1
|
Aboofazeli N, Khosravi S, Bagheri H, Chandler SF, Pan SQ, Azadi P. Conquering Limitations: Exploring the Factors that Drive Successful Agrobacterium-Mediated Genetic Transformation of Recalcitrant Plant Species. Mol Biotechnol 2024:10.1007/s12033-024-01247-x. [PMID: 39177863 DOI: 10.1007/s12033-024-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Agrobacterium-mediated transformation is a preferred method for genetic engineering and genome editing of plants due to its numerous advantages, although not all species exhibit transformability. Genetic engineering and plant genome editing methods are technically challenging in recalcitrant crop plants. Factors affecting the poor rate of transformation in such species include host genotype, Agrobacterium genotype, type of explant, physiological condition of the explant, vector, selectable marker, inoculation method, chemical additives, antioxidative compounds, transformation-enhancing compounds, medium formulation, optimization of culture conditions, and pre-treatments. This review provides novel insights into the key factors involved in gene transfer facilitated by Agrobacterium and proposes potential solutions to overcome existing barriers to transformation in recalcitrant species, thereby contributing to improvement programs for these species. This review introduces the key factors that impact the effectiveness of a molecular breeding program using Agrobacterium-mediated transformation, specifically focusing on recalcitrant plant species.
Collapse
Affiliation(s)
- Nafiseh Aboofazeli
- Novin Giti Gene Biotech R&D Center (N.G.G), Imam Khomeini Higher Education Center, Karaj, Iran
| | - Solmaz Khosravi
- Department of Genetic Engineering, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Postal Code: 3135933152, Karaj, Iran
| | - Hedayat Bagheri
- Department of Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, 65174, Iran
| | | | - Shen Q Pan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Pejman Azadi
- Department of Genetic Engineering, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Postal Code: 3135933152, Karaj, Iran.
| |
Collapse
|
2
|
Freitas-Alves NS, Moreira-Pinto CE, Távora FTPK, Paes-de-Melo B, Arraes FBM, Lourenço-Tessutti IT, Moura SM, Oliveira AC, Morgante CV, Qi Y, Fatima Grossi-de-Sa M. CRISPR/Cas genome editing in soybean: challenges and new insights to overcome existing bottlenecks. J Adv Res 2024:S2090-1232(24)00367-9. [PMID: 39163906 DOI: 10.1016/j.jare.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Soybean is a worldwide-cultivated crop due to its applications in the food, feed, and biodiesel industries. Genome editing in soybean began with ZFN and TALEN technologies; however, CRISPR/Cas has emerged and shortly became the preferable approach for soybean genome manipulation since it is more precise, easy to handle, and cost-effective. Recent reports have focused on the conventional Cas9 nuclease, Cas9 nickase (nCas9) derived base editors, and Cas12a (formally Cpf1) as the most commonly used genome editors in soybean. Nonetheless, several challenges in the complex plant genetic engineering pipeline need to be overcome to effectively edit the genome of an elite soybean cultivar. These challenges include (1) optimizing CRISPR cassette design (i.e., gRNA and Cas promoters, gRNA design and testing, number of gRNAs, and binary vector), (2) improving transformation frequency, (3) increasing the editing efficiency ratio of targeted plant cells, and (4) improving soybean crop production. AIM OF REVIEW This review provides an overview of soybean genome editing using CRISPR/Cas technology, discusses current challenges, and highlights theoretical (insights) and practical suggestions to overcome the existing bottlenecks. KEY SCIENTIFIC CONCEPTS OF REVIEW The CRISPR/Cas system was discovered as part of the bacterial innate immune system. It has been used as a biotechnological tool for genome editing and efficiently applied in soybean to unveil gene function, improve agronomic traits such as yield and nutritional grain quality, and enhance biotic and abiotic stress tolerance. To date, the efficiency of gRNAs has been validated using protoplasts and hairy root assays, while stable plant transformation relies on Agrobacterium-mediated and particle bombardment methods. Nevertheless, most steps of the CRISPR/Cas workflow require optimizations to achieve a more effective genome editing in soybean plants.
