1
|
Gao Y, Li J, He J, Yu Y, Qian Z, Geng Z, Yang L, Zhang Y, Ke Y, Lin Q, Wang J, Chen S, Chen F, Yuan YW, Ding B. BLADE-ON-PETIOLE interacts with CYCLOIDEA to fine-tune CYCLOIDEA-mediated flower symmetry in monkeyflowers ( Mimulus). SCIENCE ADVANCES 2024; 10:eado4571. [PMID: 39141743 PMCID: PMC11323955 DOI: 10.1126/sciadv.ado4571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Morphological novelties, or key innovations, are instrumental to the diversification of the organisms. In plants, one such innovation is the evolution of zygomorphic flowers, which is thought to promote outcrossing and increase flower morphological diversity. We isolated three allelic mutants from two Mimulus species displaying altered floral symmetry and identified the causal gene as the ortholog of Arabidopsis BLADE-ON-PETIOLE. We found that MlBOP and MlCYC2A physically interact and this BOP-CYC interaction module is highly conserved across the angiosperms. Furthermore, MlBOP self-ubiquitinates and suppresses MlCYC2A self-activation. MlCYC2A, in turn, impedes MlBOP ubiquitination. Thus, this molecular tug-of-war between MlBOP and MlCYC2A fine-tunes the expression of MlCYC2A, contributing to the formation of bilateral symmetry in flowers, a key trait in angiosperm evolution.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jingjian Li
- College of Pharmacy, Guilin Medical University, Guilin 541199, P. R. China
| | - Jiayue He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yaqi Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zexin Qian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zhiqiang Geng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Liuhui Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yumin Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yujie Ke
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Jing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, P. R. China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, P. R. China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Baoqing Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization; Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, P. R. China
| |
Collapse
|
2
|
Kinser TJ, Smith RD, Lawrence AH, Cooley AM, Vallejo-Marín M, Conradi Smith GD, Puzey JR. Endosperm-based incompatibilities in hybrid monkeyflowers. THE PLANT CELL 2021; 33:2235-2257. [PMID: 33895820 PMCID: PMC8364248 DOI: 10.1093/plcell/koab117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/15/2021] [Indexed: 05/31/2023]
Abstract
Endosperm is an angiosperm innovation central to their reproduction whose development, and thus seed viability, is controlled by genomic imprinting, where expression from certain genes is parent-specific. Unsuccessful imprinting has been linked to failed inter-specific and inter-ploidy hybridization. Despite their importance in plant speciation, the underlying mechanisms behind these endosperm-based barriers remain poorly understood. Here, we describe one such barrier between diploid Mimulus guttatus and tetraploid Mimulus luteus. The two parents differ in endosperm DNA methylation, expression dynamics, and imprinted genes. Hybrid seeds suffer from underdeveloped endosperm, reducing viability, or arrested endosperm and seed abortion when M. guttatus or M. luteus is seed parent, respectively, and transgressive methylation and expression patterns emerge. The two inherited M. luteus subgenomes, genetically distinct but epigenetically similar, are expressionally dominant over the M. guttatus genome in hybrid embryos and especially their endosperm, where paternal imprints are perturbed. In aborted seeds, de novo methylation is inhibited, potentially owing to incompatible paternal instructions of imbalanced dosage from M. guttatus imprints. We suggest that diverged epigenetic/regulatory landscapes between parental genomes induce epigenetic repatterning and global shifts in expression, which, in endosperm, may uniquely facilitate incompatible interactions between divergent imprinting schemes, potentially driving rapid barriers.
