1
|
Leconte JML, Marco M, Nicolas B, Gabriela B, Sébastien C, Olivier C, Alexis C, Marc L, Rémy M, Nicolas P, Camille T, Clémence P, Virginie MT, Langlade NB. Multi-scale characterisation of cold response reveals immediate and long-term impacts on cell physiology up to seed composition in sunflower. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38828995 DOI: 10.1111/pce.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024]
Abstract
Early sowing can help summer crops escape drought and can mitigate the impacts of climate change on them. However, it exposes them to cold stress during initial developmental stages, which has both immediate and long-term effects on development and physiology. To understand how early night-chilling stress impacts plant development and yield, we studied the reference sunflower line XRQ under controlled, semi-controlled and field conditions. We performed high-throughput imaging of the whole plant parts and obtained physiological and transcriptomic data from leaves, hypocotyls and roots. We observed morphological reductions in early stages under field and controlled conditions, with a decrease in root development, an increase in reactive oxygen species content in leaves and changes in lipid composition in hypocotyls. A long-term increase in leaf chlorophyll suggests a stress memory mechanism that was supported by transcriptomic induction of histone coding genes. We highlighted DEGs related to cold acclimation such as chaperone, heat shock and late embryogenesis abundant proteins. We identified genes in hypocotyls involved in lipid, cutin, suberin and phenylalanine ammonia lyase biosynthesis and ROS scavenging. This comprehensive study describes new phenotyping methods and candidate genes to understand phenotypic plasticity better in response to chilling and study stress memory in sunflower.
Collapse
Affiliation(s)
- Jean Michel Louis Leconte
- Université de Toulouse, INRAE, UMR LIPME, Castanet-Tolosan, France
- SYNGENTA SEEDS, Saint Sauveur, France
| | - Moroldo Marco
- Université de Toulouse, INRAE, UMR LIPME, Castanet-Tolosan, France
| | - Blanchet Nicolas
- Université de Toulouse, INRAE, UMR LIPME, Castanet-Tolosan, France
- Université de Toulouse, INRAE, UE APC, Castanet-Tolosan, France
| | - Bindea Gabriela
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | | | - Catrice Olivier
- Université de Toulouse, INRAE, UMR LIPME, Castanet-Tolosan, France
| | | | | | - Marandel Rémy
- Université de Toulouse, INRAE, UE APC, Castanet-Tolosan, France
| | - Pouilly Nicolas
- Université de Toulouse, INRAE, UMR LIPME, Castanet-Tolosan, France
| | - Tapy Camille
- Université de Toulouse, INRAE, UMR LIPME, Castanet-Tolosan, France
| | | | | | | |
Collapse
|
2
|
Transcriptomics Profiling of Acer pseudosieboldianum Molecular Mechanism against Freezing Stress. Int J Mol Sci 2022; 23:ijms232314676. [PMID: 36499002 PMCID: PMC9737005 DOI: 10.3390/ijms232314676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Low temperature is an important environmental factor that affects the growth and development of trees and leads to the introduction of failure in the genetic improvement of trees. Acer pseudosieboldianum is a tree species that is well-known for its bright red autumn leaf color. These trees are widely used in landscaping in northeast China. However, due to their poor cold resistance, introduced A. pseudosieboldianum trees suffer severe freezing injury in many introduced environments. To elucidate the physiological indicators and molecular mechanisms associated with freezing damage, we analyzed the physiological indicators and transcriptome of A. pseudosieboldianum, using kits and RNA-Seq technology. The mechanism of A. pseudosieboldianum in response to freezing stress is an important scientific question. In this study, we used the shoots of four-year-old A. pseudosieboldianum twig seedlings, and the physiological index and the transcriptome of A. pseudosieboldianum under low temperature stress were investigated. The results showed that more than 20,000 genes were detected in A. pseudosieboldianum under low temperature (4 °C) and freezing temperatures (-10 °C, -20 °C, -30 °C, and -40 °C). There were 2505, 6021, 5125, and 3191 differential genes (DEGs) between -10 °C, -20°C, -30°C, -40 °C, and CK (4 °C), respectively. Among these differential genes, 48 genes are involved in the MAPK pathway and 533 genes are involved in the glucose metabolism pathway. In addition, the important transcription factors (MYB, AP2/ERF, and WRKY) involved in freezing stress were activated under different degrees of freezing stress. A total of 10 sets of physiological indicators of A. pseudosieboldianum were examined, including the activities of five enzymes and the accumulation of five hormones. All of the physiological indicators except SOD and GSH-Px reached their maximum values at -30 °C. The enzyme activity of SOD was highest at -10 °C, and that of GSH-Px was highest at -20 °C. Our study is the first to provide a more comprehensive understanding of the differential genes (DEGs) involved in A. pseudosieboldianum under freezing stress at different temperatures at the transcriptome level. These results may help to clarify the molecular mechanism of cold tolerance of A. pseudosieboldianum and provide new insights and candidate genes for the genetic improvement of the freezing tolerance of A. pseudosieboldianum.
Collapse
|
3
|
Li W, Fu Y, Lv W, Zhao S, Feng H, Shao L, Li C, Yang J. Characterization of the early gene expression profile in Populus ussuriensis under cold stress using PacBio SMRT sequencing integrated with RNA-seq reads. TREE PHYSIOLOGY 2022; 42:646-663. [PMID: 34625806 DOI: 10.1093/treephys/tpab130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Populus ussuriensis is an important and fast-growing afforestation plant species in north-eastern China. The whole-genome sequencing of P. ussuriensis has not been completed. Also, the transcriptional network of P. ussuriensis response to cold stress remains unknown. To unravel the early response of P. ussuriensis to chilling (3 °C) stress and freezing (-3 °C) stresses at the transcriptional level, we performed single-molecule real-time (SMRT) and Illumina RNA sequencing for P. ussuriensis. The SMRT long-read isoform sequencing led to the identification of 29,243,277 subreads and 575,481 circular consensus sequencing reads. Approximately 50,910 high-quality isoforms were generated, and 2272 simple sequence repeats and 8086 long non-coding RNAs were identified. The Ca2+ content and abscisic acid (ABA) content in P. ussuriensis were significantly increased under cold stresses, while the value in the freezing stress treatment group was significantly higher than the chilling stress treatment group. A total of 49 genes that are involved in the signal transduction pathways related to perception and transmission of cold stress signals, such as the Ca2+ signaling pathway, ABA signaling pathway and MAPK signaling cascade, were found to be differentially expressed. In addition, 158 transcription factors from 21 different families, such as MYB, WRKY and AP2/ERF, were differentially expressed during chilling and freezing treatments. Moreover, the measurement of physiological indicators and bioinformatics observations demonstrated the altered expression pattern of genes involved in reactive oxygen species balance and the sugar metabolism pathway during chilling and freezing stresses. This is the first report of the early responses of P. ussuriensis to cold stress, which lays the foundation for future studies on the regulatory mechanisms in cold-stress response. In addition the full-length reference transcriptome of P. ussuriensis deciphered could be used in future studies on P. ussuriensis.
