1
|
Yan LL, Mi J, Shen CC, Qian R, Wang J, Pu CX, Sun Y. OsCIP1, a secreted protein, binds to and stabilizes OsCR4 to promote aleurone layer development, seed germination and early seedling growth in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111637. [PMID: 36787850 DOI: 10.1016/j.plantsci.2023.111637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The receptor kinase CRINKLY 4 (CR4) and its orthologs are known for their essential roles in cell differentiation and their shuttling between plasma membrane and cytoplasmic vesicles, a unique feature tied to their extracellular domain. However, the extracellular regulators of CR4 have been little known. Here we identified an OsCR4 Interacting Protein 1 (OsCIP1) (also named as OsLTPL36 in rice) by a yeast two-hybrid screen using the extracellular domain of OsCR4 (OsCR4E) as bait. OsCIP1/OsLTPL36 harbors a signal peptide and is localized to the outer surface of the plasma membrane. It interacted with the TNFR subdomain of OsCR4, causing an increase in OsCR4 recycling to the plasma membrane. oscip1, in which OsCR4 protein was decreased, exhibited thinner aleurone layer, late germination and delayed growth; while OsCIP1-overexpressing plants, in which OsCR4 protein was increased, displayed enhanced growth at the early seedling stage. OsCIP1 was cleaved between W61 and Q62, and the resulting C-terminal half exhibited a greater affinity for OsCR4E than did its precursor. Abolishing this cleavage site compromises OsCIP1's ability to promote seedling growth. Our results provide valuable clues for the regulation of CR4 activity and its functions in aleurone layer cell differentiation by a secreted small protein in rice.
Collapse
Affiliation(s)
- Lin-Lin Yan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Jing Mi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Can-Can Shen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Rong Qian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Jiao Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Cui-Xia Pu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| |
Collapse
|
2
|
Chiu LY, Chen IH, Hsu YH, Tsai CH. The Lipid Transfer Protein 1 from Nicotiana benthamiana Assists Bamboo mosaic virus Accumulation. Viruses 2020; 12:E1361. [PMID: 33261222 PMCID: PMC7760991 DOI: 10.3390/v12121361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Host factors play a pivotal role in regulating virus infection. Uncovering the mechanism of how host factors are involved in virus infection could pave the way to defeat viral disease. In this study, we characterized a lipid transfer protein, designated NbLTP1 in Nicotiana benthamiana, which was downregulated after Bamboo mosaic virus (BaMV) inoculation. BaMV accumulation significantly decreased in NbLTP1-knockdown leaves and protoplasts compared with the controls. The subcellular localization of the NbLTP1-orange fluorescent protein (OFP) was mainly the extracellular matrix. However, when we removed the signal peptide (NbLTP1/ΔSP-OFP), most of the expressed protein targeted chloroplasts. Both NbLTP1-OFP and NbLTP1/ΔSP-OFP were localized in chloroplasts when we removed the cell wall. These results suggest that NbLTP1 may have a secondary targeting signal. Transient overexpression of NbLTP1 had no effect on BaMV accumulation, but that of NbLTP1/ΔSP significantly increased BaMV expression. NbLTP1 may be a positive regulator of BaMV accumulation especially when its expression is associated with chloroplasts, where BaMV replicates. The mutation was introduced to the predicted phosphorylation site to simulate the phosphorylated status, NbLTP/ΔSP/P(+), which could still assist BaMV accumulation. By contrast, a mutant lacking calmodulin-binding or simulates the phosphorylation-negative status could not support BaMV accumulation. The lipid-binding activity of LTP1 was reported to be associated with calmodulin-binding and phosphorylation, by which the C-terminus functional domain of NbLTP1 may play a critical role in BaMV accumulation.
Collapse
Affiliation(s)
- Ling-Ying Chiu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
- Advanced Plant Biotechnology Center, National Chung Hing University, Taichung 402, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (L.-Y.C.); (I.-H.C.); (Y.-H.H.)
