1
|
Wang Q, Su Z, Chen J, Chen W, He Z, Wei S, Yang J, Zou J. HaMADS3, HaMADS7, and HaMADS8 are involved in petal prolongation and floret symmetry establishment in sunflower ( Helianthus annuus L.). PeerJ 2024; 12:e17586. [PMID: 38974413 PMCID: PMC11225715 DOI: 10.7717/peerj.17586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The development of floral organs, crucial for the establishment of floral symmetry and morphology in higher plants, is regulated by MADS-box genes. In sunflower, the capitulum is comprised of ray and disc florets with various floral organs. In the sunflower long petal mutant (lpm), the abnormal disc (ray-like) floret possesses prolongated petals and degenerated stamens, resulting in a transformation from zygomorphic to actinomorphic symmetry. In this study, we investigated the effect of MADS-box genes on floral organs, particularly on petals, using WT and lpm plants as materials. Based on our RNA-seq data, 29 MADS-box candidate genes were identified, and their roles on floral organ development, especially in petals, were explored, by analyzing the expression levels in various tissues in WT and lpm plants through RNA-sequencing and qPCR. The results suggested that HaMADS3, HaMADS7, and HaMADS8 could regulate petal development in sunflower. High levels of HaMADS3 that relieved the inhibition of cell proliferation, together with low levels of HaMADS7 and HaMADS8, promoted petal prolongation and maintained the morphology of ray florets. In contrast, low levels of HaMADS3 and high levels of HaMADS7 and HaMADS8 repressed petal extension and maintained the morphology of disc florets. Their coordination may contribute to the differentiation of disc and ray florets in sunflower and maintain the balance between attracting pollinators and producing offspring. Meanwhile, Pearson correlation analysis between petal length and expression levels of MADS-box genes further indicated their involvement in petal prolongation. Additionally, the analysis of cis-acting elements indicated that these three MADS-box genes may regulate petal development and floral symmetry establishment by regulating the expression activity of HaCYC2c. Our findings can provide some new understanding of the molecular regulatory network of petal development and floral morphology formation, as well as the differentiation of disc and ray florets in sunflower.
Collapse
Affiliation(s)
- Qian Wang
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Zhou Su
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Jing Chen
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Weiying Chen
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Zhuoyuan He
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Shuhong Wei
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Jun Yang
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Jian Zou
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
3
|
Monniaux M, Vandenbussche M. Flower Development in the Solanaceae. Methods Mol Biol 2023; 2686:39-58. [PMID: 37540353 DOI: 10.1007/978-1-0716-3299-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Flower development is the process leading from a reproductive meristem to a mature flower with fully developed floral organs. This multi-step process is complex and involves thousands of genes in intertwined regulatory pathways; navigating through the FLOR-ID website will give an impression of this complexity and of the astonishing amount of work that has been carried on the topic (Bouché et al., Nucleic Acids Res 44:D1167-D1171, 2016). Our understanding of flower development mostly comes from the model species Arabidopsis thaliana, but numerous other studies outside of Brassicaceae have helped apprehend the conservation of these mechanisms in a large evolutionary context (Moyroud and Glover, Curr Biol 27:R941-R951, 2017; Smyth, New Phytol 220:70-86, 2018; Soltis et al., Ann Bot 100:155-163, 2007). Integrating additional species and families to the research on this topic can only advance our understanding of flower development and its evolution.In this chapter, we review the contribution that the Solanaceae family has made to the comprehension of flower development. While many of the general features of flower development (i.e., the key molecular players involved in flower meristem identity, inflorescence architecture or floral organ development) are similar to Arabidopsis, our main objective in this chapter is to highlight the points of divergence and emphasize specificities of the Solanaceae. We will not discuss the large topics of flowering time regulation, inflorescence architecture and fruit development, and we will restrict ourselves to the mechanisms included in a time window after the floral transition and before the fertilization. Moreover, this review will not be exhaustive of the large amount of work carried on the topic, and the choices that we made to describe in large details some stories from the literature are based on the soundness of the functional work performed, and surely as well on our own preferences and expertise.First, we will give a brief overview of the Solanaceae family and some of its specificities. Then, our focus will be on the molecular mechanisms controlling floral organ identity, for which extended functional work in petunia led to substantial revisions to the famous ABC model. Finally, after reviewing some studies on floral organ initiation and growth, we will discuss floral organ maturation, using the examples of the inflated calyx of the Chinese lantern Physalis and petunia petal pigmentation.