Collapse
Affiliation(s)
- Wenlong Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yanrui Fu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Wanqiu Lv
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Shicheng Zhao
- School of Pharmacy, Harbin University of Commerce, No.138 Tongdajie Street, Harbin 150028, China
| | - He Feng
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Liying Shao
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
4
|
Tang S, Xian Y, Wang F, Luo C, Song W, Xie S, Chen X, Cao A, Li H, Liu H. Comparative transcriptome analysis of leaves during early stages of chilling stress in two different chilling-tolerant brown-fiber cotton cultivars. PLoS One 2021; 16:e0246801. [PMID: 33561168 PMCID: PMC7872267 DOI: 10.1371/journal.pone.0246801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 11/18/2022] Open
Abstract
Chilling stress generates significant inhibition of normal growth and development of cotton plants and lead to severe reduction of fiber quality and yield. Currently, little is known for the molecular mechanism of brown-fiber cotton (BFC) to respond to chilling stress. Herein, RNA-sequencing (RNA-seq)-based comparative analysis of leaves under 4°C treatment in two different-tolerant BFC cultivars, chilling-sensitive (CS) XC20 and chilling-tolerant (CT) Z1612, was performed to investigate the response mechanism. A total of 72650 unigenes were identified with eight commonly used databases. Venn diagram analysis identified 1194 differentially expressed genes (DEGs) with significant up-regulation in all comparison groups. Furthermore, enrichment analyses of COG and KEGG, as well as qRT-PCR validation, indicated that 279 genes were discovered as up-regulated DEGs (UDEGs) with constant significant increased expression in CT cultivar Z1612 groups at the dimensions of both each comparison group and treatment time, locating in the enriched pathways of signal transduction, protein and carbohydrate metabolism, and cell component. Moreover, the comprehensive analyses of gene expression, physiological index and intracellular metabolite detections, and ascorbate antioxidative metabolism measurement validated the functional contributions of these identified candidate genes and pathways to chilling stress. Together, this study for the first time report the candidate key genes and metabolic pathways responding to chilling stress in BFC, and provide the effective reference for understanding the regulatory mechanism of low temperature adaptation in cotton.
Collapse
Affiliation(s)
- Shouwu Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- China Colored-cotton (Group) Co., Ltd., Urumqi, China
| | - Yajie Xian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Cheng Luo
- China Colored-cotton (Group) Co., Ltd., Urumqi, China
| | - Wu Song
- China Colored-cotton (Group) Co., Ltd., Urumqi, China
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Haifeng Liu
- China Colored-cotton (Group) Co., Ltd., Urumqi, China
| |
Collapse
|
5
|
Yue J, Shi D, Zhang L, Zhang Z, Fu Z, Ren Q, Zhang J. The photo-inhibition of camphor leaves ( Cinnamomum camphora L.) by NaCl stress based on physiological, chloroplast structure and comparative proteomic analysis. PeerJ 2020; 8:e9443. [PMID: 32974090 PMCID: PMC7486828 DOI: 10.7717/peerj.9443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/08/2020] [Indexed: 11/29/2022] Open
Abstract
Background The distribution and use of camphor (Cinnamomum camphora L.) trees are constrained by increasing soil salinity in south-eastern China along the Yangtze River. However, the response mechanism of this species to salinity, especially in team of photosynthesis, are unknown. Methods Here, we analysed themorphological, physiological, ultrastructural, and proteomic traits of camphor seedlings under NaCl (103.45 mM) treatment in pot experiments for 80 days. Results The growth was limited because of photosynthetic inhibition, with the most significant disturbance occurring within 50 days. Salinity caused severe reductions in the leaf photosynthetic rate (An), stomatal conductance (gs), maximal chlorophyll fluorescence (Fm), maximum quantum yield of PSII (Fv/Fm), non-photochemical quenching (NPQ), relative quantum efficiency of PSII photochemistry (ΦPSII), photochemical quenching coefficient (qP) and photo-pigment contents (chlorophyll a (Cha), chlorophyll b (Chb), total chlorophyll (Chl)); weakened the antioxidant effects, including those of malondialdehyde (MDA), superoxide dismutase (SOD) and peroxidase (POD); and injured chloroplasts. The physiologicalresults indicated that the main reason for photo-inhibition was oxidative factors induced by NaCl. The proteomic results based on isobaric tags for relative and absolute quantitation (iTRAQ) further confirmedthat photosynthesis was the most significant disrupted process by salinity (P < 0.01) and there were 30 downregulated differentially expression proteins (DEPs) and one upregulated DEP related to restraint of the photosynthetic system, which affected photosystem I, photosystem II, the Cytochrome b6/f complex, ATP synthase and the light-harvesting chlorophyll protein complex. In addition, 57 DEPs were related to photo-inhibition by redox effect and 6 downregulated DEPs, including O2 evolving complex 33kD family protein (gi—224094610) and five other predicted proteins (gi—743921083, gi—743840443, gi—743885735, gi—743810316 and gi—743881832) were directly affected. This study provides new proteomic information and explains the possible mechanisms of photo-inhibition caused by salinity on C. camphor.
