1
|
Liu S, Li X, Zhu J, Jin Y, Xia C, Zheng B, Silvestri C, Cui F. Modern Technologies Provide New Opportunities for Somatic Hybridization in the Breeding of Woody Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2539. [PMID: 39339514 PMCID: PMC11434877 DOI: 10.3390/plants13182539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Advances in cell fusion technology have propelled breeding into the realm of somatic hybridization, enabling the transfer of genetic material independent of sexual reproduction. This has facilitated genome recombination both within and between species. Despite its use in plant breeding for over fifty years, somatic hybridization has been limited by cumbersome procedures, such as protoplast isolation, hybridized-cell selection and cultivation, and regeneration, particularly in woody perennial species that are difficult to regenerate. This review summarizes the development of somatic hybridization, explores the challenges and solutions associated with cell fusion technology in woody perennials, and outlines the process of protoplast regeneration. Recent advancements in genome editing and plant cell regeneration present new opportunities for applying somatic hybridization in breeding. We offer a perspective on integrating these emerging technologies to enhance somatic hybridization in woody perennial plants.
Collapse
Affiliation(s)
- Shuping Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaojie Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiani Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yihong Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Chuizheng Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Cristian Silvestri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo De Lellis, s.n.c., 01100 Viterbo, Italy
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Salvagnin U, Unkel K, Sprink T, Bundock P, Sevenier R, Bogdanović M, Todorović S, Cankar K, Hakkert JC, Schijlen E, Nieuwenhuis R, Hingsamer M, Kulmer V, Kernitzkyi M, Bosch D, Martens S, Malnoy M. A comparison of three different delivery methods for achieving CRISPR/Cas9 mediated genome editing in Cichorium intybus L. FRONTIERS IN PLANT SCIENCE 2023; 14:1111110. [PMID: 37123849 PMCID: PMC10131283 DOI: 10.3389/fpls.2023.1111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Root chicory (Cichorium intybus L. var. sativum) is used to extract inulin, a fructose polymer used as a natural sweetener and prebiotic. However, bitter tasting sesquiterpene lactones, giving chicory its known flavour, need to be removed during inulin extraction. To avoid this extraction and associated costs, recently chicory variants with a lower sesquiterpene lactone content were created by inactivating the four copies of the germacrene A synthase gene (CiGAS-S1, -S2, -S3, -L) which encode the enzyme initiating bitter sesquiterpene lactone biosynthesis in chicory. In this study, different delivery methods for CRISPR/Cas9 reagents have been compared regarding their efficiency to induce mutations in the CiGAS genes, the frequency of off-target mutations as well as their environmental and economic impacts. CRISPR/Cas9 reagents were delivered by Agrobacterium-mediated stable transformation or transient delivery by plasmid or preassembled ribonucleic complexes (RNPs) using the same sgRNA. All methods used lead to a high number of INDEL mutations within the CiGAS-S1 and CiGAS-S2 genes, which match the used sgRNA perfectly; additionally, the CiGAS-S3 and CiGAS-L genes, which have a single mismatch with the sgRNA, were mutated but with a lower mutation efficiency. While using both RNPs and plasmids delivery resulted in biallelic, heterozygous or homozygous mutations, plasmid delivery resulted in 30% of unwanted integration of plasmid fragments in the genome. Plants transformed via Agrobacteria often showed chimerism and a mixture of CiGAS genotypes. This genetic mosaic becomes more diverse when plants were grown over a prolonged period. While the genotype of the on-targets varied between the transient and stable delivery methods, no off-target activity in six identified potential off-targets with two to four mismatches was found. The environmental impacts (greenhouse gas (GHG) emissions and primary energy demand) of the methods are highly dependent on their individual electricity demand. From an economic view - like for most research and development activities - employment and value-added multiplier effects are high; particularly when compared to industrial or manufacturing processes. Considering all aspects, we conclude that using RNPs is the most suitable method for genome editing in chicory since it led to a high efficiency of editing, no off-target mutations, non-transgenic plants with no risk of unwanted integration of plasmid DNA and without needed segregation of transgenes.
