1
|
Chen H, Song Z, Wang L, Lai X, Chen W, Li X, Zhu X. Auxin-responsive protein MaIAA17-like modulates fruit ripening and ripening disorders induced by cold stress in 'Fenjiao' banana. Int J Biol Macromol 2023; 247:125750. [PMID: 37453644 DOI: 10.1016/j.ijbiomac.2023.125750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Cold stress severely affects the banana fruit softening and de-greening, significantly inhibiting the ripening processes. However, the mechanism of ripening disorder caused by chilling injury (CI) in banana fruit remains largely unknown. Herein, MaIAA17-like, an Auxin/Indole-3-Acetic Acid (Aux/IAA) family member, was found to be highly related to the softening and de-greening in 'Fenjiao' banana. Its expression was rapidly increased with fruit ripening and then gradually decreased under normal ripening conditions (22 °C). Notably, cold storage severely repressed MaIAA17-like expression but was rapidly increased following ethephon treatment for ripening in fruits without CI. However, the expression repression was not reverted in fruits with serious CI symptoms after 12 days of storage at 7 °C. AtMaIAA17-like bound and regulated the activities of promoters of chlorophyll (MaNOL and MaSGR1), starch (MaBAM6 and MaBAM8), and cell wall (MaSUR14 and MaPL8) degradation-related genes. MaIAA17-like also interacted with ethylene-insensitive 3-binding F-box protein (MaEBF1), further activating the expression of MaNOL, MaBAM8, MaPL8, and MaSUR14. Generally, the transient overexpression of MaIAA17-like promoted fruit ripening by inducing the expression of softening and de-greening related genes. However, silencing MaIAA17-like inhibited fruit ripening by reducing the expression of softening and de-greening related genes. These results imply that MaIAA17-like modulates fruit ripening by transcriptionally upregulating the key genes related to fruit softening and de-greening.
Collapse
Affiliation(s)
- Hangcong Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zunyang Song
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lihua Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiuhua Lai
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Weixin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xueping Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Liu B, Xin Q, Zhang M, Chen J, Lu Q, Zhou X, Li X, Zhang W, Feng W, Pei H, Sun J. Research Progress on Mango Post-Harvest Ripening Physiology and the Regulatory Technologies. Foods 2022; 12:foods12010173. [PMID: 36613389 PMCID: PMC9818659 DOI: 10.3390/foods12010173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Mango (Mangifera indica L.) is an important tropical fruit with a delicate taste, pleasant aroma, and high nutritional value. In recent years, with the promotion of the rural revitalization strategy and the development of the poverty alleviation industry, China has gradually become an important mango producer. However, the short shelf life of mango fruit, the difficulty in regulating the postharvest quality, and the lack of preservation technology are the main problems that need to be solved in China's mango industry. In this paper, the physiological changes and mechanisms of mango during postharvest ripening were summarized, including sugar and acid changes, pigment synthesis and accumulation, and aroma formation and accumulation. The physical, chemical, and biological technologies (such as endogenous phytohormones, temperature, light, chemical preservatives, and edible coatings) commonly used in the regulation of mango postharvest ripening and their action principles were emphatically expounded. The shortcomings of the existing mango postharvest ripening regulation technology and physiological mechanism research were analyzed in order to provide a reference for the industrial application and development of mango postharvest.
Collapse
Affiliation(s)
- Bangdi Liu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qi Xin
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Min Zhang
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jianhu Chen
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qingchen Lu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Xinqun Zhou
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiangxin Li
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wanli Zhang
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wei Feng
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Haisheng Pei
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jing Sun
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Correspondence:
| |
Collapse
|
3
|
Hendrickson C, Hewitt S, Swanson ME, Einhorn T, Dhingra A. Evidence for pre-climacteric activation of AOX transcription during cold-induced conditioning to ripen in European pear (Pyrus communis L.). PLoS One 2019; 14:e0225886. [PMID: 31800597 PMCID: PMC6892529 DOI: 10.1371/journal.pone.0225886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/14/2019] [Indexed: 11/28/2022] Open
Abstract
European pears (Pyrus communis L.) require a range of cold-temperature exposure to induce ethylene biosynthesis and fruit ripening. Physiological and hormonal responses to cold temperature storage in pear have been well characterized, but the molecular underpinnings of these phenomena remain unclear. An established low-temperature conditioning model was used to induce ripening of 'D'Anjou' and 'Bartlett' pear cultivars and quantify the expression of key genes representing ripening-related metabolic pathways in comparison to non-conditioned fruit. Physiological indicators of pear ripening were recorded, and fruit peel tissue sampled in parallel, during the cold-conditioning and ripening time-course experiment to correlate gene expression to ontogeny. Two complementary approaches, Nonparametric Multi-Dimensional Scaling and efficiency-corrected 2-(ΔΔCt), were used to identify genes exhibiting the most variability in expression. Interestingly, the enhanced alternative oxidase (AOX) transcript abundance at the pre-climacteric stage in 'Bartlett' and 'D'Anjou' at the peak of the conditioning treatments suggests that AOX may play a key and a novel role in the achievement of ripening competency. There were indications that cold-sensing and signaling elements from ABA and auxin pathways modulate the S1-S2 ethylene transition in European pears, and that the S1-S2 ethylene biosynthesis transition is more pronounced in 'Bartlett' as compared to 'D'Anjou' pear. This information has implications in preventing post-harvest losses of this important crop.