Collapse
Affiliation(s)
- Jiammin Yue
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China.,Key Laboratory of Land Degradation and Ecosystem Restoration & Key Laboratory of Rehabilitation and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yingchuan, Ningxia, China.,Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dawei Shi
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Liang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zihan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhiyuan Fu
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Qiong Ren
- Jiangxi Academy of Forestry, Nanchang, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Jiang X, Zhao H, Guo F, Shi X, Ye C, Yang P, Liu B, Ni D. Transcriptomic analysis reveals mechanism of light-sensitive albinism in tea plant Camellia sinensis 'Huangjinju'. BMC PLANT BIOLOGY 2020; 20:216. [PMID: 32410639 PMCID: PMC7227349 DOI: 10.1186/s12870-020-02425-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/30/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Camellia sinensis 'Huangjinju' is an albino tea variety developed recently in China. Young leaves of 'Huangjinju' demonstrate bright yellow when cultivated under natural sunlight, but regreens under reduced light intensity. To elucidate the physiological and molecular mechanisms of this light-sensitive albinism, we compared leaf pigmentation, metabolites, cellular ultrastructure and transcriptome between plants cultured under natural sunlight and shade. RESULTS Shading treatment doubled the chlorophyll concentration and regreened albino leaves; carotenoid also increased by 30%. Electron microscopy analyses showed that chloroplast not only increased in number but also in size with a complete set of components. In addition, regreened leaves also had a significantly higher concentration of polyphenols and catechins than albino leaves. At transcriptomic level, a total of 507 genes were differentially expressed in response to light condition changes. The most enriched pathways include light harvest protein complex, response to stimuli, oxidation-reduction process, generation of precursor metabolites and energy response. CONCLUSION The integrated strategy in this study allows a mechanistic understanding of leaf albinism in light-sensitive tea plants and suggested the regulation of gene networks involved in pigmentation and protein processing. Results from this study provide valuable information to this area and can benefit the domestication and artificial breeding to develop new albino tea varieties.
Collapse
Affiliation(s)
- Xinfeng Jiang
- College of Horticulture and Forestry Science, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330202, Jiangxi, China
| | - Hua Zhao
- College of Horticulture and Forestry Science, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Fei Guo
- College of Horticulture and Forestry Science, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Xuping Shi
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330202, Jiangxi, China
| | - Chuan Ye
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330202, Jiangxi, China
| | - Puxiang Yang
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330202, Jiangxi, China
| | - Benying Liu
- Yunnan Provincial Key Laboratory of Tea Science, Jinghong, 666100, Yunnan, China
| | - Dejiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
7
|
Wu H, Yao D, Chen Y, Yang W, Zhao W, Gao H, Tong C. De Novo Genome Assembly of Populus simonii Further Supports That Populus simonii and Populus trichocarpa Belong to Different Sections. G3 (BETHESDA, MD.) 2020; 10:455-466. [PMID: 31806765 PMCID: PMC7003099 DOI: 10.1534/g3.119.400913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/03/2019] [Indexed: 11/18/2022]
Abstract
Populus simonii is an important tree in the genus Populus, widely distributed in the Northern Hemisphere and having a long cultivation history. Although this species has ecologically and economically important values, its genome sequence is currently not available, hindering the development of new varieties with wider adaptive and commercial traits. Here, we report a chromosome-level genome assembly of P. simonii using PacBio long-read sequencing data aided by Illumina paired-end reads and related genetic linkage maps. The assembly is 441.38 Mb in length and contain 686 contigs with a contig N50 of 1.94 Mb. With the linkage maps, 336 contigs were successfully anchored into 19 pseudochromosomes, accounting for 90.2% of the assembled genome size. Genomic integrity assessment showed that 1,347 (97.9%) of the 1,375 genes conserved among all embryophytes can be found in the P. simonii assembly. Genomic repeat analysis revealed that 41.47% of the P. simonii genome is composed of repetitive elements, of which 40.17% contained interspersed repeats. A total of 45,459 genes were predicted from the P. simonii genome sequence and 39,833 (87.6%) of the genes were annotated with one or more related functions. Phylogenetic analysis indicated that P. simonii and Populus trichocarpa should be placed in different sections, contrary to the previous classification according to morphology. The genome assembly not only provides an important genetic resource for the comparative and functional genomics of different Populus species, but also furnishes one of the closest reference sequences for identifying genomic variants in an F1 hybrid population derived by crossing P. simonii with other Populus species.
Collapse
Affiliation(s)
- Hainan Wu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Dan Yao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhua Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wenguo Yang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hua Gao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Chunfa Tong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Su W, Ye C, Zhang Y, Hao S, Li QQ. Identification of putative key genes for coastal environments and cold adaptation in mangrove Kandelia obovata through transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:191-201. [PMID: 31103657 DOI: 10.1016/j.scitotenv.2019.05.127] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 05/28/2023]
Abstract
Mangrove forests are an important contributor to the coastal marine environment. They have developed unique adaptations to the harsh coastal wetland, yet their geographic distribution is limited by environmental temperature. The adaptive strategies of mangrove at the molecular level, however, have not been addressed. In the present work, transcriptome analyses were performed on different cold damaged plants of a mangrove species, Kandelia obovata. From the samples collected in the field after a cold stress, we found that distinct expression profiles of many key genes are related to extreme temperature responses. These include transcription factors such as WRKY and bHLH, and other genes encoding proteins like SnRK2, PR-1, KCS, involving in the pathways of plant hormones, plant-pathogen interactions, and long chain fatty acid synthesis. We also examined the transcriptomes of eight tissues of K. obovata to identify candidate genes involved in adaptation and development. While stress-responsive genes were globally expressed, tissue-specific genes with diverse functions might be involved in tissue development and adaptability. For examples, genes encoding CYP724B1 and ABCB1 were specifically expressed in the fruit and root, respectively. Additionally, 26 genes were identified as positively selected genes in K. obovata, six of them were found to be involved in chilling stress response, seed germination and oxidation-reduction processes, suggesting their roles in stressful environment adaptation. Together, these results shed light into the K. obovata's natural responses to cold snaps at the molecular level, and reveal a global gene expression portrait across different tissues. It also provides a transcriptome resource for further molecular ecology studies and conservation planning of this and other mangrove plants in their native and adopted environments.