Collapse
Affiliation(s)
- Umberto Salvagnin
- Fondazione Edmund Mach (FEM), Centro Ricerca e Innovazione, San Michele all’Adige, TN, Italy
- *Correspondence: Umberto Salvagnin, ; Mickael Malnoy,
| | - Katharina Unkel
- Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Quedlinburg, Germany
| | - Thorben Sprink
- Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Quedlinburg, Germany
| | - Paul Bundock
- Keygene N.V., Agro Business Park 90, Wageningen, Netherlands
| | - Robert Sevenier
- Keygene N.V., Agro Business Park 90, Wageningen, Netherlands
| | - Milica Bogdanović
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slađana Todorović
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Cankar
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | | | - Elio Schijlen
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Ronald Nieuwenhuis
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | | | | | | | - Dirk Bosch
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Stefan Martens
- Fondazione Edmund Mach (FEM), Centro Ricerca e Innovazione, San Michele all’Adige, TN, Italy
| | - Mickael Malnoy
- Fondazione Edmund Mach (FEM), Centro Ricerca e Innovazione, San Michele all’Adige, TN, Italy
- *Correspondence: Umberto Salvagnin, ; Mickael Malnoy,
| |
Collapse
|
3
|
Cankar K, Hakkert JC, Sevenier R, Campo E, Schipper B, Papastolopoulou C, Vahabi K, Tissier A, Bundock P, Bosch D. CRISPR/Cas9 targeted inactivation of the kauniolide synthase in chicory results in accumulation of costunolide and its conjugates in taproots. FRONTIERS IN PLANT SCIENCE 2022; 13:940003. [PMID: 36105709 PMCID: PMC9465254 DOI: 10.3389/fpls.2022.940003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 05/06/2023]
Abstract
Chicory taproots accumulate sesquiterpene lactones lactucin, lactucopicrin, and 8-deoxylactucin, predominantly in their oxalated forms. The biosynthetic pathway for chicory sesquiterpene lactones has only partly been elucidated; the enzymes that convert farnesyl pyrophosphate to costunolide have been described. The next biosynthetic step of the conversion of costunolide to the tricyclic structure, guaianolide kauniolide, has so far not been elucidated in chicory. In this work three putative kauniolide synthase genes were identified in chicory named CiKLS1, CiKLS2, and CiKLS3. Their activity to convert costunolide to kauniolide was demonstrated in vitro using yeast microsome assays. Next, introduction of CRISPR/Cas9 reagents into chicory protoplasts was used to inactivate multiple chicory KLS genes and several chicory lines were successfully regenerated. The inactivation of the kauniolide synthase genes in chicory by the CRISPR/Cas9 approach resulted in interruption of the sesquiterpene lactone biosynthesis in chicory leaves and taproots. In chicory taproots, but not in leaves, accumulation of costunolide and its conjugates was observed to high levels, namely 1.5 mg/g FW. These results confirmed that all three genes contribute to STL accumulation, albeit to different extent. These observations demonstrate that three genes oriented in tandem on the chicory genome encode kauniolide synthases that initiate the conversion of costunolide toward the sesquiterpene lactones in chicory.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Katarina Cankar,
| | | | | | - Eva Campo
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Bert Schipper
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Khabat Vahabi
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | | | - Dirk Bosch
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
4
|
Krishnamoorthy S, Schwartz MF, Van den Broeck L, Hunt A, Horn TJ, Sozzani R. Tissue Regeneration with Hydrogel Encapsulation: A Review of Developments in Plants and Animals. BIODESIGN RESEARCH 2021; 2021:9890319. [PMID: 37849953 PMCID: PMC10521718 DOI: 10.34133/2021/9890319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2023] Open
Abstract
Hydrogel encapsulation has been widely utilized in the study of fundamental cellular mechanisms and has been shown to provide a better representation of the complex in vivo microenvironment in natural biological conditions of mammalian cells. In this review, we provide a background into the adoption of hydrogel encapsulation methods in the study of mammalian cells, highlight some key findings that may aid with the adoption of similar methods for the study of plant cells, including the potential challenges and considerations, and discuss key findings of studies that have utilized these methods in plant sciences.
