1
|
Xue YF, Fu C, Chai CY, Liao FF, Chen BJ, Wei SZ, Wang R, Gao H, Fan TT, Chai YR. Engineering the Staple Oil Crop Brassica napus Enriched with α-Linolenic Acid Using the Perilla FAD2- FAD3 Fusion Gene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7324-7333. [PMID: 37130169 DOI: 10.1021/acs.jafc.2c09026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Modern people generally suffer from α-linolenic acid (ALA) deficiency, since most staple food oils are low in ALA content. Thus, the enhancement of ALA in staple oil crops is of importance. In this study, the FAD2 and FAD3 coding regions from the ALA-king species Perilla frutescens were fused using a newly designed double linker LP4-2A, driven by a seed-specific promoter PNAP, and engineered into a rapeseed elite cultivar ZS10 with canola quality background. The mean ALA content in the seed oil of PNAP:PfFAD2-PfFAD3 (N23) T5 lines was 3.34-fold that of the control (32.08 vs 9.59%), with the best line being up to 37.47%. There are no significant side effects of the engineered constructs on the background traits including oil content. In fatty acid biosynthesis pathways, the expression levels of structural genes as well as regulatory genes were significantly upregulated in N23 lines. On the other hand, the expression levels of genes encoding the positive regulators of flavonoid-proanthocyanidin biosynthesis but negative regulators of oil accumulation were significantly downregulated. Surprisingly, the ALA level in PfFAD2-PfFAD3 transgenic rapeseed lines driven by the constitutive promoter PD35S was not increased or even showed a slight decrease due to the lower level of foreign gene expression and downregulation of the endogenous orthologous genes BnFAD2 and BnFAD3.
Collapse
Affiliation(s)
- Yu-Fei Xue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Chun Fu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Cheng-Yan Chai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Fei-Fei Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Bao-Jun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Song-Zhen Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Rui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Huan Gao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Teng-Teng Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - You-Rong Chai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Zenda T, Wang N, Dong A, Zhou Y, Duan H. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement. Int J Mol Sci 2022; 23:6929. [PMID: 35805930 PMCID: PMC9266455 DOI: 10.3390/ijms23136929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Reproductive-stage heat stress (RSHS) poses a major constraint to cereal crop production by damaging main plant reproductive structures and hampering reproductive processes, including pollen and stigma viability, pollination, fertilization, grain setting and grain filling. Despite this well-recognized fact, research on crop heat stress (HS) is relatively recent compared to other abiotic stresses, such as drought and salinity, and in particular, RSHS studies in cereals are considerably few in comparison with seedling-stage and vegetative-stage-centered studies. Meanwhile, climate change-exacerbated HS, independently or synergistically with drought, will have huge implications on crop performance and future global food security. Fortunately, due to their sedentary nature, crop plants have evolved complex and diverse transient and long-term mechanisms to perceive, transduce, respond and adapt to HS at the molecular, cell, physiological and whole plant levels. Therefore, uncovering the molecular and physiological mechanisms governing plant response and tolerance to RSHS facilitates the designing of effective strategies to improve HS tolerance in cereal crops. In this review, we update our understanding of several aspects of RSHS in cereals, particularly impacts on physiological processes and yield; HS signal perception and transduction; and transcriptional regulation by heat shock factors and heat stress-responsive genes. We also discuss the epigenetic, post-translational modification and HS memory mechanisms modulating plant HS tolerance. Moreover, we offer a critical set of strategies (encompassing genomics and plant breeding, transgenesis, omics and agronomy) that could accelerate the development of RSHS-resilient cereal crop cultivars. We underline that a judicious combination of all of these strategies offers the best foot forward in RSHS tolerance improvement in cereals. Further, we highlight critical shortcomings to RSHS tolerance investigations in cereals and propositions for their circumvention, as well as some knowledge gaps, which should guide future research priorities. Overall, our review furthers our understanding of HS tolerance in plants and supports the rational designing of RSHS-tolerant cereal crop cultivars for the warming climate.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yuzhi Zhou