Collapse
Affiliation(s)
- Christopher Hendrickson
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
| | - Seanna Hewitt
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States of America
| | - Mark E. Swanson
- School of the Environment, Washington State University, Pullman, WA, United States of America
| | - Todd Einhorn
- Department of Horticulture, Michigan State University, East Lansing, MI, United States of America
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
4
|
Liu S, Zhang Y, Feng Q, Qin L, Pan C, Lamin-Samu AT, Lu G. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Sci Rep 2018; 8:2971. [PMID: 29445121 PMCID: PMC5813154 DOI: 10.1038/s41598-018-21315-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/02/2018] [Indexed: 12/21/2022] Open
Abstract
Auxin response factors (ARFs) encode transcriptional factors that function in the regulation of plant development processes. A tomato ARF gene, SlARF5, was observed to be expressed at high levels in emasculated ovaries but maintained low expression levels in pollinated ovaries. The amiRNA SlARF5 lines exhibited ovary growth and formed seedless fruits following emasculation. These parthenocarpic fruits developed fewer locular tissues, and the fruit size and weight were decreased in transgenic lines compared to those of wild-type fruits. Gene expression analysis demonstrated that several genes involved in the auxin-signaling pathway were downregulated, whereas some genes involved in the gibberellin-signaling pathway were enhanced by the decreased SlARF5 mRNA levels in transgenic plants, indicating that SlARF5 may play an important role in regulating both the auxin- and gibberellin-signaling pathways during fruit set and development.
Collapse
Affiliation(s)
- Songyu Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Youwei Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Qiushuo Feng
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Li Qin
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Changtian Pan
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Anthony Tumbeh Lamin-Samu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Gang Lu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Ren Z, Wang X. SlTIR1 is involved in crosstalk of phytohormones, regulates auxin-induced root growth and stimulates stenospermocarpic fruit formation in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:13-20. [PMID: 27968981 DOI: 10.1016/j.plantsci.2016.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 05/04/2023]
Abstract
TIR1 and its homologs act as auxin receptors and play important roles in plant growth and development in Arabidopsis thaliana. An auxin receptor homolog Solanum lycopersicum TIR1 (SlTIR1) has been isolated from tomato cultivar Micro-Tom, and SlTIR1 over-expression results in parthenocarpic fruit formation. In this study, the promoter driving the β-glucuronidase (GUS) expression vector was constructed and stably transformed into Micro-Tom seedlings. The SlTIR1 promoter driving GUS expression accumulated predominantly in the leaf and vasculature in transgenic seedlings. Promoter analysis identified an auxin-response element (AuxRE) and two gibberellic acid (GA)-response elements in the SlTIR1 promoter. Quantitative PCR showed that SlTIR1 transcript level was down-regulated by naphthaleneacetic acid, ethephon and abscisic acid and up-regulated by GA. Furthermore, because of the lack of ability to form reproductive seeds in SlTIR1 over-expressing Micro-Tom, this limits further exploration of potential roles of SlTIR1 in auxin signaling. Here, an antisense vector and an over-expression vector of the SlTIR1 gene were stably transformed into Micro-Tom and Ailsa Craig tomato, respectively. Phenotypes and physiological analyses indicated that SlTIR1 regulated primary root growth and auxin-associated lateral root formation in Micro-Tom. Meanwhile, SlTIR1 also stimulated abnormal seed development, so-called stenospermocarpy, in Ailsa Craig. Transcript accumulations of auxin-signaling genes determined by quantitative PCR were consistent with the idea that SlTIR1 regulated plant growth and development, partially mediated by controlling the mRNA levels of auxin-signaling genes. Our work demonstrates that SlTIR1 regulated auxin-induced root growth and stimulated stenospermocarpic fruit formation. SlTIR1 may be a key mediator of the crosstalk among auxin and other hormones to co-regulate plant growth and development.