Collapse
Affiliation(s)
- Srikumar Krishnamoorthy
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael F. Schwartz
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Lisa Van den Broeck
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Aitch Hunt
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Timothy J. Horn
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Rosangela Sozzani
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Cankar K, Bundock P, Sevenier R, Häkkinen ST, Hakkert JC, Beekwilder J, van der Meer IM, de Both M, Bosch D. Inactivation of the germacrene A synthase genes by CRISPR/Cas9 eliminates the biosynthesis of sesquiterpene lactones in Cichorium intybus L. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2442-2453. [PMID: 34270859 PMCID: PMC8633505 DOI: 10.1111/pbi.13670] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 05/06/2023]
Abstract
Chicory (Cichorium intybus var. sativum) is an industrial crop species cultivated for the production of a fructose polymer inulin, which is used as a low-calorie sweetener and prebiotic. Besides, inulin chicory taproots also accumulate sesquiterpene lactones (STLs). These are bitter tasting compounds, which need to be removed during inulin extraction, resulting in additional costs. In this work, we describe chicory lines where STL accumulation is almost completely eliminated. Genome editing using the CRISPR/Cas9 system was used to inactivate four genes that encode the enzyme that performs the first dedicated step in STL synthesis, germacrene A synthase (CiGAS). Chicory lines were obtained that carried null mutations in all four CiGAS genes. Lines lacking functional CiGAS alleles showed a normal phenotype upon greenhouse cultivation and show nearly complete elimination of the STL synthesis in the roots. It was shown that the reduction in STLs could be attributed to mutations in genetically linked copies of the CiGAS-short gene and not the CiGAS-long gene, which is relevant for breeding the trait into other cultivars. The inactivation of the STL biosynthesis pathway led to increase in phenolic compounds as well as accumulation of squalene in the chicory taproot, presumably due to increased availability of farnesyl pyrophosphate (FFP). These results demonstrate that STLs are not essential for chicory growth and that the inhibition of the STL biosynthesis pathway reduced the STL levels chicory which will facilitate inulin extraction.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | | | | | | | - Jules Beekwilder
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | | | - Dirk Bosch
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
6
|
Reed KM, Bargmann BOR. Protoplast Regeneration and Its Use in New Plant Breeding Technologies. Front Genome Ed 2021; 3:734951. [PMID: 34713266 PMCID: PMC8525371 DOI: 10.3389/fgeed.2021.734951] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
The development of gene-editing technology holds tremendous potential for accelerating crop trait improvement to help us address the need to feed a growing global population. However, the delivery and access of gene-editing tools to the host genome and subsequent recovery of successfully edited plants form significant bottlenecks in the application of new plant breeding technologies. Moreover, the methods most suited to achieve a desired outcome vary substantially, depending on species' genotype and the targeted genetic changes. Hence, it is of importance to develop and improve multiple strategies for delivery and regeneration in order to be able to approach each application from various angles. The use of transient transformation and regeneration of plant protoplasts is one such strategy that carries unique advantages and challenges. Here, we will discuss the use of protoplast regeneration in the application of new plant breeding technologies and review pertinent literature on successful protoplast regeneration.