- Library Department, Hebei Agricultural University, Baoding 071001, China;
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
3
|
Jin Z, Wang J, Cao X, Wei C, Kuang J, Chen K, Zhang B. Peach fruit PpNAC1 activates PpFAD3-1 transcription to provide ω-3 fatty acids for the synthesis of short-chain flavor volatiles. HORTICULTURE RESEARCH 2022; 9:uhac085. [PMID: 35685221 PMCID: PMC9172071 DOI: 10.1093/hr/uhac085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/27/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) derived from fatty acids are major contributors to fruit flavor and affect human preferences. The ω-3 fatty acid linolenic acid 3 (18:3) serves as an important precursor for synthesis of (E)-2-hexenal and (Z)-3-hexenol. These short-chain C6 VOCs provide unique fresh notes in multiple fruit species. Metabolic engineering to improve fruit aroma requires knowledge of the regulation of fatty acid-derived VOCs. Here, we determined that ripe fruit-specific expression of PpFAD3-1 contributes to 18:3 synthesis in peach fruit. However, no significant increases in (E)-2-hexenal and (Z)-3-hexenol were detected after overexpressing PpFAD3-1. Interestingly, overexpressing the PpNAC1 transcription factor increased the content of 18:3 and enhanced the production of its derived volatiles. Moreover, induced expression of genes responsible for downstream VOC synthesis was observed for transgenic tomato fruit overexpressing PpNAC1, but not for transgenic fruit overexpressing PpFAD3-1. Electrophoretic mobility shift and ChIP-Seq assays showed that PpNAC1 activated PpFAD3-1 expression via binding to its promoter. Therefore, PpNAC1 plays an important role in modulating fatty acid flux to produce fruit flavor-related VOCs. In addition to PpNAC1, PpFAD3-1 expression was also associated with epigenetic modifications during peach fruit ripening. Taken together, our results provide new insights into the molecular mechanisms regulating biosynthesis of fatty acid and short-chain VOCs in fruit.
Collapse
Affiliation(s)
- Zhengnan Jin
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jiaojiao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang Campus, Shanghai 200240, China
| | - Xiangmei Cao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jianfei Kuang
- Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Bo Zhang
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
4
|
Chellamuthu M, Kumaresan K, Subramanian S. Increase in alpha-linolenic acid content by simultaneous expression of fatty acid metabolism genes in Sesame ( Sesamum indicum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:559-572. [PMID: 35465201 PMCID: PMC8986930 DOI: 10.1007/s12298-022-01152-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Sesame is considered one of India's important sources of edible oil and an excellent dietary source for its nutritional and medicinal value. Sesame DGAT1 and PDAT1 genes were co-expressed with omega 3 FAD genes. Systemic isolation of sesame DGAT1, PDAT1, ER type FAD3, and chloroplast type FAD7/8 genes were performed. Their sequence was analyzed for genomic organization, amino acid characterization, organ specificity, and phylogenetic relationships. The insilico analysis revealed the unique features of DGAT1, PDAT1, and FAD3 gene sequences, whereas FAD7 and FAD8 sequences had the same protein characters and were grouped in phylogeny analysis, only variation was found in their mRNA UTR regions. Functional expression of sesame TAG synthesis genes and omega-3 FAD genes was studied in yeast mutant H1246 deficient for TAG synthesis. Functional analyses in yeast with the presence of ALA confirmed the identity of sesame FAD3, FAD7 and FAD8 genes. Recombinant expression of pESC + DGAT1 + FAD3 vector in yeast mutant resulted in lipid accumulation with 10% higher ALA content. Thus this gene combination can be co-expressed in sesame and other plant systems to increase the lipid accumulation with high omega-3 fatty acid (ALA) content. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01152-0.