Collapse
Affiliation(s)
- Wenyue Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Saiqi Hao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
9
|
Kenchanmane Raju SK, Barnes AC, Schnable JC, Roston RL. Low-temperature tolerance in land plants: Are transcript and membrane responses conserved? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:73-86. [PMID: 30348330 DOI: 10.1016/j.plantsci.2018.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 05/20/2023]
Abstract
Plants' tolerance of low temperatures is an economically and ecologically important limitation on geographic distributions and growing seasons. Tolerance for low temperatures varies significantly across different plant species, and different mechanisms likely act in different species. In order to survive low-temperature stress, plant membranes must maintain their fluidity in increasingly cold and oxidative cellular environments. The responses of different species to low-temperature stress include changes to the types and desaturation levels of membrane lipids, though the precise lipids affected tend to vary by species. Regulation of membrane dynamics and other low-temperature tolerance factors are controlled by both transcriptional and post-transcriptional mechanisms. Here, we review low-temperature induced changes in both membrane lipid composition and gene transcription across multiple related plant species with differing degrees of low-temperature tolerance. We attempt to define a core set of changes for transcripts and lipids across species and treatment variations. Some responses appear to be consistent across all species for which data are available, while many others appear likely to be species or family-specific. Potential rationales are presented, including variance in testing, reporting and the importance of considering the level of stress perceived by the plant.
Collapse
Affiliation(s)
- Sunil Kumar Kenchanmane Raju
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Allison C Barnes
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Rebecca L Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
10
|
Carvajal F, Rosales R, Palma F, Manzano S, Cañizares J, Jamilena M, Garrido D. Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity. BMC Genomics 2018; 19:125. [PMID: 29415652 PMCID: PMC5804050 DOI: 10.1186/s12864-018-4500-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/28/2018] [Indexed: 11/18/2022] Open
Abstract
Background Zucchini fruit is susceptible to chilling injury (CI), but the response to low storage temperature is cultivar dependent. Previous reports about the response of zucchini fruit to chilling storage have been focused on the physiology and biochemistry of this process, with little information about the molecular mechanisms underlying it. In this work, we present a comprehensive analysis of transcriptomic changes that take place after cold storage in zucchini fruit of two commercial cultivars with contrasting response to chilling stress. Results RNA-Seq analysis was conducted in exocarp of fruit at harvest and after 14 days of storage at 4 and 20 °C. Differential expressed genes (DEGs) were obtained comparing fruit stored at 4 °C with their control at 20 °C, and then specific and common up and down-regulated DEGs of each cultivar were identified. Functional analysis of these DEGs identified similarities between the response of zucchini fruit to low temperature and other stresses, with an important number of GO terms related to biotic and abiotic stresses overrepresented in both cultivars. This study also revealed several molecular mechanisms that could be related to chilling tolerance, since they were up-regulated in cv. Natura (CI tolerant) or down-regulated in cv. Sinatra (CI sensitive). These mechanisms were mainly those related to carbohydrate and energy metabolism, transcription, signal transduction, and protein transport and degradation. Among DEGs belonging to these pathways, we selected candidate genes that could regulate or promote chilling tolerance in zucchini fruit including the transcription factors MYB76-like, ZAT10-like, DELLA protein GAIP, and AP2/ERF domain-containing protein. Conclusions This study provides a broader understanding of the important mechanisms and processes related to coping with low temperature stress in zucchini fruit and allowed the identification of some candidate genes that may be involved in the acquisition of chilling tolerance in this crop. These genes will be the basis of future studies aimed to identify markers involved in cold tolerance and aid in zucchini breeding programs. Electronic supplementary material The online version of this article (10.1186/s12864-018-4500-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Carvajal
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - R Rosales
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - F Palma
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - S Manzano
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), CIAIMBITAL, University of Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - J Cañizares
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
| | - M Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), CIAIMBITAL, University of Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - D Garrido
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
11
|
Liu Y, Xu Y, Ling S, Liu S, Yao J. Anther-preferential expressing gene PMR is essential for the mitosis of pollen development in rice. PLANT CELL REPORTS 2017; 36:919-931. [PMID: 28299429 DOI: 10.1007/s00299-017-2123-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/22/2017] [Indexed: 05/26/2023]
Abstract
Phenotype identification, expression examination, and function prediction declared that the anther-preferential expressing gene PMR may participate in regulation of male gametophyte development in rice. Male germline development in flowering plants produces the pair of sperm cells for double fertilization and the pollen mitosis is a key process of it. Although the structural features of male gametophyte have been defined, the molecular mechanisms regulating the mitotic cell cycle are not well elucidated in rice. Here, we reported an anther-preferential expressing gene in rice, PMR (Pollen Mitosis Relative), playing an essential role in male gametogenesis. When PMR gene was suppressed via RNAi, the mitosis of microspore was severely damaged, and the plants formed unmatured pollens containing only one or two nucleuses at the anthesis, ultimately leading to serious reduction of pollen fertility and seed-setting. The CRISPR mutants, pmr-1 and pmr-2, both showed the similar defects as the PMR-RNAi lines. Further analysis revealed that PMR together with its co-expressing genes were liable to participate in the regulation of DNA metabolism in the nucleus, and affected the activities of some enzymes related to the cell cycle. We finally discussed that unknown protein PMR contained the PHD, SWIB and Plus-3 domains and they might have coordinating functions in regulation pathway of the pollen mitosis in rice.
