsulin up to 47% of total leaf protein (TLP). Old lettuce leaves accumulated proinsulin up to 53% TLP. Accumulation was so stable that up to ~40% proinsulin in TLP was observed even in senescent and dried lettuce leaves, facilitating their processing and storage in the field. Based on the yield of only monomers and dimers of proinsulin (3 mg/g leaf, a significant underestimation), with a 50% loss of protein during the purification process, one acre of tobacco could yield up to 20 million daily doses of insulin per year. Proinsulin from tobacco leaves was purified up to 98% using metal affinity chromatography without any His-tag. Furin protease cleaved insulin peptides in vitro. Oral delivery of unprocessed proinsulin bioencapsulated in plant cells or injectable delivery into mice showed reduction in blood glucose levels similar to processed commercial insulin. C-peptide should aid in long-term treatment of diabetic complications including stimulation of nerve and renal functions. Hyper-expression of functional proinsulin and exceptional stability in dehydrated leaves offer a low-cost platform for oral and injectable delivery of cleavable proinsulin.
Collapse
Affiliation(s)
- Diane Boyhan
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
22
|
Tremblay R, Feng M, Menassa R, Huner NPA, Jevnikar AM, Ma S. High-yield expression of recombinant soybean agglutinin in plants using transient and stable systems. Transgenic Res 2011; 20:345-56. [PMID: 20559869 PMCID: PMC7477883 DOI: 10.1007/s11248-010-9419-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/08/2010] [Indexed: 10/25/2022]
Abstract
Soybean agglutinin (SBA) is a specific N-acetylgalactosamine-binding plant lectin that can agglutinate a wide variety of cells. SBA has great potential for medical and biotechnology-focused applications, including screening and treatment of breast cancer, isolation of fetal cells from maternal blood for genetic screening, the possibility as a carrier system for oral drug delivery, and utilization as an affinity tag for high-quality purification of tagged proteins. The success of these applications, to a large degree, critically depends on the development of a highly efficient expression system for a source of recombinant SBA (rSBA). Here, we demonstrate the utility of transient and stable expression systems in Nicotiana benthamiana and potato, respectively, for the production of rSBA, with the transgenic protein accumulated to 4% of total soluble protein (TSP) in Nicotiana benthamiana leaves and 0.3% of TSP in potato tubers. Furthermore, we show that both plant-derived rSBAs retain their ability to induce the agglutination of red blood cells, are similarly glycosylated when compared with native SBA, retained their binding specificity for N-acetylgalactosamine, and were highly resistant to degradation in simulated gastric and intestinal fluids. Affinity column purification using N-acetylgalactosamine as a specific ligand resulted in high recovery and purity of rSBA. This work is the first step toward use of rSBA for various new applications, including the development of rSBA as a novel affinity tag for simplified purification of tagged proteins and as a new carrier molecule for delivery of oral drugs.
Collapse
Affiliation(s)
- Reynald Tremblay
- Department of Biology, University of Western Ontario, London, ON N6A 5B7 Canada
| | - Mary Feng
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Rima Menassa
- Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3 Canada
| | - Norman P. A. Huner
- Department of Biology, University of Western Ontario, London, ON N6A 5B7 Canada
| | - Anthony M. Jevnikar
- Transplantation Immunology Group, Lawson Health Research Institute, London, ON N6A 4G5 Canada
| | - Shengwu Ma
- Department of Biology, University of Western Ontario, London, ON N6A 5B7 Canada
- Transplantation Immunology Group, Lawson Health Research Institute, London, ON N6A 4G5 Canada
- Plantigen Inc., 375 South Street, London, ON N6A 4G5 Canada
| |
Collapse
|
23
|
Avesani L, Bortesi L, Santi L, Falorni A, Pezzotti M. Plant-made pharmaceuticals for the prevention and treatment of autoimmune diseases: where are we? Expert Rev Vaccines 2010; 9:957-69. [PMID: 20673017 DOI: 10.1586/erv.10.82] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecular farming in plants or plant cell cultures represents a viable alternative technology that holds great promise for the low-cost and large-scale production of recombinant proteins. The particular case of plant-based vaccines for the prevention of autoimmune diseases is addressed here, presenting a comprehensive overview of the different molecules and expression technologies that have been investigated so far in both academia and industry. The potential of plants not only as bioreactors but also as delivery systems for pharmaceuticals is discussed, and the advantages of oral delivery of autoantigens for the induction of immune tolerance are highlighted.