Collapse
Affiliation(s)
| | - Kanimozhi Kumaresan
- Department of Biotechnology, PSG College of Technology, 641004 Coimbatore, Tamil Nadu India
| | - Selvi Subramanian
- Department of Biotechnology, PSG College of Technology, 641004 Coimbatore, Tamil Nadu India
| |
Collapse
|
5
|
Cheng C, Liu F, Sun X, Wang B, Liu J, Ni X, Hu C, Deng G, Tong Z, Zhang Y, Lü P. Genome-wide identification of FAD gene family and their contributions to the temperature stresses and mutualistic and parasitic fungi colonization responses in banana. Int J Biol Macromol 2022; 204:661-676. [PMID: 35181326 DOI: 10.1016/j.ijbiomac.2022.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022]
Abstract
Fatty acid desaturase (FAD) plays important roles in plant growth and development and plant defense processes. In this study, we identified 27 MaFAD genes from the banana genome. According to the amino acid sequence similarities, their encoded proteins could be classified into five subfamilies. This classification is consistently supported by their gene and protein structures, conserved motifs and subcellular localizations. Segmental duplication events were found to play predominant roles in the MaFAD gene family expansion. Thirty miRNAs targeting MaFADs were identified and many hormone- and stress-responsive cis-acting elements and transcription factor binding sites (TFBSs) were identified in their promoters, indicating that the MaFADs expression regulation was very complicated. Gene expression analysis showed that some MaFADs showed significant differential expression in response to high and low temperature. FocTR4 influenced greatly the expression of several MaFADs and greatly induced the fatty acid (FA) accumulations in roots. Although S. indica showed no significant influence on the expression of most MaFADs, it could greatly alleviate the influence of FocTR4 on several MaFADs and FA biosynthesis. Our study revealed that MaFADs contributed greatly to the responses of high and low temperature stresses and mutualistic and parasitic fungi colonization in banana.
Collapse
Affiliation(s)
- Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xueli Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Bin Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiapeng Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueting Ni
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zheng Tong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongyan Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Peitao Lü
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Duan W, Shi-Mei Y, Zhi-Wei S, Jing X, De-Gang Z, Hong-Bin W, Qi S. Genome-Wide Analysis of the Fatty Acid Desaturase Gene Family Reveals the Key Role of PfFAD3 in α-Linolenic Acid Biosynthesis in Perilla Seeds. Front Genet 2021; 12:735862. [PMID: 34899834 PMCID: PMC8652209 DOI: 10.3389/fgene.2021.735862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/28/2021] [Indexed: 12/01/2022] Open
Abstract
Perilla (Perilla frutescens), a traditional medicinal and oilseed crop in Asia, contains extremely high levels of polyunsaturated α-linolenic acid (ALA) (up to 60.9%) in its seeds. ALA biosynthesis is a multistep process catalyzed by fatty acid desaturases (FADs), but the FAD gene family in perilla has not been systematically characterized. Here, we identified 42 PfFADs in the perilla genome and classified them into five subfamilies. Subfamily members of PfFADs had similar exon/intron structures, conserved domain sequences, subcellular localizations, and cis-regulatory elements in their promoter regions. PfFADs also possessed various expression patterns. PfFAD3.1 was highly expressed in the middle stage of seed development, whereas PfFAD7/8.3 and PfFAD7/8.5 were highly expressed in leaf and later stages of seed development, respectively. Phylogenetic analysis revealed that the evolutionary features coincided with the functionalization of different subfamilies of PUFA desaturase. Heterologous overexpression of PfFAD3.1 in Arabidopsis thaliana seeds increased ALA content by 17.68%–37.03%. These findings provided insights into the characteristics and functions of PfFAD genes in perilla.