- Advanced Plant Biotechnology Center, National Chung Hing University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Safi H, Belgaroui N, Masmoudi K, Brini F. Promoter of the wheat lipid transfer protein, TdLTP4, drives leaf-preferential expression in transgenic Arabidopsis plants. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:275-285. [PMID: 32172770 DOI: 10.1071/fp18040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/15/2018] [Indexed: 06/10/2023]
Abstract
In a previous report, a gene encoding a durum wheat lipid transfer protein, TdLTP4, was characterised as induced by abiotic and biotic stresses. In the present work, we investigated the regulation of the gene TdLTP4. A TdLTP4 promoter (PrTdLTP4) region of around 868-bp was isolated and sequenced. Its analysis revealed the presence of several DNA boxes known to be important mainly in the regulation of genes expressed under abiotic stress (salt and dehydration), abscisic acid (ABA) and pathogen responsiveness. The whole PrTdLTP4 fragment was fused to the reporter gene β-glucuronidase (gusA) and analysed in transgenic Arabidopsis plants. Histochemical assays of transgenic Arabidopsis plants showed that the 868-bp fragment of TdLTP4 gene promoter was found to be sufficient for both spatial and temporal patterns of its expression. Under control conditions, GUS histochemical staining was observed significantly only in young leaves of 8- and 12-day-old plants. Whereas after stress challenge especially with NaCl and mannitol, GUS transcripts expression increased substantially in leaves of 30-day-old transgenic seedlings. Real-time qPCR expression analysis of the gusA gene, confirmed the results of histochemical assays. Taken together these data provide evidence that PrTdLTP4 functions as abiotic-stress-inducible promoter in a heterologous dicot system and could be an excellent tool for future crop improvement.
Collapse
Affiliation(s)
- Héla Safi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, BP '1177' 3018, Sfax - Tunisia
| | - Nebras Belgaroui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, BP '1177' 3018, Sfax - Tunisia
| | - Khaled Masmoudi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, BP '1177' 3018, Sfax - Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, BP '1177' 3018, Sfax - Tunisia
| |
Collapse
|
4
|
Singh J, Singh V, Sharma PC. Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea ( Cicer arietinum L.) genotypes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:441-453. [PMID: 29692552 PMCID: PMC5911262 DOI: 10.1007/s12298-018-0517-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 05/25/2023]
Abstract
The growth of chickpea (Cicer arietinum L.) is extremely hampered by salt stress. Understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt tolerant chickpea varieties. To explore these facts, two genotypes CSG8962 and HC5 with contrasting salt tolerance were evaluated in the salinity stress (Control and 120 mM NaCl) conditions. CSG8962 maintained lower Na/K ratio in root and shoot, trammeled Na translocation to the shoots from roots compared to HC5 which ascribed to better exclusion of salt from its roots and compartmentation in the shoot. In chickpea, salt stress specifically induced genes/sequences involved at several levels in the salt stress signaling pathway. Higher induction of trehalose 6 phosphate synthase and protein kinase genes pertaining to the osmotic and signaling modules, respectively, were evident in CSG8962 compared to HC5. Further transcripts of late embryogenesis abundant, non-specific lipid transfer protein, HI and 219 genes/sequences were also highly induced in CSG8962 compared to HC5 which emphasizes the better protection of cellular membranous network and membrane-bound macromolecules under salt stress. This further suppressed the stress enhanced electrolyte leakage, loss of turgidity, promoted the higher compatible solute accumulation and maintained better cellular ion homoeostasis in CSG8962 compared to HC5. Our study further adds to the importance of these genes in salt tolerance by comparing their behavior in contrasting chickpea genotypes.