Collapse
Affiliation(s)
| | - Bastiaan O. R. Bargmann
- School of Plant and Environmental Sciences, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
De Bruyn C, Ruttink T, Eeckhaut T, Jacobs T, De Keyser E, Goossens A, Van Laere K. Establishment of CRISPR/Cas9 Genome Editing in Witloof (Cichorium intybus var. foliosum). Front Genome Ed 2020; 2:604876. [PMID: 34713228 PMCID: PMC8525355 DOI: 10.3389/fgeed.2020.604876] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023] Open
Abstract
Cichorium intybus var. foliosum (witloof) is an economically important crop with a high nutritional value thanks to many specialized metabolites, such as polyphenols and terpenoids. However, witloof plants are rich in sesquiterpene lactones (SL) which are important for plant defense but also impart a bitter taste, thus limiting industrial applications. Inactivating specific genes in the SL biosynthesis pathway could lead to changes in the SL metabolite content and result in altered bitterness. In this study, a CRISPR/Cas9 genome editing workflow was implemented for witloof, starting with polyethylene glycol (PEG) mediated protoplast transfection for CRISPR/Cas9 vector delivery, followed by whole plant regeneration and mutation analysis. Protoplast transfection efficiencies ranged from 20 to 26 %. A CRISPR/Cas9 vector targeting the first exon of the phytoene desaturase (CiPDS) gene was transfected into witloof protoplasts and resulted in the knockout of CiPDS, giving rise to an albino phenotype in 23% of the regenerated plants. Further implementing our protocol, the SL biosynthesis pathway genes germacrene A synthase (GAS), germacrene A oxidase (GAO), and costunolide synthase (COS) were targeted in independent experiments. Highly multiplex (HiPlex) amplicon sequencing of the genomic target loci revealed plant mutation frequencies of 27.3, 42.7, and 98.3% in regenerated plants transfected with a CRISPR/Cas9 vector targeting CiGAS, CiGAO, and CiCOS, respectively. We observed different mutation spectra across the loci, ranging from consistently the same +1 nucleotide insertion in CiCOS across independent mutated lines, to a complex set of 20 mutation types in CiGAO across independent mutated lines. These results demonstrate a straightforward workflow for genome editing based on transfection and regeneration of witloof protoplasts and subsequent HiPlex amplicon sequencing. Our CRISPR/Cas9 workflow can enable gene functional research and faster incorporation of novel traits in elite witloof lines in the future, thus facilitating the development of novel industrial applications for witloof.
Collapse
Affiliation(s)
- Charlotte De Bruyn
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- *Correspondence: Charlotte De Bruyn
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Tom Eeckhaut
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Thomas Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | - Ellen De Keyser
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | - Katrijn Van Laere
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| |
Collapse
|
8
|
Eeckhaut T, Van Houtven W, Bruznican S, Leus L, Van Huylenbroeck J. Somaclonal Variation in Chrysanthemum × morifolium Protoplast Regenerants. FRONTIERS IN PLANT SCIENCE 2020; 11:607171. [PMID: 33391318 PMCID: PMC7775395 DOI: 10.3389/fpls.2020.607171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Chrysanthemum × morifolium protoplasts were isolated and regenerated to assess possible protoclonal variation in the regenerants. After a preliminary screening of the potential of different regeneration systems for protoplast regeneration, we produced a series of cut chrysanthemum 'Arjuna' leaf protoplast regenerants through liquid culture. Regenerants (54) were vegetatively propagated and grown under a commercial production system in 2 different seasons. All screened regenerants were significantly affected with regard to either flower number, flower size, flower weight, leaf weight, stalk weight, or plant size. A significant plant size reduction in 43/52 and 48/49 regenerants for both seasons was the most recorded effect. Also a reduction in flowering induction time up to 10 days, altered flower types and colors were observed. Differences between growing seasons were notable. Possible molecular backgrounds including genome size variation and commercial applications in breeding of chrysanthemum are discussed.