Collapse
Affiliation(s)
- Wu Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yang Shi-Mei
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shang Zhi-Wei
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xu Jing
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhao De-Gang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, College of Life Sciences, Guizhou University, Guiyang, China.,Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wang Hong-Bin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shen Qi
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Sinha K, Kaur R, Singh N, Kaur S, Rishi V, Bhunia RK. Mobilization of storage lipid reserve and expression analysis of lipase and lipoxygenase genes in rice (Oryza sativa var. Pusa Basmati 1) bran during germination. PHYTOCHEMISTRY 2020; 180:112538. [PMID: 33091779 DOI: 10.1016/j.phytochem.2020.112538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Storage lipid mobilization by lipases and lipoxygenases (LOXs) in response to developmental cues take place during seed germination. After rice grain milling, the endogenous lipases and LOXs present in the bran fraction come in contact with the storage lipid reserve or triacylglycerol (TAG). Lipases catalyze the hydrolysis of TAGs to non-esterified fatty acids (NEFAs) and glycerol. The NEFAs, especially linoleic acid (18:2) produced, are further subjected to oxidative rancidity via peroxidation reaction catalyzed by LOXs. This results in the production of conjugated hydroperoxides of 18:2 that influence the off-flavors in rice bran lipids. The aim of this study is to understand how lipid mobilization and expression of lipase and LOX genes occur in the bran of germinating rice grains (Oryza sativavar. Pusa Basmati 1). Our results show that the primary source of storage lipids in bran is TAG, and its mobilization starts at 4 days after imbibition (4 DAI). Using publically available RNA-seq data and phylogeny analyses, we selected a total of 18 lipase and 16 LOX genes in rice for their expression profiles during onset of lipid mobilization. Gene expression analyses revealed OsLip1, OsLip9, and OsLip13; and OsLOX3 and OsLOX14 as the predominantly expressed genes in bran of germinating rice grains. This study explores two important events in the germinating rice grains, namely, mobilization of storage lipids and expression pattern of lipase and LOX genes. The information generated in this study can be used to efficiently manipulate the genes to enhance the shelf-stability of bran lipid reserve.
Collapse
Affiliation(s)
- Kshitija Sinha
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, 140306, Punjab, India
| | - Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi, 110026, India
| | - Nishu Singh
- Department of Biotechnology, Banasthali Vidyapith, Vanasthali, 304022, Rajasthan, India
| | - Sumandeep Kaur
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, 140306, Punjab, India
| | - Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, 140306, Punjab, India.
| |
Collapse
|
8
|
Song C, Yang Y, Yang T, Ba L, Zhang H, Han Y, Xiao Y, Shan W, Kuang J, Chen J, Lu W. MaMYB4 Recruits Histone Deacetylase MaHDA2 and Modulates the Expression of ω-3 Fatty Acid Desaturase Genes during Cold Stress Response in Banana Fruit. PLANT & CELL PHYSIOLOGY 2019; 60:2410-2422. [PMID: 31340013 DOI: 10.1093/pcp/pcz142] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/02/2019] [Indexed: 05/21/2023]
Abstract
Linoleic acid (LA; C18:2) and α-linolenic acid (ALA; C18:3) are two essential unsaturated fatty acids that play indispensable roles in maintaining membrane integrity in cold stress, and ω-3 fatty acid desaturases (FADs) are responsible for the transformation of LA into ALA. However, how this process is regulated at transcriptional and posttranscriptional levels remains largely unknown. In this study, an MYB transcription factor, MaMYB4, of a banana fruit was identified and found to target several ω-3 MaFADs, including MaFAD3-1, MaFAD3-3, MaFAD3-4 and MaFAD3-7, and repress their transcription. Intriguingly, the acetylation levels of histones H3 and H4 in the promoters of ω-3 MaFADs were elevated in response to cold stress, which was correlated with the enhancement in the transcription levels of ω-3 MaFADs and the ratio of ALA/LA. Moreover, a histone deacetylase MaHDA2 physically interacted with MaMYB4, thereby leading to the enhanced MaMYB4-mediated transcriptional repression of ω-3 MaFADs. Collectively, these data demonstrate that MaMYB4 might recruit MaHDA2 to repress the transcription of ω-3 MaFADs by affecting their acetylation levels, thus modulating fatty acid biosynthesis. Our findings provided new molecular insights into the regulatory mechanisms of fatty acid biosynthesis in cold stress in fruits.