Collapse
Affiliation(s)
- Zhenxin Ren
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiaomin Wang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China.
| |
Collapse
|
6
|
Rootstock effect on serotonin and nutritional quality of tomatoes produced under low temperature and light conditions. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2015.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
El-Sharkawy I, Sherif SM, Jones B, Mila I, Kumar PP, Bouzayen M, Jayasankar S. TIR1-like auxin-receptors are involved in the regulation of plum fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5205-15. [PMID: 24996652 PMCID: PMC4157706 DOI: 10.1093/jxb/eru279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ethylene has long been considered the key regulator of ripening in climacteric fruit. Recent evidence showed that auxin also plays an important role during fruit ripening, but the nature of the interaction between the two hormones has remained unclear. To understand the differences in ethylene- and auxin-related behaviours that might reveal how the two hormones interact, we compared two plum (Prunus salicina L.) cultivars with widely varying fruit development and ripening ontogeny. The early-ripening cultivar, Early Golden (EG), exhibited high endogenous auxin levels and auxin hypersensitivity during fruit development, while the late-ripening cultivar, V98041 (V9), displayed reduced auxin content and sensitivity. We show that exogenous auxin is capable of dramatically accelerating fruit development and ripening in plum, indicating that this hormone is actively involved in the ripening process. Further, we demonstrate that the variations in auxin sensitivity between plum cultivars could be partially due to PslAFB5, which encodes a TIR1-like auxin receptor. Two different PslAFB5 alleles were identified, one (Pslafb5) inactive due to substitution of the conserved F-box amino acid residue Pro61 to Ser. The early-ripening cultivar, EG, exhibited homozygosity for the inactive allele; however, the late cultivar, V9, displayed a PslAFB5/afb5 heterozygous genotype. Our results highlight the impact of auxin in stimulating fruit development, especially the ripening process and the potential for differential auxin sensitivity to alter important fruit developmental processes.
Collapse
Affiliation(s)
- Islam El-Sharkawy
- University of Guelph, Department of Plant Agriculture. 4890 Victoria Av. N., P.O. Box 7000 Vineland Station, ON, L0R 2E0 Canada Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Sherif M Sherif
- University of Guelph, Department of Plant Agriculture. 4890 Victoria Av. N., P.O. Box 7000 Vineland Station, ON, L0R 2E0 Canada Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Brian Jones
- The University of Sydney, Faculty of Agriculture, Australia
| | - Isabelle Mila
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F-31326, France
| | - Prakash P Kumar
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Mondher Bouzayen
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F-31326, France
| | - Subramanian Jayasankar
- University of Guelph, Department of Plant Agriculture. 4890 Victoria Av. N., P.O. Box 7000 Vineland Station, ON, L0R 2E0 Canada
| |
Collapse
|
8
|
El-Sharkawy I, Sherif S, El Kayal W, Mahboob A, Abubaker K, Ravindran P, Jyothi-Prakash PA, Kumar PP, Jayasankar S. Characterization of gibberellin-signalling elements during plum fruit ontogeny defines the essentiality of gibberellin in fruit development. PLANT MOLECULAR BIOLOGY 2014; 84:399-413. [PMID: 24142379 DOI: 10.1007/s11103-013-0139-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/03/2013] [Indexed: 05/11/2023]
Abstract
Fruit growth is a coordinated, complex interaction of cell division, differentiation and expansion. Gibberellin (GA) involvement in the reproductive events is an important aspect of GA effects. Perennial fruit-trees such as plum (Prunus salicina L.) have distinct features that are economically important and provide opportunities to dissect specific GA mechanisms. Currently, very little is known on the molecular mechanism(s) mediating GA effects on fruit development. Determination of bioactive GA content during plum fruit ontogeny revealed that GA1 and GA4 are critical for fruit growth and development. Further, characterization of several genes involved in GA-signalling showed that their transcriptional regulation are generally GA-dependent, confirming their involvement in GA-signalling. Based on these results, a model is presented elucidating how the potential association between GA and other hormones may contribute to fruit development. PslGID1 proteins structure, Y2H and BiFC assays indicated that plum GA-receptors can form a complex with AtDELLA-repressors in a GA-dependent manner. Moreover, phenotypical-, molecular- and GA-analyses of various Arabidopsis backgrounds ectopically expressing PslGID1 sequences provide evidence on their role as active GA-signalling components that mediate GA-responsiveness. Our findings support the critical contribution of GA alone or in association with other hormones in mediating plum fruit growth and development.
Collapse
Affiliation(s)
- Islam El-Sharkawy
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N., P.O. Box 7000, Vineland Station, ON, L0R 2E0, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|