Collapse
Affiliation(s)
- Nayara Sabrina Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Clidia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabiano T P K Távora
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Stéfanie M Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Antonio C Oliveira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Embrapa Semi-Arid, Petrolina, PE, Brazil
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil; Catholic University Dom Bosco, Graduate Program in Biotechnology, Campo Grande, MS, Brazil.
| |
Collapse
|
3
|
Wang W, Guo J, Ma J, Wang Z, Zhang L, Wang Z, Meng M, Zhang C, Sun F, Xi Y. Comprehensive Transcriptomic and Metabolic Profiling of Agrobacterium- tumefaciens-Infected Immature Wheat Embryos. Int J Mol Sci 2023; 24:ijms24098449. [PMID: 37176157 PMCID: PMC10179373 DOI: 10.3390/ijms24098449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The transformation efficiency (TE) was improved by a series of special chemical and physical methods using immature embryos from the cultivar Fielder, with the PureWheat technique. To analyze the reaction of immature embryos infected, which seemed to provide the necessary by Agrobacterium tumefaciens in PureWheat, a combination of scanning electron microscopy (SEM), complete transcriptome analysis, and metabolome analysis was conducted to understand the progress. The results of the SEM analysis revealed that Agrobacterium tumefaciens were deposited under the damaged cortex of immature embryos as a result of pretreatment and contacted the receptor cells to improve the TE. Transcriptome analysis indicated that the differentially expressed genes were mainly enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, plant-pathogen interaction, plant hormone signal transduction, and the MAPK (Mitogen-activated protein kinase) signaling pathway. By analyzing the correlation between differentially expressed genes and metabolites, the expression of many genes and the accumulation of metabolites were changed in glucose metabolism and the TCA cycle (Citrate cycle), as well as the amino acid metabolism; this suggests that the infection of wheat embryos with Agrobacterium is an energy-demanding process. The shikimate pathway may act as a hub between glucose metabolism and phenylpropanoid metabolism during Agrobacterium infection. The downregulation of the F5H gene and upregulation of the CCR gene led to the accumulation of lignin precursors through phenylpropanoid metabolism. In addition, several metabolic pathways and oxidases were found to be involved in the infection treatment, including melatonin biosynthesis, benzoxazinoid biosynthesis, betaine biosynthesis, superoxide dismutase, and peroxidase, suggesting that wheat embryos may be under the stress of Agrobacterium and, thus, undergo an oxidative stress response. These findings explore the physiological and molecular changes of immature embryos during the co-culture stage of the PureWheat technique and provide insights for Agrobacterium-mediated transgenic wheat experiments.
Collapse
Affiliation(s)
- Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jinliang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jiayang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhulin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lining Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zixu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Min Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
4
|
Xu H, Guo Y, Qiu L, Ran Y. Progress in Soybean Genetic Transformation Over the Last Decade. FRONTIERS IN PLANT SCIENCE 2022; 13:900318. [PMID: 35755694 PMCID: PMC9231586 DOI: 10.3389/fpls.2022.900318] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Soybean is one of the important food, feed, and biofuel crops in the world. Soybean genome modification by genetic transformation has been carried out for trait improvement for more than 4 decades. However, compared to other major crops such as rice, soybean is still recalcitrant to genetic transformation, and transgenic soybean production has been hampered by limitations such as low transformation efficiency and genotype specificity, and prolonged and tedious protocols. The primary goal in soybean transformation over the last decade is to achieve high efficiency and genotype flexibility. Soybean transformation has been improved by modifying tissue culture conditions such as selection of explant types, adjustment of culture medium components and choice of selection reagents, as well as better understanding the transformation mechanisms of specific approaches such as Agrobacterium infection. Transgenesis-based breeding of soybean varieties with new traits is now possible by development of improved protocols. In this review, we summarize the developments in soybean genetic transformation to date, especially focusing on the progress made using Agrobacterium-mediated methods and biolistic methods over the past decade. We also discuss current challenges and future directions.