Collapse
Affiliation(s)
- Chunbo Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou, China
- Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yingying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou, China
- Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Tianwei Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou, China
- Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Liangjie Ba
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou, China
- Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou, China
- Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanchao Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou, China
- Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yunyi Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou, China
- Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou, China
- Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou, China
- Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou, China
- Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou, China
- Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L. Mol Biol Rep 2019; 46:2577-2593. [PMID: 30758807 DOI: 10.1007/s11033-019-04686-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Wheat is an important cereal crop that fulfils the calorie demands of the global humanity. Rapidly expanding populations are exposed to a fast approaching acute shortage in the adequate supply of food and fibre from agricultural resources. One of the significant threats to food security lies in the constantly increasing global temperatures which inflict serious injuries to the plants in terms of various physiological, biochemical and molecular processes. Wheat being a cool season crop is majorly impacted by the heat stress which adversely affects crop productivity and yield. These challenges would be potentially defeated with the implementation of genetic engineering strategies coupled with the new genome editing approaches. Development of transgenic plants for various crops has proved very effective for the incorporation of improved varietal traits in context of heat stress. With a similar approach, we need to target for the generation of heat stress tolerant wheat varieties which are capable of survival in such adverse conditions and yet produce well. In this review, we enumerate the current status of research on the heat stress responsive genes/factors and their potential role in mitigating heat stress in plants particularly in wheat with an aim to help the researchers get a holistic view of this topic. Also, we discuss on the prospective signalling pathway that is triggered in plants in general under heat stress.
Collapse
|
10
|
Zhang Q, Yu R, Sun D, Rahman MM, Xie L, Hu J, He L, Kilaru A, Niu L, Zhang Y. Comparative Transcriptome Analysis Reveals an Efficient Mechanism of α-Linolenic Acid in Tree Peony Seeds. Int J Mol Sci 2018; 20:ijms20010065. [PMID: 30586917 PMCID: PMC6337502 DOI: 10.3390/ijms20010065] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 01/29/2023] Open
Abstract
Tree peony (Paeonia section Moutan DC.) species are woody oil crops with high unsaturated fatty acid content, including α-linolenic acid (ALA/18:3; >40% of the total fatty acid). Comparative transcriptome analyses were carried out to uncover the underlying mechanisms responsible for high and low ALA content in the developing seeds of P. rockii and P. lutea, respectively. Expression analysis of acyl lipid metabolism genes revealed upregulation of select genes involved in plastidial fatty acid synthesis, acyl editing, desaturation, and triacylglycerol assembly in seeds of P. rockii relative to P. lutea. Also, in association with ALA content in seeds, transcript levels for fatty acid desaturases (SAD, FAD2, and FAD3), which encode enzymes necessary for polyunsaturated fatty acid synthesis, were higher in P. rockii compared to P. lutea. Furthermore, the overexpression of PrFAD2 and PrFAD3 in Arabidopsis increased linoleic and ALA content, respectively, and modulated the final ratio 18:2/18:3 in the seed oil. In conclusion, we identified the key steps and validated the necessary desaturases that contribute to efficient ALA synthesis in a woody oil crop. Together, these results will aid to increase essential fatty acid content in seeds of tree peonies and other crops of agronomic interest.
Collapse
Affiliation(s)
- Qingyu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Rui Yu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Lihang Xie
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Jiayuan Hu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Lixia He
- Gansu Forestry Science and Technology Extend Station, Lanzhou 730046, China.