Collapse
Affiliation(s)
- Yaqin Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ya Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Ling
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shasha Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Li Y, Song Y, Xu B, Xie J, Zhang D, Cooke J. Poplar CBF1 functions specifically in an integrated cold regulatory network. TREE PHYSIOLOGY 2017; 37:98-115. [PMID: 28175921 DOI: 10.1093/treephys/tpw079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/19/2016] [Accepted: 07/24/2016] [Indexed: 06/06/2023]
Abstract
The C-repeat binding factors (CBFs), also termed dehydration-responsive element-binding protein 1 (DREB1) family members, play crucial roles in the acquisition of stress tolerance, but in trees, the underlying mechanisms of stress tolerance remain elusive. To gain insight into these mechanisms, we isolated five CBF1 orthologs from four poplar sections (Populus spp.) and assessed their expression under drought, cold, heat and salt stress conditions. Globally induced expression in response to cold suggested a correlation between poplar CBF1 expression and the acquisition of cold tolerance. Responses that varied between sections may reflect section-specific stress tolerance mechanisms, suggesting an effect of ecological context on the development of CBF1-mediated stress tolerance in poplar. We then used a genome-wide search strategy in Populus trichocarpa to predict 2263 putative CBF target genes; the identified genes participate in multiple biological processes and pathways. Almost all of the putative target genes contained multiple cis-acting elements that mediate responses to various environmental and endogenous signals, consistent with an important role of CBF1s in an integrated cold regulatory network. Finally, analysis of an association population of 528 individuals of Populus simonii identified six single-nucleotide polymorphisms (false discovery rate Q < 0.10) significantly (P < 0.005) associated with malondialdehyde production and electrolyte leakage, suggesting the potential importance of PsCBF1 in the regulation of some membrane-related functions. Our findings provide new insights into the function of PsCBF1 and shed light on the CBF-mediated regulatory network in poplar.
Collapse
Affiliation(s)
- Ying Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
| | - Baohua Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
| | | |
Collapse
|
13
|
Zou M, Lu C, Zhang S, Chen Q, Sun X, Ma P, Hu M, Peng M, Ma Z, Chen X, Zhou X, Wang H, Feng S, Fang K, Xie H, Li Z, Liu K, Qin Q, Pei J, Wang S, Pan K, Hu W, Feng B, Fan D, Zhou B, Wu C, Su M, Xia Z, Li K, Wang W. Epigenetic map and genetic map basis of complex traits in cassava population. Sci Rep 2017; 7:41232. [PMID: 28120898 PMCID: PMC5264614 DOI: 10.1038/srep41232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/16/2016] [Indexed: 11/13/2022] Open
Abstract
Cassava (Manihot esculenta Crantz) is an important tropical starchy root crop that is adapted to drought but extremely cold sensitive. A cold-tolerant, high-quality, and robust supply of cassava is urgently needed. Here, we clarify genome-wide distribution and classification of CCGG hemi-methylation and full-methylation, and detected 77 much candidate QTLsepi for cold stress and 103 much candidate QTLsepi for storage root quality and yield in 186 cassava population, generated by crossing two non-inbred lines with female parent KU50 and male parent SC124 (KS population). We developed amplified-fragment single nucleotide polymorphism and methylation (AFSM) genetic map in this population. We also constructed the AFSM QTL map, identified 260 much candidate QTL genes for cold stress and 301 much candidate QTL genes for storage root quality and yield, based on the years greenhouse and field trials. This may accounted for a significant amount of the variation in the key traits controlling cold tolerance and the high quality and yield of cassava.
Collapse
Affiliation(s)
- Meiling Zou
- Huazhong Agricultural University, Wuhan, China.,The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Cheng Lu
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Shengkui Zhang
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Qing Chen
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Xianglai Sun
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Pingan Ma
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Meizhen Hu
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Ming Peng
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Zilong Ma
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Xin Chen
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Xincheng Zhou
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Haiyan Wang
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Subin Feng
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Kaixin Fang
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Hairong Xie
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Zaiyun Li
- Huazhong Agricultural University, Wuhan, China
| | - Kede Liu
- Huazhong Agricultural University, Wuhan, China
| | - Qiongyao Qin
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Jinli Pei
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Shujuan Wang
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Kun Pan
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Wenbin Hu
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Binxiao Feng
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Dayong Fan
- Guangxi Academy of Agricultural Sciences, Guilin, China
| | - Bin Zhou
- Guangxi Academy of Agricultural Sciences, Guilin, China
| | - Chunling Wu
- Guangxi Academy of Agricultural Sciences, Guilin, China
| | - Ming Su
- Guangxi Academy of Agricultural Sciences, Guilin, China
| | - Zhiqiang Xia
- Huazhong Agricultural University, Wuhan, China.,The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Kaimian Li
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Wenquan Wang
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| |
Collapse
|
14
|
Kang L, Kim HS, Kwon YS, Ke Q, Ji CY, Park SC, Lee HS, Deng X, Kwak SS. IbOr Regulates Photosynthesis under Heat Stress by Stabilizing IbPsbP in Sweetpotato. FRONTIERS IN PLANT SCIENCE 2017; 8:989. [PMID: 28642783 PMCID: PMC5462972 DOI: 10.3389/fpls.2017.00989] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/24/2017] [Indexed: 05/19/2023]
Abstract
The Orange (Or) protein regulates carotenoid biosynthesis and environmental stress in plants. Previously, we reported that overexpression of the sweetpotato [Ipomoea batatas (L.) Lam] Or gene (IbOr) in transgenic Arabidopsis (referred to as IbOr-OX/At) increased the efficiency of photosystem II (PSII) and chlorophyll content after heat shock. However, little is known about the role of IbOr in PSII-mediated protection against abiotic stress. In this study, comparative proteomics revealed that expression of PsbP (an extrinsic subunit of PSII) is up-regulated in heat-treated IbOr-OX/At plants. We then identified and functionally characterized the PsbP-like gene (IbPsbP) from sweetpotato. IbPsbP is predominantly localized in chloroplast, and its transcripts are tissue-specifically expressed and up-regulated in response to abiotic stress. In addition, IbOr interacts with IbPsbP and protects it from heat-induced denaturation, consistent with the observation that transgenic sweetpotato overexpressing IbOr maintained higher PSII efficiency and chlorophyll content upon exposure to heat stress. These results indicate that IbOr can protect plants from environmental stress not only by controlling carotenoid biosynthesis but also by directly stabilizing PSII.