Collapse
Affiliation(s)
- Jogendra Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - Vijayata Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - P. C. Sharma
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| |
Collapse
|
5
|
Pan Y, Li J, Jiao L, Li C, Zhu D, Yu J. A Non-specific Setaria italica Lipid Transfer Protein Gene Plays a Critical Role under Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1752. [PMID: 27933075 PMCID: PMC5121218 DOI: 10.3389/fpls.2016.01752] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/07/2016] [Indexed: 05/05/2023]
Abstract
Lipid transfer proteins (LTPs) are a class of cysteine-rich soluble proteins having small molecular weights. LTPs participate in flower and seed development, cuticular wax deposition, also play important roles in pathogen and abiotic stress responses. A non-specific LTP gene (SiLTP) was isolated from a foxtail millet (Setaria italica) suppression subtractive hybridization library enriched for differentially expressed genes after abiotic stress treatments. A semi-quantitative reverse transcriptase PCR analysis showed that SiLTP was expressed in all foxtail millet tissues. Additionally, the SiLTP promoter drove GUS expression in root tips, stems, leaves, flowers, and siliques of transgenic Arabidopsis. Quantitative real-time PCR indicated that the SiLTP expression was induced by NaCl, polyethylene glycol, and abscisic acid (ABA). SiLTP was localized in the cytoplasm of tobacco leaf epidermal cells and maize protoplasts. The ectopic expression of SiLTP in tobacco resulted in higher levels of salt and drought tolerance than in the wild type (WT). To further assess the function of SiLTP, SiLTP overexpression (OE) and RNA interference (RNAi)-based transgenic foxtail millet were obtained. SiLTP-OE lines performed better under salt and drought stresses compared with WT plants. In contrast, the RNAi lines were much more sensitive to salt and drought compared than WT. Electrophoretic mobility shift assays and yeast one-hybrids indicated that the transcription factor ABA-responsive DRE-binding protein (SiARDP) could bind to the dehydration-responsive element of SiLTP promoter in vitro and in vivo, respectively. Moreover, the SiLTP expression levels were higher in SiARDP-OE plants compared than the WT. These results confirmed that SiLTP plays important roles in improving salt and drought stress tolerance of foxtail millet, and may partly be upregulated by SiARDP. SiLTP may provide an effective genetic resource for molecular breeding in crops to enhance salt and drought tolerance levels.
Collapse
Affiliation(s)
- Yanlin Pan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
- Life Science and Technology Center, China National Seed Group Co., LtdWuhan, China
| | - Jianrui Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Licong Jiao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Cong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
- *Correspondence: Jingjuan Yu,
| |
Collapse
|
6
|
Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJM, Conrath U. ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. THE NEW PHYTOLOGIST 2016; 209:294-306. [PMID: 26315018 DOI: 10.1111/nph.13582] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/30/2015] [Indexed: 05/20/2023]
Abstract
Nonhost resistance (NHR) is the most prevalent form of plant immunity. In Arabidopsis, NHR requires membrane-localized ATP-binding cassette (ABC) transporter PENETRATION (PEN) 3. Upon perception of pathogen-associated molecular patterns, PEN3 becomes phosphorylated, suggestive of PEN3 regulation by post-translational modification. Here, we investigated the PEN3 protein interaction network. We probed the Arabidopsis protein microarray AtPMA-5000 with the N-terminal cytoplasmic domain of PEN3. Several of the proteins identified to interact with PEN3 in vitro represent cellular Ca(2+) sensors, including calmodulin (CaM) 3, CaM7 and several CaM-like proteins, pointing to the importance of Ca(2+) sensing to PEN3-mediated NHR. We demonstrated co-localization of PEN3 and CaM7, and we confirmed PEN3-CaM interaction in vitro and in vivo by PEN3 pull-down with CaM Sepharose, CaM overlay assay and bimolecular fluorescence complementation. We also show that just like in pen3, NHR to the nonadapted fungal pathogens Phakopsora pachyrhizi and Blumeria graminis f.sp. hordei is compromised in the Arabidopsis cam7 and pen3 cam7 mutants. Our study discloses CaM7 as a PEN3-interacting protein crucial to Arabidopsis NHR and emphasizes the importance of Ca(2+) sensing to plant immunity.