Collapse
Affiliation(s)
- Marie Monniaux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| |
Collapse
|
4
|
Xing M, Li H, Liu G, Zhu B, Zhu H, Grierson D, Luo Y, Fu D. A MADS-box transcription factor, SlMADS1, interacts with SlMACROCALYX to regulate tomato sepal growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111366. [PMID: 35779674 DOI: 10.1016/j.plantsci.2022.111366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
In flowering plants, sepals play important roles in the development of flowers and fruit, and both processes are regulated by MADS-box (MADS) transcription factors (TFs). SlMADS1 was previously reported to act as a negative regulator of fruit ripening. In this study, expression analysis shown that its transcripts were very highly expressed during the development of sepals. To test the role of SlMADS1, we generated KO-SlMADS1 (knock-out) tomato mutants by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) technology and over-expression of SlMADS1 (OE-SlMADS1). The sepals and individual cells of KO-SlMADS1 mutants were significantly elongated, compared with the wild type (WT), whereas the sepals of OE-SlMADS1 tomatoes were significantly shorter and their cells were wider. RNA-seq (RNA-sequencing) of sepal samples showed that ethylene-, gibberellin-, auxin-, cytokinin- and cell wall metabolism-related genes were significantly affected in both KO-SlMADS1 and OE-SlMADS1 plants with altered sepal size. Since SlMACROCALYX (MC) is known to regulate the development of tomato sepals, we also studied the relationship between SlMC and SlMADS1 and the result showed that SlMADS1 interacts directly with SlMC. In addition, we also found that manipulating SlMADS1 expression alters the development of tomato plant leaves, roots and plant height. These results enrich our understanding of sepal development and the function of SlMADS1 throughout the plant.
Collapse
Affiliation(s)
- Mengyang Xing
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Benzhong Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongliang Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD UK
| | - Yunbo Luo
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Hoshikawa K, Pham D, Ezura H, Schafleitner R, Nakashima K. Genetic and Molecular Mechanisms Conferring Heat Stress Tolerance in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:786688. [PMID: 35003175 PMCID: PMC8739973 DOI: 10.3389/fpls.2021.786688] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 05/17/2023]
Abstract
Climate change is a major threat to global food security. Changes in climate can directly impact food systems by reducing the production and genetic diversity of crops and their wild relatives, thereby restricting future options for breeding improved varieties and reducing the ability to adapt crops to future challenges. The global surface temperature is predicted to rise by an average of 0.3°C during the next decade, and the Paris Agreement (Paris Climate Accords) aims to limit global warming to below an average of 2°C, preferably to 1.5°C compared to pre-industrial levels. Even if the goal of the Paris Agreement can be met, the predicted rise in temperatures will increase the likelihood of extreme weather events, including heatwaves, making heat stress (HS) a major global abiotic stress factor for many crops. HS can have adverse effects on plant morphology, physiology, and biochemistry during all stages of vegetative and reproductive development. In fruiting vegetables, even moderate HS reduces fruit set and yields, and high temperatures may result in poor fruit quality. In this review, we emphasize the effects of abiotic stress, especially at high temperatures, on crop plants, such as tomatoes, touching upon key processes determining plant growth and yield. Specifically, we investigated the molecular mechanisms involved in HS tolerance and the challenges of developing heat-tolerant tomato varieties. Finally, we discuss a strategy for effectively improving the heat tolerance of vegetable crops.
Collapse
Affiliation(s)
- Ken Hoshikawa
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- Vegetable Diversity and Improvement, World Vegetable Center, Tainan, Taiwan
| | - Dung Pham
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | | | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
6
|
Ma J, Deng S, Chen L, Jia Z, Sang Z, Zhu Z, Ma L, Chen F. Gene duplication led to divergence of expression patterns, protein-protein interaction patterns and floral development functions of AGL6-like genes in the basal angiosperm Magnolia wufengensis (Magnoliaceae). TREE PHYSIOLOGY 2019; 39:861-876. [PMID: 31034013 DOI: 10.1093/treephys/tpz010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/07/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
The MADS-box family genes play critical roles in the regulation of growth and development of flowering plants. AGAMOUS-LIKE 6 (AGL6)-like genes are one of the most enigmatic subfamilies of the MADS-box family because of highly variable expression patterns and ambiguous functions, which have long puzzled researchers. A lot of AGL6 homologs have been identified from gymnosperms and angiosperms. However, only a few have been characterized, especially for basal angiosperm taxa. Magnolia wufengensis is a woody basal angiosperm from the family Magnoliaceae. In the current study, the phylogenesis, expression and protein-protein interaction (PPI) patterns, and functions of two AGL6 homologs from M. wufengensis, MawuAGL6-1 and MawuAGL6-2, were analyzed. Phylogenetic analysis indicated that the two AGL6 duplicates may have arisen by gene duplication before the divergence of Magnoliaceae and Lauraceae, with the diversification of their expression and PPI patterns after gene duplication. Functional analysis revealed that, in addition to common functions in accelerating flowering, MawuAGL6-1 might be responsible for flower meristem determinacy, while MawuAGL6-2 is preferentially recruited to regulate tepal morphogenesis. These findings further advance our understanding of the evolution of phylogenesis, expression, interaction and functions of AGL6 lineage genes from basal angiosperms, as well as the entire AGL6 lineage genes, and the significance of AGL6 lineage genes in the evolution and biological diversity.