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Sui N, Wang Y, Liu S, Yang Z, Wang F, Wan S. Transcriptomic and Physiological Evidence for the Relationship between Unsaturated Fatty Acid and Salt Stress in Peanut. FRONTIERS IN PLANT SCIENCE 2018; 9:7. [PMID: 29403517 PMCID: PMC5786550 DOI: 10.3389/fpls.2018.00007] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/03/2018] [Indexed: 05/18/2023]
Abstract
Peanut (Arachis hypogaea L.) is one of the five major oilseed crops cultivated worldwide. Salt stress is a common adverse condition for the growth of this crop in many countries and regions. In this study, physiological parameters and transcriptome profiles of peanut seedlings exposed to salt stress (250 mM NaCl for 4 days, S4) and recovery for 3 days (when transferred to standard conditions for 3 days, R3) were analyzed to detect genes associated with salt stress and recovery in peanut. We observed that the quantum yield of PSII electron transport (ΦPSII) and the maximal photochemical efficiency of PSII (Fv/Fm) decreased in S4 compared with the control, and increased in R3 compared with those in S4. Seedling fresh weight, dry weight and PSI oxidoreductive activity (ΔI/Io) were inhibited in S4 and did not recover in R3. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities decreased in S4 and increased in R3, whereas superoxide anion ([Formula: see text]) and hydrogen peroxide (H2O2) contents increased in S4 and decreased in R3. Transcriptome analysis revealed 1,742 differentially expressed genes (DEGs) under salt stress and 390 DEGs under recovery. Among these DEGs, two DEGs encoding ω-3 fatty acid desaturase that synthesized linolenic acid (18:3) from linoleic acid (18:2) were down-regulated in S4 and up-regulated in R3. Furthermore, ω-3 fatty acid desaturase activity decreased under salt stress and increased under recovery. Consistent with this result, 18:3 content decreased under salt stress and increased under recovery compared with that under salt treatment. In conclusion, salt stress markedly changed the activity of ω-3 fatty acid desaturase and fatty acid composition. The findings provide novel insights for the improvement of salt tolerance in peanut.
Collapse
Affiliation(s)
- Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Yu Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Shanshan Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhen Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shubo Wan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
12
|
Zhang QY, Yu R, Xie LH, Rahman MM, Kilaru A, Niu LX, Zhang YL. Fatty Acid and Associated Gene Expression Analyses of Three Tree Peony Species Reveal Key Genes for α-Linolenic Acid Synthesis in Seeds. FRONTIERS IN PLANT SCIENCE 2018; 9:106. [PMID: 29459881 PMCID: PMC5807371 DOI: 10.3389/fpls.2018.00106] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 05/22/2023]
Abstract
The increasing demand for healthy edible oil has generated the need to identify promising oil crops. Tree peony (Paeonia section Moutan DC.) is a woody oil crop with α-linolenic acid (ALA) contributing for 45% of the total fatty acid (FA) content in seeds. Molecular and genetic differences that contribute to varied FA content and composition among the wild peony species are, however, poorly understood. Analyses of FA content and composition during seed development in three tree peony species (Paeonia rockii, P. potaninii, and P. lutea) showed varied FA content among them with highest in P. rockii, followed by P. potaninii, and P. lutea. Total FA content among these species increased with seed development and reached its maximum in its final stage. Seed FA composition analysis of the three species also revealed that ALA (C18:3) was the most abundant, followed by oleic (C18:1) and linoleic (C18:2) acids. Additionally, quantitative real-time RT-PCR analyses of 10 key seed oil synthesis genes in the three tree peony species revealed that FAD3, FAD2, β-PDHC, LPAAT, and Oleosin gene expression levels positively correlate with total FA content and rate of accumulation. Specifically, the abundance of FAD3 transcripts in P. rockii compared with P. potaninii, and P. lutea suggests that FAD3 might play an important role in synthesis of ALA via phosphatidylcholine-derived pathway. Overall, comparative analyses of FA content and composition in three different peony species revealed a correlation between efficient lipid accumulation and lipid gene expression during seed development. Further characterization and metabolic engineering of these key genes from peonies will allow for subsequent improvement of tree peony oil quality and production.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
| | - Rui Yu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
| | - Li-Hang Xie
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Li-Xin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- *Correspondence: Yan-Long Zhang, ; Li-Xin Niu,
| | - Yan-Long Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- *Correspondence: Yan-Long Zhang, ; Li-Xin Niu,
| |
Collapse
|