Collapse
Affiliation(s)
- Linda Avesani
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Italy
| | | | | | | | | |
Collapse
|
24
|
Expression of a ricin toxin B subunit: insulin fusion protein in edible plant tissues. Mol Biotechnol 2010; 44:90-100. [PMID: 19898971 DOI: 10.1007/s12033-009-9217-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Onset of juvenile Type 1 diabetes (T1D) occurs when autoreactive lymphocytes progressively destroy the insulin-producing beta-cells in the pancreatic Islets of Langerhans. The increasing lack of insulin and subsequent onset of hyperglycemia results in increased damage to nerves, blood vessels, and tissues leading to the development of a host of severe disease symptoms resulting in premature morbidity and mortality. To enhance restoration of normoglycemia and immunological homeostasis generated by lymphocytes that mediate the suppression of autoimmunity, the non-toxic B chain of the plant AB enterotoxin ricin (RTB), a castor bean lectin binding a variety of epidermal cell receptors, was genetically linked to the coding region of the proinsulin gene (INS) and expressed as a fusion protein (INS-RTB) in transformed potato plants. This study is the first documented example of a plant enterotoxin B subunit linked to an autoantigen and expressed in transgenic plants for enhanced immunological suppression of T1D autoimmunity.
Collapse
|
25
|
Tremblay R, Wang D, Jevnikar AM, Ma S. Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 2010; 28:214-21. [PMID: 19961918 PMCID: PMC7132750 DOI: 10.1016/j.biotechadv.2009.11.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 11/06/2009] [Accepted: 11/19/2009] [Indexed: 01/06/2023]
Abstract
Molecular farming of pharmaceuticals in plants has the potential to provide almost unlimited amounts of recombinant proteins for use in disease diagnosis, prevention or treatment. Tobacco has been and will continue to be a major crop for molecular farming and offers several practical advantages over other crops. It produces significant leaf biomass, has high soluble protein content and is a non-food crop, minimizing the risk of food-chain contamination. This, combined with its flexibility and highly-efficient genetic transformation/regeneration, has made tobacco particularly well suited for plant-based production of biopharmaceutical products. The goal of this review is to provide an update on the use of tobacco for molecular farming of biopharmaceuticals as well the technologies developed to enhance protein production/purification/efficacy. We show that tobacco is a robust biological reactor with a multitude of applications and may hold the key to success in plant molecular farming.
Collapse
Affiliation(s)
- Reynald Tremblay
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - David Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Anthony M. Jevnikar
- Transplantation Immunology Group, Lawson Health Research Institute, London, Ontario, Canada N6A 4G5
| | - Shengwu Ma
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
- Transplantation Immunology Group, Lawson Health Research Institute, London, Ontario, Canada N6A 4G5
- Plantigen Inc., 700 Collip Circle, London, Ontario, Canada N6G 4X8
| |
Collapse
|
26
|
Tiwari S, Mishra DK, Roy S, Singh A, Singh PK, Tuli R. High level expression of a functionally active cholera toxin B: rabies glycoprotein fusion protein in tobacco seeds. PLANT CELL REPORTS 2009; 28:1827-36. [PMID: 19820945 DOI: 10.1007/s00299-009-0782-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 05/28/2023]
Abstract
A synthetic DNA construct containing cholera toxin B subunit, genetically fused to the surface glycoprotein of rabies virus was expressed in tobacco plants from a seed specific (legumin) promoter. Seed specific expression was monitored by real-time PCR, GM1-ELISA and Western blot analyses. The fusion protein accumulated in tobacco seeds at up to 1.22% of the total seed protein. It was functionally active in binding to the GM1-ganglioside receptors, suggesting its assembly into pentamers in seeds of the transgenic plants. Immunoblot analysis confirmed that the approximately 80.6 kDa monomeric fusion polypeptide was expressed in tobacco seeds and accumulated as an approximately 403 kDa pentamer. Evaluation of its immunoprotective ability against rabies and cholera is to be examined.