Collapse
Affiliation(s)
- Le Kang
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and TechnologyDaejeon, South Korea
| | - Ho S. Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Young S. Kwon
- Environmental Biology and Chemistry Center, Korea Institute of ToxicologyJinju, South Korea
| | - Qingbo Ke
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Chang Y. Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and TechnologyDaejeon, South Korea
| | - Sung-Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and TechnologyDaejeon, South Korea
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F UniversityShaanxi, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and TechnologyDaejeon, South Korea
- *Correspondence: Sang-Soo Kwak,
| |
Collapse
|
15
|
Zhan J, Zhu X, Zhou W, Chen H, He C, Wang Q. Thf1 interacts with PS I and stabilizes the PS I complex in Synechococcus sp. PCC7942. Mol Microbiol 2016; 102:738-751. [PMID: 27555564 DOI: 10.1111/mmi.13488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 11/30/2022]
Abstract
Thylakoid formation1 protein (Thf1) is a multifunctional protein that is conserved in all photosynthetic organisms. In this study, we used the model cyanobacterium Synechococcus sp. PCC7942 (hereafter Synechococcus) to show that the level of Thf1 is altered in response to various stress conditions. Although this protein has been reported to be involved in thylakoid formation, the thylakoid membrane in the thf1 deletion strain (ΔThf1) was not affected. Compared with the WT, ΔThf1 showed reduced PS II activity, with increased levels of D1 under high light (HL) conditions, which was resulted from blocked D1 degradation by the FtsH protease and thus inhibits PS II repair. PS I was found to be more seriously affected than PS II in ΔThf1, even under low light conditions, suggesting that PS I damage could be the primary effect of thf1 deletion in Synechococcus. Further analysis revealed that the ΔThf1 mutant had a lower PS I subunit content and lower PS I stability under HL conditions. Further sucrose gradient fractionation of the membrane protein complexes and crosslinking and immunoblot analysis indicated that Thf1 interacts with PS I. Together, our results reveal that Thf1 interacts with PS I and thereby stabilizes PS I in Synechococcus.
Collapse
Affiliation(s)
- Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Xi Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Wei Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| |
Collapse
|
16
|
Song L, Jiang L, Chen Y, Shu Y, Bai Y, Guo C. Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress. Funct Integr Genomics 2016; 16:495-511. [PMID: 27272950 DOI: 10.1007/s10142-016-0500-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 12/01/2022]
Abstract
Medicago sativa L. (alfalfa) 'Zhaodong' is an important forage legume that can safely survive in northern China where winter temperatures reach as low as -30 °C. Survival of alfalfa following freezing stress depends on the amount and revival ability of crown buds. In order to investigate the molecular mechanisms of frost tolerance in alfalfa, we used transcriptome sequencing technology and bioinformatics strategies to analyze crown buds of field-grown alfalfa during winter. We statistically identified a total of 5605 differentially expressed genes (DEGs) involved in freezing stress including 1900 upregulated and 3705 downregulated DEGs. We validated 36 candidate DEGs using qPCR to confirm the accuracy of the RNA-seq data. Unlike other recent studies, this study employed alfalfa plants grown in the natural environment. Our results indicate that not only the CBF orthologs but also membrane proteins, hormone signal transduction pathways, and ubiquitin-mediated proteolysis pathways indicate the presence of a special freezing adaptation mechanism in alfalfa. The antioxidant defense system may rapidly confer freezing tolerance to alfalfa. Importantly, biosynthesis of secondary metabolites and phenylalanine metabolism, which is of potential importance in coordinating freezing tolerance with growth and development, were downregulated in subzero temperatures. The adaptive mechanism for frost tolerance is a complex multigenic process that is not well understood. This systematic analysis provided an in-depth view of stress tolerance mechanisms in alfalfa.
Collapse
Affiliation(s)
- Lili Song
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Lin Jiang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Yue Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Yan Bai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China.
| |
Collapse
|
17
|
Tan H, Huang H, Tie M, Tang Y, Lai Y, Li H. Transcriptome Profiling of Two Asparagus Bean (Vigna unguiculata subsp. sesquipedalis) Cultivars Differing in Chilling Tolerance under Cold Stress. PLoS One 2016; 11:e0151105. [PMID: 26954786 PMCID: PMC4783050 DOI: 10.1371/journal.pone.0151105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/22/2016] [Indexed: 11/29/2022] Open
Abstract
Cowpea (V. unguiculata L. Walp.) is an important tropical grain legume. Asparagus bean (V. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea, which is considered one of the top ten Asian vegetables. It can be adapted to a wide range of environmental stimuli such as drought and heat. Nevertheless, it is an extremely cold-sensitive tropical species. Improvement of chilling tolerance in asparagus bean may significantly increase its production and prolong its supply. However, gene regulation and signaling pathways related to cold response in this crop remain unknown. Using Illumina sequencing technology, modification of global gene expression in response to chilling stress in two asparagus bean cultivars—“Dubai bean” and “Ningjiang-3”, which are tolerant and sensitive to chilling, respectively—were investigated. More than 1.8 million clean reads were obtained from each sample. After de novo assembly, 88,869 unigenes were finally generated with a mean length of 635 bp. Of these unigenes, 41,925 (47.18%) had functional annotations when aligned to public protein databases. Further, we identified 3,510 differentially expressed genes (DEGs) in Dubai bean, including 2,103 up-regulated genes and 1,407 down-regulated genes. While in Ningjiang-3, we found 2,868 DEGs, 1,786 of which were increasing and the others were decreasing. 1,744 DEGs were commonly regulated in two cultivars, suggesting that some genes play fundamental roles in asparagus bean during cold stress. Functional classification of the DEGs in two cultivars using Mercator pipeline indicated that RNA, protein, signaling, stress and hormone metabolism were five major groups. In RNA group, analysis of TFs in DREB subfamily showed that ICE1-CBF3-COR cold responsive cascade may also exist in asparagus bean. Our study is the first to provide the transcriptome sequence resource for asparagus bean, which will accelerate breeding cold resistant asparagus bean varieties through genetic engineering, and advance our knowledge of the genes involved in the complex regulatory networks of this plant under cold stress.