Collapse
|
9
|
Soares E, Shumbe L, Dauchot N, Notté C, Prouin C, Maudoux O, Vanderschuren H. Asparagine accumulation in chicory storage roots is controlled by translocation and feedback regulation of asparagine biosynthesis in leaves. THE NEW PHYTOLOGIST 2020; 228:922-931. [PMID: 32729968 DOI: 10.1111/nph.16764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The presence of acrylamide (AA), a potentially carcinogenic and neurotoxic compound, in food has become a major concern for public health. AA in plant-derived food mainly arises from the reaction of the amino acid asparagine (Asn) and reducing sugars during processing of foodstuffs at high temperature. Using a selection of genotypes from the chicory (Cichorium intybus L.) germplasm, we performed Asn measurements in storage roots and leaves to identify genotypes contrasting for Asn accumulation. We combined molecular analysis and grafting experiments to show that leaf to root translocation controls Asn biosynthesis and accumulation in chicory storage roots. We could demonstrate that Asn accumulation in storage roots depends on Asn biosynthesis and transport from the leaf, and that a negative feedback loop by Asn on CiASN1 expression impacts Asn biosynthesis in leaves. Our results provide a new model for Asn biosynthesis in root crop species and highlight the importance of characterizing and manipulating Asn transport to reduce AA content in processed plant-based foodstuffs.
Collapse
Affiliation(s)
- Emanoella Soares
- Plant Genetics Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux, 5030, Belgium
| | - Leonard Shumbe
- Plant Genetics Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux, 5030, Belgium
| | - Nicolas Dauchot
- Research Unit in Plant Cellular and Molecular Biology, University of Namur, Namur, 5000, Belgium
| | - Christine Notté
- Chicoline, Breeding Division of Cosucra Groupe Warcoing SA, Warcoing, 7740, Belgium
| | - Claire Prouin
- Chicoline, Breeding Division of Cosucra Groupe Warcoing SA, Warcoing, 7740, Belgium
| | - Olivier Maudoux
- Chicoline, Breeding Division of Cosucra Groupe Warcoing SA, Warcoing, 7740, Belgium
| | - Hervé Vanderschuren
- Plant Genetics Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux, 5030, Belgium
- Tropical Crop Improvement Laboratory, Crop Biotechnics Division, Biosystems Department, KU Leuven, Leuven, 3001, Belgium
| |
Collapse
|
10
|
|
11
|
Experimental lens capsular bag model for posterior capsule opacification. Cell Tissue Res 2014; 357:101-8. [DOI: 10.1007/s00441-014-1870-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
|
12
|
Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J. Progress in plant protoplast research. PLANTA 2013; 238:991-1003. [PMID: 23955146 DOI: 10.1007/s00425-013-1936-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
In this review we focus on recent progress in protoplast regeneration, symmetric and asymmetric hybridization and novel technology developments. Regeneration of new species and improved culture techniques opened new horizons for practical breeding in a number of crops. The importance of protoplast sources and embedding systems is discussed. The study of reactive oxygen species effects and DNA (de)condensation, along with thorough phytohormone monitoring, are in our opinion the most promising research topics in the further strive for rationalization of protoplast regeneration. Following, fusion and fragmentation progress is summarized. Genomic, transcriptomic and proteomic studies have led to better insights in fundamental processes such as cell wall formation, cell development and chromosome rearrangements in fusion products, whether or not obtained after irradiation. Advanced molecular screening methods of both genome and cytoplasmome facilitate efficient screening of both symmetric and asymmetric fusion products. We expect that emerging technologies as GISH, high resolution melting and next generation sequencing will pay major contributions to our insights of genome creation and stabilization, mainly after asymmetric hybridization. Finally, we demonstrate agricultural valorization of somatic hybridization through enumerating recent introgression of diverse traits in a number of commercial crops.
Collapse
Affiliation(s)
- Tom Eeckhaut
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium.
| | - Prabhu Shankar Lakshmanan
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Dieter Deryckere
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium
| | - Erik Van Bockstaele
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Johan Van Huylenbroeck
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium
| |
Collapse
|