Collapse
Affiliation(s)
- Ruth Campe
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Franz Leissing
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - George V Popescu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853-1801, USA
- National Institute for Laser, Plasma & Radiation Physics, Str. Atomistilor, Nr. 409, Magurele, 077125, Bucharest, Romania
| | - Sorina C Popescu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853-1801, USA
| | - Katharina Goellner
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Gerold J M Beckers
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| |
Collapse
|
7
|
Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5663-81. [PMID: 26139823 DOI: 10.1093/jxb/erv313] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant non-specific lipid-transfer proteins (nsLTPs) are small, basic proteins present in abundance in higher plants. They are involved in key processes of plant cytology, such as the stablization of membranes, cell wall organization, and signal transduction. nsLTPs are also known to play important roles in resistance to biotic and abiotic stress, and in plant growth and development, such as sexual reproduction, seed development and germination. The structures of plant nsLTPs contain an eight-cysteine residue conserved motif, linked by four disulfide bonds, and an internal hydrophobic cavity, which comprises the lipid-binding site. This structure endows stability and increases the ability to bind and/or carry hydrophobic molecules. There is growing interest in nsLTPs, due to their critical roles, resulting in the need for a comprehensive review of their form and function. Relevant topics include: nsLTP structure and biochemical features, their classification, identification, and characterization across species, sub-cellular localization, lipid binding and transfer ability, expression profiling, functionality, and evolution. We present advances, as well as limitations and trends, relating to the different topics of the nsLTP gene family. This review collates a large body of research pertaining to the role of nsLTPs across the plant kingdom, which has been integrated as an in depth functional analysis of this group of proteins as a whole, and their activities across multiple biochemical pathways, based on a large number of reports. This review will enhance our understanding of nsLTP activity in planta, prompting further work and insights into the roles of this multifaceted protein family in plants.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaobo Zhang
- Life Science and Technology Center, China National Seed Group Co. Ltd., Wuhan 430206, China
| | - Changming Lu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinhua Zeng
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yunjing Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
8
|
Li J, Gao G, Xu K, Chen B, Yan G, Li F, Qiao J, Zhang T, Wu X. Genome-wide survey and expression analysis of the putative non-specific lipid transfer proteins in Brassica rapa L. PLoS One 2014; 9:e84556. [PMID: 24497919 PMCID: PMC3908880 DOI: 10.1371/journal.pone.0084556] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/15/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Plant non-specific lipid transfer proteins (nsLtps) are small, basic proteins encoded by multigene families and have reported functions in many physiological processes such as mediating phospholipid transfer, defense reactions against phytopathogens, the adaptation of plants to various environmental conditions, and sexual reproduction. To date, no genome-wide overview of the Brassica rapa nsLtp (BrnsLtp) gene family has been performed. Therefore, as the first step and as a helpful strategy to elucidate the functions of BrnsLtps, a genome-wide study for this gene family is necessary. METHODOLOGY/PRINCIPAL FINDING In this study, a total of 63 putative BrnsLtp genes were identified through a comprehensive in silico analysis of the whole genome of B. rapa. Based on the sequence similarities, these BrnsLtps was grouped into nine types (I, II, III, IV, V, VI, VIII, IX, and XI). There is no type VII nsLtps in B. rapa, and a new type, XI nsLtps, was identified in B. rapa. Furthermore, nine type II AtLtps have no homologous genes in B. rapa. Gene duplication analysis demonstrated that the conserved collinear block of each BrnsLtp is highly identical to those in Arabidopsis and that both segmental duplications and tandem duplications seem to play equal roles in the diversification of this gene family. Expression analysis indicated that 29 out of the 63 BrnsLtps showed specific expression patterns. After careful comparison and analysis, we hypothesize that some of the type I BrnsLtps may function like Arabidopsis pathogenesis-related-14 (PR-14) proteins to protect the plant from phytopathogen attack. Eleven BrnsLtps with inflorescence-specific expression may play important roles in sexual reproduction. Additionally, BrnsLtpI.3 may have functions similar to Arabidopsis LTP1. CONCLUSIONS/SIGNIFICANCE The genome-wide identification, bioinformatic analysis and expression analysis of BrnsLtp genes should facilitate research of this gene family and polyploidy evolution and provide new insight towards elucidating their biological functions in plants.