Collapse
Affiliation(s)
- Siddharth Tiwari
- Plant Molecular Biology and Genetic Engineering Division, National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow 226001, India
| | | | | | | | | | | |
Collapse
|
27
|
Mikschofsky H, Schirrmeier H, Keil GM, Lange B, Polowick PL, Keller W, Broer I. Pea-derived vaccines demonstrate high immunogenicity and protection in rabbits against rabbit haemorrhagic disease virus. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:537-49. [PMID: 19486322 DOI: 10.1111/j.1467-7652.2009.00422.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Vaccines against rabbit haemorrhagic disease virus (RHDV) are commercially produced in experimentally infected rabbits. A genetically engineered and manufactured version of the major structural protein of RHDV (VP60) is considered to be an alternative approach for vaccine production. Plants have the potential to become an excellent recombinant production system, but the low expression level and insufficient immunogenic potency of plant-derived VP60 still hamper its practical use. In this study, we analysed the expression of a novel multimeric VP60-based antigen in four different plant species, including Nicotiana tabacum L., Solanum tuberosum L., Brassica napus L. and Pisum sativum L. Significant differences were detected in the expression patterns of the novel fusion antigen cholera toxin B subunit (CTB)::VP60 (ctbvp60(SEKDEL)) at the mRNA and protein levels. Pentameric CTB::VP60 molecules were only detected in N. tabacum and P. sativum, and displayed equal levels of CTB, at approximately 0.01% of total soluble protein (TSP), and traces of detectable VP60. However, strong enhancement of the CTB protein content via self-fertilization was only observed in P. sativum, where it reached up to 0.7% of TSP. In rabbits, a strong decrease in the protective vaccine dose required from 48-400 microg potato-derived VP60 [Castanon, S., Marin, M.S., Martin-Alonso, J.M., Boga, J.A., Casais, R., Humara, J.M., Ordas, R.J. and Parra, F. (1999) Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J. Virol. 73, 4452-4455; Castanon, S., Martin-Alonso, J.M., Marin, M.S., Boga, J.A., Alonso, P., Parra, F. and Ordas, R.J. (2002) The effect of the promoter on expression of VP60 gene from rabbit hemorrhagic disease virus in potato plants. Plant Sci. 162, 87-95] to 0.56-0.28 microg antigenic VP60 (measured with VP60 enzyme-linked immunosorbent assay) of crude CTB::VP60 pea extracts was demonstrated. Rabbits immunized with pea-derived CTB::VP60 showed anti-VP60-specific antibodies, similar to RikaVacc((R))-immunized rabbits, and survived RHDV challenge.