Collapse
Affiliation(s)
- Huaqiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haitao Huang
- Mianyang Institute of Agricultural Sciences, Mianyang, Sichuan, China
| | - Manman Tie
- Dazhou Institute of Agricultural Sciences, Dazhou, Sichuan, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
18
|
Eremina M, Rozhon W, Poppenberger B. Hormonal control of cold stress responses in plants. Cell Mol Life Sci 2016; 73:797-810. [PMID: 26598281 PMCID: PMC11108489 DOI: 10.1007/s00018-015-2089-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/20/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.
Collapse
Affiliation(s)
- Marina Eremina
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, 85354, Freising, Germany.
| |
Collapse
|
19
|
Peng X, Teng L, Yan X, Zhao M, Shen S. The cold responsive mechanism of the paper mulberry: decreased photosynthesis capacity and increased starch accumulation. BMC Genomics 2015; 16:898. [PMID: 26537770 PMCID: PMC4634900 DOI: 10.1186/s12864-015-2047-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Most studies on the paper mulberry are mainly focused on the medicated and pharmacology, fiber quality, leaves feed development, little is known about its mechanism of adaptability to abiotic stress. Physiological measurement, transcriptomics and proteomic analysis were employed to understand its response to cold stress in this study. Methods The second to fourth fully expanded leaves from up to down were harvested at different stress time points forthe transmission electron microscope (TEM) observation. Physiological characteristics measurement included the relative electrolyte leakage (REL), SOD activity assay, soluble sugar content, and Chlorophyll fluorescence parameter measurement. For screening of differentially expressed genes, the expression level of every transcript in each sample was calculated by quantifying the number of Illumina reads. To identify the differentially expressed protein, leaves of plants under 0, 6, 12, 24, 48 and 72 h cold stress wereharvested for proteomic analysis. Finally, real time PCR was used to verify the DEG results of the RNA-seq and the proteomics data. Results Results showed that at the beginning of cold stress, respiratory metabolism was decreased and the transportation and hydrolysis of photosynthetic products was inhibited, leading to an accumulation of starch in the chloroplasts. Total of 5800 unigenes and 38 proteins were affected, including the repressed expression of photosynthesis and the enhanced expression in signal transduction, stress defense pathway as well as secondary metabolism. Although the transcriptional level of a large number of genes has been restored after 12 h, sustained cold stress brought more serious injury to the leaf cells, including the sharp rise of the relative electrolyte leakage, the declined Fv/Fm value, swelled chloroplast and the disintegrated membrane system. Conclusion The starch accumulation and the photoinhibition might be the main adaptive mechanism of the paper mulberry responded to cold stress. Most of important, enhancing the transport and hydrolysis of photosynthetic products could be the potential targets for improving the cold tolerance of the paper mulberry. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2047-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Linhong Teng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Xueqing Yan
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Meiling Zhao
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
20
|
Koc I, Vatansever R, Ozyigit II, Filiz E. Identification of Differentially Expressed Genes in Chilling-Induced Potato (Solanum tuberosum L.); a Data Analysis Study. Appl Biochem Biotechnol 2015; 177:792-811. [PMID: 26260485 DOI: 10.1007/s12010-015-1778-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022]
Abstract
Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species.
Collapse
Affiliation(s)
- I Koc
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey.,Crop Science, University of Illinois at Urbana-Champaign, Champaign, USA
| | - R Vatansever
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Goztepe, Istanbul, Turkey
| | - I I Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Goztepe, Istanbul, Turkey
| | - E Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, 81750, Cilimli, Duzce, Turkey.
| |
Collapse
|
21
|
Zheng C, Zhao L, Wang Y, Shen J, Zhang Y, Jia S, Li Y, Ding Z. Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis). PLoS One 2015; 10:e0125031. [PMID: 25901577 PMCID: PMC4406609 DOI: 10.1371/journal.pone.0125031] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/19/2015] [Indexed: 12/17/2022] Open
Abstract
Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants’ growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq technologies, we performed an integrative analysis of miRNA and mRNA expression profiling and their regulatory network of tea plants under chilling (4℃) and freezing (-5℃) stress. Differentially expressed (DE) miRNA and mRNA profiles were obtained based on fold change analysis, miRNAs and target mRNAs were found to show both coherent and incoherent relationships in the regulatory network. Furthermore, we compared several key pathways (e.g., ‘Photosynthesis’), GO terms (e.g., ‘response to karrikin’) and transcriptional factors (TFs, e.g., DREB1b/CBF1) which were identified as involved in the early chilling and/or freezing response of tea plants. Intriguingly, we found that karrikins, a new group of plant growth regulators, and β-primeverosidase (BPR), a key enzyme functionally relevant with the formation of tea aroma might play an important role in both early chilling and freezing response of tea plants. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-Seq and sRNA-Seq analysis. This is the first study to simultaneously profile the expression patterns of both miRNAs and mRNAs on a genome-wide scale to elucidate the molecular mechanisms of early responses of tea plants to cold stress. In addition to gaining a deeper insight into the cold resistant characteristics of tea plants, we provide a good case study to analyse mRNA/miRNA expression and profiling of non-model plant species using next-generation sequencing technology.
