1
|
Li X, Han R, Gong WY, Wang XL, Zhang XJ. Investigation of Wheat ERF Family Revealed Novel Genes Involved in Powdery Mildew Responses. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421090064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Sharma M, Fuertes D, Perez-Gil J, Lois LM. SUMOylation in Phytopathogen Interactions: Balancing Invasion and Resistance. Front Cell Dev Biol 2021; 9:703795. [PMID: 34485289 PMCID: PMC8415633 DOI: 10.3389/fcell.2021.703795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Plants are constantly confronted by a multitude of biotic stresses involving a myriad of pathogens. In crops, pathogen infections result in significant agronomical losses worldwide posing a threat to food security. In order to enter plant tissues and establish a successful infection, phytopathogens have to surpass several physical, and chemical defense barriers. In recent years, post-translational modification (PTM) mechanisms have emerged as key players in plant defense against pathogens. PTMs allow a highly dynamic and rapid response in front of external challenges, increasing the complexity and precision of cellular responses. In this review, we focus on the role of SUMO conjugation (SUMOylation) in plant immunity against fungi, bacteria, and viruses. In plants, SUMO regulates multiple biological processes, ranging from development to responses arising from environmental challenges. During pathogen attack, SUMO not only modulates the activity of plant defense components, but also serves as a target of pathogen effectors, highlighting its broad role in plant immunity. Here, we summarize known pathogenic strategies targeting plant SUMOylation and, the plant SUMO conjugates involved in host-pathogen interactions. We also provide a catalog of candidate SUMO conjugates according to their role in defense responses. Finally, we discuss the complex role of SUMO in plant defense, focusing on key biological and experimental aspects that contribute to some controversial conclusions, and the opportunities for improving agricultural productivity by engineering SUMOylation in crop species.
Collapse
Affiliation(s)
- Manisha Sharma
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain.,Biosciences, College of Life and Environment Sciences, University of Exeter, Exeter, United Kingdom
| | - Diana Fuertes
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Jordi Perez-Gil
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - L Maria Lois
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain.,Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
3
|
Chetouhi C, Bonhomme L, Lecomte P, Cambon F, Merlino M, Biron DG, Langin T. A proteomics survey on wheat susceptibility to Fusarium head blight during grain development. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2015; 141:407-418. [PMID: 25663750 DOI: 10.1007/s10658-014-0552-550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mycotoxigenic fungal species Fusarium graminearum is able to attack several important cereal crops, such as wheat and barley. By causing Fusarium Head Blight (FHB) disease, F. graminearum induces yield and quality losses and poses a public health concern due to in planta mycotoxin production. The molecular and physiological plant responses to FHB, and the cellular biochemical pathways used by F. graminearum to complete its infectious process remain still unknown. In this study, a proteomics approach, combining 2D-gel approach and mass spectrometry, has been used to determine the specific protein patterns associated with the development of the fungal infection during grain growth on susceptible wheat. Our results reveal that F. graminearum infection does not deeply alter the grain proteome and does not significantly disturb the first steps of grain ontogeny but impacts molecular changes during the grain filling stage (impact on starch synthesis and storage proteins). The differentially regulated proteins identified were mainly involved in stress and defence mechanisms, primary metabolism, and main cellular processes such as signalling and transport. Our survey suggests that F. graminearum could take advantage of putative susceptibility factors closely related to grain development processes and thus provide new insights into key molecular events controlling the susceptible response to FHB in wheat grains.
Collapse
Affiliation(s)
- Cherif Chetouhi
- INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France; UBP, UMR Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France
| | - Ludovic Bonhomme
- INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France; UBP, UMR Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France
| | - Philippe Lecomte
- INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France; UBP, UMR Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France
| | - Florence Cambon
- INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France; UBP, UMR Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France
| | - Marielle Merlino
- INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France; UBP, UMR Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France
| | - David Georges Biron
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France; CNRS, UMR 6023, LMGE, Aubière, France
| | - Thierry Langin
- INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France; UBP, UMR Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France
| |
Collapse
|
4
|
Chetouhi C, Bonhomme L, Lecomte P, Cambon F, Merlino M, Biron DG, Langin T. A proteomics survey on wheat susceptibility to Fusarium head blight during grain development. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2015; 141:407-418. [PMID: 25663750 PMCID: PMC4318354 DOI: 10.1007/s10658-014-0552-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The mycotoxigenic fungal species Fusarium graminearum is able to attack several important cereal crops, such as wheat and barley. By causing Fusarium Head Blight (FHB) disease, F. graminearum induces yield and quality losses and poses a public health concern due to in planta mycotoxin production. The molecular and physiological plant responses to FHB, and the cellular biochemical pathways used by F. graminearum to complete its infectious process remain still unknown. In this study, a proteomics approach, combining 2D-gel approach and mass spectrometry, has been used to determine the specific protein patterns associated with the development of the fungal infection during grain growth on susceptible wheat. Our results reveal that F. graminearum infection does not deeply alter the grain proteome and does not significantly disturb the first steps of grain ontogeny but impacts molecular changes during the grain filling stage (impact on starch synthesis and storage proteins). The differentially regulated proteins identified were mainly involved in stress and defence mechanisms, primary metabolism, and main cellular processes such as signalling and transport. Our survey suggests that F. graminearum could take advantage of putative susceptibility factors closely related to grain development processes and thus provide new insights into key molecular events controlling the susceptible response to FHB in wheat grains.
Collapse
Affiliation(s)
- Cherif Chetouhi
- INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France; UBP, UMR Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France
| | - Ludovic Bonhomme
- INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France; UBP, UMR Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France
| | - Philippe Lecomte
- INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France; UBP, UMR Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France
| | - Florence Cambon
- INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France; UBP, UMR Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France
| | - Marielle Merlino
- INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France; UBP, UMR Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France
| | - David Georges Biron
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France; CNRS, UMR 6023, LMGE, Aubière, France
| | - Thierry Langin
- INRA, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France; UBP, UMR Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France
| |
Collapse
|