Collapse
Affiliation(s)
- Heike Mikschofsky
- Agrobiotechnologie, Universität Rostock, Justus-von-Liebig-Weg 8, 18059 Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Sharma AK, Sharma MK. Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol Adv 2009; 27:811-832. [PMID: 19576278 PMCID: PMC7125752 DOI: 10.1016/j.biotechadv.2009.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 12/18/2022]
Abstract
In recent years, the use of plants as bioreactors has emerged as an exciting area of research and significant advances have created new opportunities. The driving forces behind the rapid growth of plant bioreactors include low production cost, product safety and easy scale up. As the yield and concentration of a product is crucial for commercial viability, several strategies have been developed to boost up protein expression in transgenic plants. Augmenting tissue-specific transcription, elevating transcript stability, tissue-specific targeting, translation optimization and sub-cellular accumulation are some of the strategies employed. Various kinds of products that are currently being produced in plants include vaccine antigens, medical diagnostics proteins, industrial and pharmaceutical proteins, nutritional supplements like minerals, vitamins, carbohydrates and biopolymers. A large number of plant-derived recombinant proteins have reached advanced clinical trials. A few of these products have already been introduced in the market.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | - Manoj K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
29
|
Cloning, expression, purification and characterization of the cholera toxin B subunit and triple glutamic acid decarboxylase epitopes fusion protein in Escherichia coli. Protein Expr Purif 2009; 66:191-7. [PMID: 19364533 DOI: 10.1016/j.pep.2009.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 11/22/2022]
Abstract
Induction of specific immunological unresponsiveness by oral autoantigens such as glutamic acid decarboxylase 65 (GAD65) is termed oral tolerance and may be a potential therapy for autoimmune diabetes. However, the requirement for large amounts of protein will limit clinical testing of autoantigens, which are difficult to produce. Mucosal adjuvants such as cholera toxin B subunit (CTB) may lower the level of autoantigens required. Here we describe cloning, expression, purification and identification study of the CTB and triple GAD(531-545) epitopes fusion gene. The fusion gene was ligated via a flexible hinge tetrapeptide and expressed as a soluble protein in Escherichia coli BL21 (DE3) driven by the T7 promoter. We purified the recombination protein from the cell lysate and obtained approximately 2.5mg of CTB-GAD((531-545)3) per liter of culture with greater than 90% purity by a Ni-NTA resin column. The bacteria produced this protein as the pentameric form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB and GAD65. Further studies revealed that oral administration of bacterial CTB-GAD((531-545)3) fusion protein showed the prominent reduction in pancreatic islet inflammation in non-obese diabetic mice. The results presented here demonstrate that the bacteria bioreactor is an ideal production system for an oral protein vaccine designed to develop immunological tolerance against autoimmune diabetes.
Collapse
|
30
|
Tiwari S, Verma PC, Singh PK, Tuli R. Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 2009; 27:449-67. [PMID: 19356740 PMCID: PMC7126855 DOI: 10.1016/j.biotechadv.2009.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 12/12/2022]
Abstract
Plants have been identified as promising expression systems for commercial production of vaccine antigens. In phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Thus, transgenic plants, including edible plant parts are suggested as excellent alternatives for the production of vaccines and economic scale-up through cultivation. Improved understanding of plant molecular biology and consequent refinement in the genetic engineering techniques have led to designing approaches for high level expression of vaccine antigens in plants. During the last decade, several efficient plant-based expression systems have been examined and more than 100 recombinant proteins including plant-derived vaccine antigens have been expressed in different plant tissues. Estimates suggest that it may become possible to obtain antigen sufficient for vaccinating millions of individuals from one acre crop by expressing the antigen in seeds of an edible legume, like peanut or soybean. In the near future, a plethora of protein products, developed through ‘naturalized bioreactors’ may reach market. Efforts for further improvements in these technologies need to be directed mainly towards validation and applicability of plant-based standardized mucosal and edible vaccines, regulatory pharmacology, formulations and the development of commercially viable GLP protocols. This article reviews the current status of developments in the area of use of plants for the development of vaccine antigens.
Collapse
Affiliation(s)
| | | | | | - Rakesh Tuli
- Corresponding author. National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow-226001 (U.P.) India. Tel.: +91 522 2205848; fax: +91 522 2205839.