Collapse
Affiliation(s)
- Taliesin J. Kinser
- Biology Department, College of William and Mary, Williamsburg, Virginia 23185
| | - Ronald D. Smith
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185
| | - Amelia H. Lawrence
- Biology Department, College of William and Mary, Williamsburg, Virginia 23185
| | | | - Mario Vallejo-Marín
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland FK9 4LA, UK
| | | | - Joshua R. Puzey
- Biology Department, College of William and Mary, Williamsburg, Virginia 23185
| |
Collapse
|
3
|
Ding B, Patterson EL, Holalu SV, Li J, Johnson GA, Stanley LE, Greenlee AB, Peng F, Bradshaw HD, Blinov ML, Blackman BK, Yuan YW. Two MYB Proteins in a Self-Organizing Activator-Inhibitor System Produce Spotted Pigmentation Patterns. Curr Biol 2020; 30:802-814.e8. [PMID: 32155414 PMCID: PMC7156294 DOI: 10.1016/j.cub.2019.12.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 11/19/2022]
Abstract
Many organisms exhibit visually striking spotted or striped pigmentation patterns. Developmental models predict that such spatial patterns can form when a local autocatalytic feedback loop and a long-range inhibitory feedback loop interact. At its simplest, this self-organizing network only requires one self-activating activator that also activates a repressor, which inhibits the activator and diffuses to neighboring cells. However, the molecular activators and inhibitors fully fitting this versatile model remain elusive in pigmentation systems. Here, we characterize an R2R3-MYB activator and an R3-MYB repressor in monkeyflowers (Mimulus). Through experimental perturbation and mathematical modeling, we demonstrate that the properties of these two proteins correspond to an activator-inhibitor pair in a two-component, reaction-diffusion system, explaining the formation of dispersed anthocyanin spots in monkeyflower petals. Notably, disrupting this pattern impacts pollinator visitation. Thus, subtle changes in simple activator-inhibitor systems are likely essential contributors to the evolution of the remarkable diversity of pigmentation patterns in flowers.
Collapse
Affiliation(s)
- Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Erin L Patterson
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall #3102, Berkeley, CA 94720, USA; Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Srinidhi V Holalu
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall #3102, Berkeley, CA 94720, USA; Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Jingjian Li
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA; College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Grace A Johnson
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall #3102, Berkeley, CA 94720, USA
| | - Lauren E Stanley
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Anna B Greenlee
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Foen Peng
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - H D Bradshaw
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Michael L Blinov
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall #3102, Berkeley, CA 94720, USA; Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904, USA.
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
4
|
Zeng H, Xie Y, Liu G, Wei Y, Hu W, Shi H. Agrobacterium-Mediated Gene Transient Overexpression and Tobacco Rattle Virus (TRV)-Based Gene Silencing in Cassava. Int J Mol Sci 2019; 20:E3976. [PMID: 31443292 PMCID: PMC6719147 DOI: 10.3390/ijms20163976] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/24/2022] Open
Abstract
Agrobacterium-mediated transient expression and virus-induced gene silencing (VIGS) are very useful in functional genomics in plants. However, whether these methods are effective in cassava (Manihot esculenta), one of the most important tropical crops, remains elusive. In this study, we used green fluorescent protein (GFP) and β-glucuronidase (GUS) as reporter genes in a transient expression assay. GFP or GUS could be detected in the infiltrated leaves at 2 days postinfiltration (dpi) and were evidenced by visual GFP and GUS assays, reverse-transcription PCR, and Western blot. In addition, phytoene desaturase (PDS) was used to show the silencing effect in a VIGS system. Both Agrobacterium GV3101 and AGL-1 with tobacco rattle virus (TRV)-MePDS-infiltrated distal leaves showed an albino phenotype at 20 dpi; in particular, the AGL-1-infiltrated plants showed an obvious albino area in the most distal leaves. Moreover, the silencing effect was validated by molecular identification. Notably, compared with the obvious cassava mosaic disease symptom infiltrated by African-cassava-mosaic-virus-based VIGS systems in previous studies, TRV-based VIGS-system-infiltrated cassava plants did not show obvious virus-induced disease symptoms, suggesting a significant advantage. Taken together, these methods could promote functional genomics in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yanwei Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Yuan YW. Monkeyflowers (Mimulus): new model for plant developmental genetics and evo-devo. THE NEW PHYTOLOGIST 2019; 222:694-700. [PMID: 30471231 DOI: 10.1111/nph.15560] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
Contents Summary 694 I. Introduction 694 II. The system 695 III. Regulation of carotenoid pigmentation 695 IV. Formation of periodic pigmentation patterns 696 V. Developmental genetics of corolla tube formation and elaboration 697 VI. Molecular basis of floral trait variation underlying pollinator shift 698 VII. Outlook 699 Acknowledgements 699 References 699 SUMMARY: Monkeyflowers (Mimulus) have long been recognized as a classic ecological and evolutionary model system. However, only recently has it been realized that this system also holds great promise for studying the developmental genetics and evo-devo of important plant traits that are not found in well-established model systems such as Arabidopsis. Here, I review recent progress in four different areas of plant research enabled by this new model, including transcriptional regulation of carotenoid biosynthesis, formation of periodic pigmentation patterns, developmental genetics of corolla tube formation and elaboration, and the molecular basis of floral trait divergence underlying pollinator shift. These examples suggest that Mimulus offers ample opportunities to make exciting discoveries in plant development and evolution.
Collapse
Affiliation(s)
- Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|