Collapse
Affiliation(s)
- Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, Hubei, People's Republic of China
| | - Guizhen Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, Hubei, People's Republic of China
| | - Kun Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, Hubei, People's Republic of China
| | - Biyun Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, Hubei, People's Republic of China
| | - Guixin Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, Hubei, People's Republic of China
| | - Feng Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, Hubei, People's Republic of China
| | - Jiangwei Qiao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, Hubei, People's Republic of China
| | - Tianyao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, Hubei, People's Republic of China
| | - Xiaoming Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, Hubei, People's Republic of China
- * E-mail:
| |
Collapse
|
9
|
Jia Z, Gou J, Sun Y, Yuan L, Tang Q, Yang X, Pei Y, Luo K. Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus). TREE PHYSIOLOGY 2010; 30:1599-605. [PMID: 21084346 DOI: 10.1093/treephys/tpq093] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The antimicrobial protein gene LJAMP2 is a plant non-specific lipid transfer protein from motherwort (Leonurus japonicus). In this study, it was introduced into Chinese white poplar (Populus tomentosa Carr.) via Agrobacterium-mediated transformation with neomycin phosphotransferase II gene conferring kanamycin resistance as selectable marker. A total of 16 poplar lines were obtained, and polymerase chain reaction (PCR) analysis established the stable integration of transgenes in the plant genome. Reverse transcription-PCR detected LJAMP2 expression in transgenic plants. Resistance to fungal pathogens Alternaria alternata (Fr.) Keissler and Colletotrichum gloeosporioides (Penz.) of transgenic poplar lines was tested. In vitro inhibitory activity against the fungal pathogens was evident from the crude leaf extracts from the transformants. In vivo assays showed that, after infection with both A. alternata (Fr.) Keissler and C. gloeosporioides (Penz.), there was a significant reduction in disease symptoms in transgenic poplar plants compared with the control. These results suggest that constitutive expression of the LJAMP2 gene from motherwort can be exploited to improve resistance to fungal pathogens in poplar.
Collapse
Affiliation(s)
- Zhichun Jia
- State Key Laboratory of Eco-environment and Bio-resource of Three Gorges Reservoir Region, Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1 Tiansheng Road, Beibei, Chongqing 400715, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang C, Yang C, Gao C, Wang Y. Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses. TREE PHYSIOLOGY 2009; 29:1607-1619. [PMID: 19808707 DOI: 10.1093/treephys/tpp082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant lipid transfer proteins (LTPs) are ubiquitous lipid-binding proteins that are involved in various stress responses. In this study, we cloned 14 unique LTP genes (ThLTP 1-14) from Tamarix hispida Willd. (Tamaricaceae) to investigate their roles under various abiotic stress conditions. The expression profiles of the 14 ThLTPs in response to NaCl, polyethylene glycol (PEG), NaHCO(3), CdCl(2) and abscisic acid (ABA) exposure in root, stem and leaf tissues were investigated using real-time RT-PCR. The results showed that all 14 ThLTPs were expressed in root, stem and leaf tissues under normal growth conditions. However, under normal growth conditions, ThLTP abundance varied in each organ, with expression differences of 9000-fold in leaves, 540-fold in stems and 3700-fold in roots. These results indicated that activity and/or physiological importance of these ThLTPs are quite different. Differential expression of the 14 ThLTPs was observed (> 2-fold) for NaCl, PEG, NaHCO(3) and CdCl(2) in at least one tissue indicating that they were all involved in abiotic stress responses. All ThLTP genes were highly induced (> 2-fold) under ABA treatment in roots, stems and/or leaves, and particularly in roots, suggesting that ABA-dependent signaling pathways regulated ThLTPs. We hypothesize that ThLTP expression constitutes an adaptive response to abiotic stresses in T. hispida and plays an important role in abiotic stress tolerance.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Forest Tree Genetics Breeding and Biotechnology (Northeast Forestry University), Ministry of Education, Harbin, China
| | | | | | | |
Collapse
|
11
|
Maghuly F, Borroto-Fernandez EG, Khan MA, Herndl A, Marzban G, Laimer M. Expression of calmodulin and lipid transfer protein genes in Prunus incisa x serrula under different stress conditions. TREE PHYSIOLOGY 2009; 29:437-444. [PMID: 19203962 DOI: 10.1093/treephys/tpn036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Calcium-binding proteins and pathogenesis-related (PR) proteins are crucial components of the inducible repertoire of plant stress and defence. Considering the important role played by calmodulin (CaM) and lipid transfer protein (LTP) in mediating plant signal transduction, the present study investigated the expression of Ltp and CaM genes in Prunus incisa x serrula (PIS) under various abiotic stress conditions. The aim of this study is to find out whether expression of these proteins is regulated in parallel or independently and to compare the expression profiles of CaM and allergenic proteins like Ltp under different stress conditions. Southern blot analyses indicated that Ltp and CaM are encoded by at least two to four genes, which might be indicative for the expected variability and presence of isoforms. Transcription levels of both genes were analysed in leaves and roots of micropropagated plantlets under low and high temperatures, salicylic acid and wounding stress, harvested after 0, 0.5, 1, 2, 4, 10, 24 and 72 h. Real Time qPCR data showed that both genes respond differently to various stresses. Furthermore, a high variation in transcription levels of both genes was observed in leaf tissues, while in roots both genes were expressed at a lower extent and down-regulated. Western blot analyses indicated that after 24 h the amount of CaM protein is higher, while the amount of LTP is lower in various stresses. Results obtained suggest that CaM and LTP are differentially regulated in response to different stresses in PIS plants, and additionally show tissue-specific expression, hinting at a potential role of different isoforms.