| |
Collapse
|
31
|
Edwards KA, Duan F, Baeumner AJ, March JC. Fluorescently labeled liposomes for monitoring cholera toxin binding to epithelial cells. Anal Biochem 2008; 380:59-67. [DOI: 10.1016/j.ab.2008.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 05/18/2008] [Indexed: 11/16/2022]
|
32
|
Oszvald M, Kang TJ, Tomoskozi S, Jenes B, Kim TG, Cha YS, Tamas L, Yang MS. Expression of Cholera Toxin B Subunit in Transgenic Rice Endosperm. Mol Biotechnol 2008; 40:261-8. [DOI: 10.1007/s12033-008-9083-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 06/18/2008] [Indexed: 11/28/2022]
|
33
|
Wang DJ, Brandsma M, Yin Z, Wang A, Jevnikar AM, Ma S. A novel platform for biologically active recombinant human interleukin-13 production. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:504-15. [PMID: 18393948 DOI: 10.1111/j.1467-7652.2008.00337.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Interleukin-13 (IL-13) is a pleiotropic regulatory cytokine with the potential for treating several human diseases, including type-1 diabetes. Thus far, conventional expression systems for recombinant IL-13 production have proven difficult and are limited by efficiency. In this study, transgenic plants were used as a novel expression platform for the production of human IL-13 (hIL-13). DNA constructs containing hIL-13 cDNA were introduced into tobacco plants. Transcriptional expression of the hIL-13 gene in transgenic plants was confirmed by reverse transcriptase-polymerase chain reaction and Northern blotting. Western blot analysis showed that the hIL-13 protein was efficiently accumulated in transgenic plants and present in multiple molecular forms, with an expression level as high as 0.15% of total soluble protein in leaves. The multiple forms of plant-derived recombinant hIL-13 (rhIL-13) are a result of differential N-linked glycosylation, as revealed by enzymatic and chemical deglycosylation, but not of disulphide-linked oligomerization. In vitro trypsin digestion indicated that plant rhIL-13 was more resistant than unglycosylated control rhIL-13 to proteolysis. The stability of plant rhIL-13 to digestion was further supported with simulated gastric and intestinal fluid digestion. In vitro bioassays using a factor-dependent human erythroleukaemic cell line (TF-1 cells) showed that plant rhIL-13 retained the biological functions of the authentic hIL-13 protein. These results demonstrate that transgenic plants are superior to conventional cell-based expression systems for the production of rhIL-13. Moreover, transgenic plants synthesizing high levels of rhIL-13 may prove to be an attractive delivery system for direct oral administration of IL-13 in the treatment of clinical diseases such as type-1 diabetes.
Collapse
Affiliation(s)
- David J Wang
- A.B. Lucas Secondary School, 656 Tennent Avenue, London, ON, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Agarwal S, Singh R, Sanyal I, Amla DV. Expression of modified gene encoding functional human alpha-1-antitrypsin protein in transgenic tomato plants. Transgenic Res 2008; 17:881-96. [PMID: 18320339 DOI: 10.1007/s11248-008-9173-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
Transgenic plants offer promising alternative for large scale, sustainable production of safe, functional, recombinant proteins of therapeutic and industrial importance. Here, we report the expression of biologically active human alpha-1-antitrypsin in transgenic tomato plants. The 1,182 bp cDNA sequence of human AAT was strategically designed, modified and synthesized to adopt codon usage pattern of dicot plants, elimination of mRNA destabilizing sequences and modifications around 5' and 3' flanking regions of the gene to achieve high-level regulated expression in dicot plants. The native signal peptide sequence was substituted with modified signal peptide sequence of tobacco (Nicotiana tabacum) pathogenesis related protein PR1a, sweet potato (Ipomoea batatas) sporamineA and with dicot-preferred native signal peptide sequence of AAT gene. A dicot preferred translation initiation context sequence, 38 bp alfalfa mosaic virus untranslated region were incorporated at 5' while an endoplasmic reticulum retention signal (KDEL) was incorporated at 3' end of the gene. The modified gene was synthesized by PCR based method using overlapping oligonucleotides. Tomato plants were genetically engineered by nuclear transformation with Agrobacterium tumefaciens harbouring three different constructs pPAK, pSAK and pNAK having modified AAT gene with different signal peptide sequences under the control of CaMV35S duplicated enhancer promoter. Promising transgenic plants expressing recombinant AAT protein upto 1.55% of total soluble leaf protein has been developed and characterized. Plant-expressed recombinant AAT protein with molecular mass of around approximately 50 kDa was biologically active, showing high specific activity and efficient inhibition of elastase activity. The enzymatic deglycosylation established proper glycosylation of the plant-expressed recombinant AAT protein in contrast to unglycosylated rAAT expressed in E. coli ( approximately 45 kDa). Our results demonstrate feasibility for high-level expression of biologically active, glycosylated human alpha-1-antitrypsin in transgenic tomato plants.