Collapse
Affiliation(s)
- Chao Zheng
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Lei Zhao
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Jiazhi Shen
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Yinfei Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Sisi Jia
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Yusheng Li
- Fruit and Tea Technology Extension Station, Jinan, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
22
|
Peng X, Wu Q, Teng L, Tang F, Pi Z, Shen S. Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors. BMC PLANT BIOLOGY 2015; 15:108. [PMID: 25928853 PMCID: PMC4432934 DOI: 10.1186/s12870-015-0489-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/02/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Several studies have focused on cold tolerance in multiple regulated levels. However, a genome-scale molecular analysis of the regulated network under the control of transcription factors (TFs) is still lacking, especially for trees. To comprehensively identify the TFs that regulate cold stress response in the paper mulberry and understand their regulatory interactions, transcriptomic data was used to assess changes in gene expression induced by exposure to cold. RESULTS Results indicated that 794 TFs, belonging to 47 families and comprising more than 59% of the total TFs of this plant, were involved in the cold stress response. They were clustered into three groups, namely early, intermediate and late responsive groups which contained 95, 550 and 149 TFs, respectively. Among of these differentially expressed TFs, one bHLH, two ERFs and three CAMTAs were considered to be the key TFs functioning in the primary signal transduction. After that, at the intermediate stage of cold stress, there were mainly two biological processes that were regulated by TFs, namely cold stress resistance (including 5 bHLH, 14 ERFs, one HSF, 4 MYBs, 3 NACs, 11 WRKYs and so on) and growth and development of lateral organ or apical meristem (including ARR-B, B3, 5 bHLHs, 2 C2H2, 4 CO-like, 2 ERF, 3 HD-ZIP, 3 YABBYs, G2-like, GATA, GRAS and TCP). In late responsive group, 3 ARR-B, C3H, 6 CO-like, 2 G2-like, 2 HSFs, 2 NACs and TCP. Most of them presented the up-regulated expression at 12 or 24 hours after cold stress implied their important roles for the new growth homeostasis under cold stress. CONCLUSIONS Our study identified the key TFs that function in the regulatory cascades mediating the activation of downstream genes during cold tress tolerance in the paper mulberry. Based on the analysis, we found that the AP2/ERF, bHLH, MYB, NAC and WRKY families might play the central and significant roles during cold stress response in the paper mulberry just as in other species. Meanwhile, many other TF families previously reported as involving in regulation of growth and development, including ARF, DBB, G2-like, GRF, GRAS, LBD, WOX and YAABY exhibited their important potential function in growth regulation under cold stress.
Collapse
Affiliation(s)
- Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Qingqing Wu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Linhong Teng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Feng Tang
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Zhi Pi
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
23
|
Chen J, Yin W, Xia X. Transcriptome Profiles of Populus euphratica upon Heat Shock stress. Curr Genomics 2014; 15:326-40. [PMID: 25435796 PMCID: PMC4245693 DOI: 10.2174/138920291505141106101835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 11/30/2022] Open
Abstract
Heat stress, which strongly affects plant performance and often results in reduced vegetative growth and yields depression, has become an increasingly serious global problem. Populus euphratica Oliv. which has been considered as a tree model for the study of plant response to abiotic stresses, could be resistant to an extremely wide environmental temperature range (–40 °C to 45 °C). Previous study is mainly focused on its gene regulation upon drought and salt stress. However, little is known about gene regulation at the global transcriptome level upon heat stress. To understand the gene network controlling heat stress in P. euphratica, a transcriptome sequencing using Illumina Hiseq 2000 was performed to generate a 10 gigabases depth for each sample in the tissue of leaf. 119,573 unigeneswere generated with an average length of 474 bp. Approximately 49,605 (41.49%) unigenes exhibited significantly different expressions between two libraries. Among these unigenes, 11,165 (9.34%) were upregulated and 38,440 (32.15%) were down regulated. Heat shock proteins classified as molecular chaperones showed a significant percentage (1.13%) in the up regulated group. Heat responsive genes, such as polyubiquitins, were over expressed in heat treated sample. GO enrichment analysis revealed that the Go terms for differentially expressed unigenes were significantly enriched in hormone-mediated signal, biological process regulation and metabolic process regulation. Our data revealed a global transcriptome picture of P. euphratica in response to heat shock. The identified potential heat stress-related transcripts can be used to infer the gene regulation networks underlying the molecular mechanisms of heat response in P. euphratica.
Collapse
Affiliation(s)
- Jinhuan Chen
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083, China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University Beijing 100083, China ; College of Biological Sciences and technology, Beijing Forestry University Beijing 100083, China
| |
Collapse
|
24
|
Song Y, Ci D, Tian M, Zhang D. Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses. PLANT MOLECULAR BIOLOGY 2014; 86:139-56. [PMID: 25002226 DOI: 10.1007/s11103-014-0218-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/15/2014] [Indexed: 05/21/2023]
Abstract
In the field, perennial plants such as poplar (Populus spp.) must adapt to simultaneous exposure to various abiotic stresses, which can affect their growth and survival. However, the mechanisms for stress-specific adaption in response to different abiotic stresses remain unclear. Thus, understanding the unique acclimation process for each abiotic treatment will require a comprehensive and systematic comparison of the responses of poplar to different abiotic stresses. To compare the responses to multiple stresses, we compared physiological effects and transcriptome changes in poplar under four abiotic stresses (salinity, osmotic, heat and cold). Photosynthesis and antioxidant enzymes changed significantly after 6 h abiotic stress treatment. Therefore, using 6 h abiotic stress treatment groups for transcriptome analysis, we identified a set of 863 differentially expressed genes (653 up-regulated and 210 down-regulated) common to osmotic, salinity, heat and cold treatment. We also identified genes specific to osmotic (1,739), salinity (1,222), cold (2,508) and heat (3,200), revealing that salinity stress has the fewest differently-expressed genes. After gene annotation, we found differences in expression of genes related to electron transport, stomatal control, antioxidant enzymes, cell wall alteration, and phytohormone biosynthesis and signaling in response to various abiotic stresses. This study provides new insights to improve our understanding of the mechanisms by which poplar adapts under different abiotic stress conditions and provides new clues for further studies.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China,
| | | | | | | |
Collapse
|
25
|
Song Y, Chen Q, Ci D, Shao X, Zhang D. Effects of high temperature on photosynthesis and related gene expression in poplar. BMC PLANT BIOLOGY 2014; 14:111. [PMID: 24774695 PMCID: PMC4036403 DOI: 10.1186/1471-2229-14-111] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/08/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. RESULTS We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. CONCLUSIONS This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Qingqing Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Dong Ci
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Xinning Shao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| |
Collapse
|
26
|
Wang B, Du Q, Yang X, Zhang D. Identification and characterization of nuclear genes involved in photosynthesis in Populus. BMC PLANT BIOLOGY 2014; 14:81. [PMID: 24673936 PMCID: PMC3986721 DOI: 10.1186/1471-2229-14-81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 03/17/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. RESULTS Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. CONCLUSIONS This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses.
Collapse
Affiliation(s)
- Bowen Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|