Collapse
Affiliation(s)
- Hu Xu
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lijuan Qiu,
| | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
- Yidong Ran,
| |
Collapse
|
5
|
Wang W, Chen L, Fengler K, Bolar J, Llaca V, Wang X, Clark CB, Fleury TJ, Myrvold J, Oneal D, van Dyk MM, Hudson A, Munkvold J, Baumgarten A, Thompson J, Cai G, Crasta O, Aggarwal R, Ma J. A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nat Commun 2021; 12:6263. [PMID: 34741017 PMCID: PMC8571336 DOI: 10.1038/s41467-021-26554-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Phytophthora root and stem rot caused by P. sojae is a destructive soybean soil-borne disease found worldwide. Discovery of genes conferring broad-spectrum resistance to the pathogen is a need to prevent the outbreak of the disease. Here, we show that soybean Rps11 is a 27.7-kb nucleotide-binding site-leucine-rich repeat (NBS-LRR or NLR) gene conferring broad-spectrum resistance to the pathogen. Rps11 is located in a genomic region harboring a cluster of large NLR genes of a single origin in soybean, and is derived from rounds of unequal recombination. Such events result in promoter fusion and LRR expansion that may contribute to the broad resistance spectrum. The NLR gene cluster exhibits drastic structural diversification among phylogenetically representative varieties, including gene copy number variation ranging from five to 23 copies, and absence of allelic copies of Rps11 in any of the non-Rps11-donor varieties examined, exemplifying innovative evolution of NLR genes and NLR gene clusters.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Kevin Fengler
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Joy Bolar
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Victor Llaca
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Tomara J Fleury
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Crop Production and Pest Control Research Unit, USDA, ARS, West Lafayette, IN, 47907, USA
| | - Jon Myrvold
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - David Oneal
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | | | - Ashley Hudson
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Jesse Munkvold
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Andy Baumgarten
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Jeff Thompson
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Guohong Cai
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Crop Production and Pest Control Research Unit, USDA, ARS, West Lafayette, IN, 47907, USA
| | - Oswald Crasta
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
- R&D, Equinom, Inc., Indianapolis, IN, 46268, USA
| | - Rajat Aggarwal
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Yang S, Hu Y, Cheng Z, Rice JH, Miao L, Ma J, Hewezi T, Li Y, Gai J. An efficient Agrobacterium-mediated soybean transformation method using green fluorescent protein as a selectable marker. PLANT SIGNALING & BEHAVIOR 2019; 14:1612682. [PMID: 31056001 PMCID: PMC6619996 DOI: 10.1080/15592324.2019.1612682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/22/2019] [Indexed: 05/13/2023]
Abstract
Genetic transformation plays a vital role in gene functional study and molecular breeding of soybean. Conventional soybean transformation methods using chemical selectable markers, such as antibiotic or herbicide resistance genes, rely on the identification of positive transgenic lines at advanced developmental stages, making selection procedure labor intensive and time consuming. Utilization of a visual maker to track the transgene would avoid the uncertainty and blindness in the transformation process. In this research, we used green fluorescent protein (GFP) as the selectable marker to detect transgenics at early stages of soybean development. Positive transformants were detected recurrently during each stage of the process based on visualization of the green fluorescence signal, which help us to discard the non-transgenic ones in each stage to reduce the unnecessary experimental cost and lab space. In addition, the positive transgenic seeds can be identified before planting for early detection of transgene and obtain homozygous lines in advance. The method established in this study is also a useful reference for other plant species.
Collapse
Affiliation(s)
- Songnan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Department of Plant Sciences, University of Tennessee, Knoxville, USA
| | - Yanfeng Hu
- Department of Plant Sciences, University of Tennessee, Knoxville, USA
| | - Zongming Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Department of Plant Sciences, University of Tennessee, Knoxville, USA
| | - John Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, USA
| | - Long Miao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jing Ma
- Department of Plant Sciences, University of Tennessee, Knoxville, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, USA
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Junyi Gai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Willig CJ, Duan K, Zhang ZJ. Transcriptome Profiling of Plant Genes in Response to Agrobacterium tumefaciens-Mediated Transformation. Curr Top Microbiol Immunol 2018; 418:319-348. [PMID: 30062593 DOI: 10.1007/82_2018_115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease. During infection of the host plant, Agrobacterium transfers T-DNA from its Ti plasmid into the host cell, which can then be integrated into the host genome. This unique genetic transformation capability has been employed as the dominant technology for producing genetically modified plants for both basic research and biotechnological applications. Agrobacterium has been well studied as a disease-causing agent. The Agrobacterium-mediated transformation process involves early attachment of the bacterium to the host's surface, followed by transfer of T-DNA and virulence proteins into the plant cell. Throughout this process, the host plants exhibit dynamic gene expression patterns at each infection stage or in response to Agrobacterium strains with varying pathogenic capabilities. Shifting host gene expression patterns throughout the transformation process have effects on transformation frequency, host morphology, and metabolism. Thus, gene expression profiling during the Agrobacterium infection process can be an important approach to help elucidate the interaction between Agrobacterium and plants. This review highlights recent findings on host plant differential gene expression patterns in response to A. tumefaciens or related elicitor molecules.
Collapse
Affiliation(s)
| | - Kaixuan Duan
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Zhanyuan J Zhang
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|