Collapse
Affiliation(s)
- Saurabh Agarwal
- Plant Transgenic Lab, National Botanical Research Institute, PO Box 436, Rana Pratap Marg, Lucknow, 226001, India
| | | | | | | |
Collapse
|
35
|
Sharma MK, Singh NK, Jani D, Sisodia R, Thungapathra M, Gautam JK, Meena LS, Singh Y, Ghosh A, Tyagi AK, Sharma AK. Expression of toxin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its immunogenic epitopes fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). PLANT CELL REPORTS 2008; 27:307-318. [PMID: 17962948 DOI: 10.1007/s00299-007-0464-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 09/30/2007] [Indexed: 05/25/2023]
Abstract
For protection against cholera, it is important to develop efficient vaccine capable of inducing anti-toxin as well as anti-colonizing immunity against Vibrio cholerae infections. Earlier, expression of cholera toxin B subunit (CTB) in tomato was reported by us. In the present investigation, toxin co-regulated pilus subunit A (TCPA), earlier reported to be an antigen capable of providing anti-colonization immunity, has been expressed in tomato. Further, to generate more potent combinatorial antigens, nucleotides encoding P4 or P6 epitope of TCPA were fused to cholera toxin B subunit gene (ctxB) and expressed in tomato. Presence of transgenes in the tomato genome was confirmed by PCR and expression of genes was confirmed at transcript and protein level. TCPA, chimeric CTB-P4 and CTB-P6 proteins were also expressed in E. coli. TCPA protein expressed in E. coli was purified to generate anti-TCPA antibodies in rabbit. Immunoblot and G(M1)-ELISA verified the synthesis and assembly of pentameric chimeric proteins in fruit tissue of transgenic tomato plants. The chimeric protein CTB-P4 and CTB-P6 accumulated up to 0.17 and 0.096% of total soluble protein (TSP), respectively, in tomato fruits. Whereas expression of TCPA, CTB-P4 and CTB-P6 in E. coli can be utilized for development of conventional vaccine, expression of these antigens which can provide both anti-toxin as well as anti-colonization immunity, has been demonstrated in plants, in a form which is potentially capable of inducing immune response against cholera infection.
Collapse
Affiliation(s)
- Manoj Kumar Sharma
- Department of Plant Molecular biology, University of Delhi South Campus, New Delhi 110021, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gong Z, Jin Y, Zhang Y. Suppression of diabetes in non-obese diabetic (NOD) mice by oral administration of a cholera toxin B subunit–insulin B chain fusion protein vaccine produced in silkworm. Vaccine 2007; 25:1444-51. [PMID: 17113687 DOI: 10.1016/j.vaccine.2006.10.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/28/2006] [Accepted: 10/23/2006] [Indexed: 11/26/2022]
Abstract
Oral tolerance has been applied successfully as a potential therapeutic strategy for preventing and treating autoimmune diseases including type 1 diabetes. In this paper we constructed an edible vaccine consisting of a fusion protein composed of cholera toxin B subunit (CTB) and insulin B chain (InsB) that was produced in silkworm larvae. The silkworm larvae produced this fusion protein at levels of up to 0.97mg/ml of hemolymph as the pentameric CTB-InsB form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB. Non-obese diabetic mice fed hemolymph containing microgram quantities of the CTB-InsB fusion protein showed a prominent reduction in pancreatic islet inflammation and a delay in the development of diabetic symptoms. This study demonstrates that silkworm-produced CTB-InsB fusion protein can be used as an ideal oral protein vaccine for induction of immunological tolerance against autoimmune diabetes.
Collapse
Affiliation(s)
- Zhaohui Gong
- School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | | | | |
Collapse
|