Collapse
Affiliation(s)
- Fatemeh Maghuly
- Plant Biotechnology Unit, Biotechnology Department, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
12
|
Kim MC, Chung WS, Yun DJ, Cho MJ. Calcium and calmodulin-mediated regulation of gene expression in plants. MOLECULAR PLANT 2009; 2:13-21. [PMID: 19529824 PMCID: PMC2639735 DOI: 10.1093/mp/ssn091] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 11/21/2008] [Indexed: 05/17/2023]
Abstract
Sessile plants have developed a very delicate system to sense diverse kinds of endogenous developmental cues and exogenous environmental stimuli by using a simple Ca2+ ion. Calmodulin (CaM) is the predominant Ca2+ sensor and plays a crucial role in decoding the Ca2+ signatures into proper cellular responses in various cellular compartments in eukaryotes. A growing body of evidence points to the importance of Ca2+ and CaM in the regulation of the transcriptional process during plant responses to endogenous and exogenous stimuli. Here, we review recent progress in the identification of transcriptional regulators modulated by Ca2+ and CaM and in the assessment of their functional significance during plant signal transduction in response to biotic and abiotic stresses and developmental cues.
Collapse
Affiliation(s)
- Min Chul Kim
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| | | | | | | |
Collapse
|
13
|
Yang X, Wang X, Li X, Zhang B, Xiao Y, Li D, Xie C, Pei Y. Characterization and expression of an nsLTPs-like antimicrobial protein gene from motherwort (Leonurus japonicus). PLANT CELL REPORTS 2008; 27:759-66. [PMID: 18228022 DOI: 10.1007/s00299-008-0506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/04/2008] [Accepted: 01/10/2008] [Indexed: 05/25/2023]
Abstract
In screening for potent antimicrobial proteins (AMPs) from plant seeds, we had purified a heat-stable AMP, LJAMP2, from the seeds of a medicine herb, motherwort (Leonurus japonicus Houtt). In an in vitro assay, the protein can inhibit the growth of both fungi and bacteria. Then a cDNA encoding LJAMP2 was cloned by the rapid amplification of cDNA ends based on the N-terminal amino acid sequence determined. The deduced amino acid sequences of this cDNA show similarity to plant non-specific lipid transfer proteins. Northern blotting assay revealed that this nsLTP-like gene, designated LJAMP2, was expressed in seeds. Overexpression of LJAMP2 in tobacco enhanced resistance to the fungal pathogen Alternaria alternata and the bacterial pathogen Ralstonia solanacearum, significantly, while no visible alteration in plant growth and development. Our data confirm the antifungal and antibacterial function of LJAMP2 from motherwort seeds and suggest the potential of LJAMP2 in improving disease resistance in plants.
Collapse
Affiliation(s)
- Xingyong Yang
- Biotechnology Research Center, Southwest University, Chongqing, 400716, China.
| | | | | | | | | | | | | | | |
Collapse
|