Collapse
Affiliation(s)
- Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, PR China
| | - Shixin Deng
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
| | - Liyuan Chen
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
| | - Zhongkui Jia
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
| | - Ziyang Sang
- Forestry Bureau of Wufeng County, Wufeng, Hubei Province, PR China
| | - Zhonglong Zhu
- Wufeng Bo Ling Magnolia Wufengensis Technology Development Co., Ltd, Wufeng, Hubei Province, PR China
| | - Lvyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, PR China
| |
Collapse
|
7
|
Lin Z, Damaris RN, Shi T, Li J, Yang P. Transcriptomic analysis identifies the key genes involved in stamen petaloid in lotus (Nelumbo nucifera). BMC Genomics 2018; 19:554. [PMID: 30053802 PMCID: PMC6062958 DOI: 10.1186/s12864-018-4950-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022] Open
Abstract
Background Flower morphology, a phenomenon regulated by a complex network, is one of the vital ornamental features in Nelumbo nucifera. Stamen petaloid is very prevalent in lotus flowers. However, the mechanism underlying this phenomenon is still obscure. Results Here, the comparative transcriptomic analysis was performed among petal, stamen petaloid and stamen through RNA-seq. Using pairwise comparison analysis, a large number of genes involved in hormonal signal transduction pathways and transcription factors, especially the MADS-box genes, were identified as candidate genes for stamen petaloid in lotus. Conclusions Taken together, these results provide an insight into the molecular networks underlying lotus floral organ development and stamen petaloid. Electronic supplementary material The online version of this article (10.1186/s12864-018-4950-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongyuan Lin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Rebecca Njeri Damaris
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Juanjuan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China. .,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
8
|
Takisawa R, Nakazaki T, Nunome T, Fukuoka H, Kataoka K, Saito H, Habu T, Kitajima A. The parthenocarpic gene Pat-k is generated by a natural mutation of SlAGL6 affecting fruit development in tomato (Solanum lycopersicum L.). BMC PLANT BIOLOGY 2018; 18:72. [PMID: 29699487 PMCID: PMC5921562 DOI: 10.1186/s12870-018-1285-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/10/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Parthenocarpy is a desired trait in tomato because it can overcome problems with fruit setting under unfavorable environmental conditions. A parthenocarpic tomato cultivar, 'MPK-1', with a parthenocarpic gene, Pat-k, exhibits stable parthenocarpy that produces few seeds. Because 'MPK-1' produces few seeds, seedlings are propagated inefficiently via cuttings. It was reported that Pat-k is located on chromosome 1. However, the gene had not been isolated and the relationship between the parthenocarpy and low seed set in 'MPK-1' remained unclear. In this study, we isolated Pat-k to clarify the relationship between parthenocarpy and low seed set in 'MPK-1'. RESULTS Using quantitative trait locus (QTL) analysis for parthenocarpy and seed production, we detected a major QTL for each trait on nearly the same region of the Pat-k locus on chromosome 1. To isolate Pat-k, we performed fine mapping using an F4 population following the cross between a non-parthenocarpic cultivar, 'Micro-Tom' and 'MPK-1'. The results showed that Pat-k was located in the 529 kb interval between two markers, where 60 genes exist. By using data from a whole genome re-sequencing and genome sequence analysis of 'MPK-1', we could identify that the SlAGAMOUS-LIKE 6 (SlAGL6) gene of 'MPK-1' was mutated by a retrotransposon insertion. The transcript level of SlAGL6 was significantly lower in ovaries of 'MPK-1' than a non-parthenocarpic cultivar. From these results, we could conclude that Pat-k is SlAGL6, and its down-regulation in 'MPK-1' causes parthenocarpy and low seed set. In addition, we observed abnormal micropyles only in plants homozygous for the 'MPK-1' allele at the Pat-k/SlAGL6 locus. This result suggests that Pat-k/SlAGL6 is also related to ovule formation and that the low seed set in 'MPK-1' is likely caused by abnormal ovule formation through down-regulation of Pat-k/SlAGL6. CONCLUSIONS Pat-k is identical to SlAGL6, and its down-regulation causes parthenocarpy and low seed set in 'MPK-1'. Moreover, down-regulation of Pat-k/SlAGL6 could cause abnormal ovule formation, leading to a reduction in the number of seeds.
Collapse
Affiliation(s)
- Rihito Takisawa
- Graduate School of Agriculture, Kyoto University, Kizugawa, 619-0218 Japan
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, Kizugawa, 619-0218 Japan
| | - Tsukasa Nunome
- NARO Institute of Vegetable and Floriculture Science, Tsu, 514-2392 Japan
| | - Hiroyuki Fukuoka
- NARO Institute of Vegetable and Tea Science, Tsu, 514-2392 Japan
| | - Keiko Kataoka
- Graduate School of Agriculture, Ehime University, Matsuyama, 790-8566 Japan
| | - Hiroki Saito
- Graduate School of Agriculture, Kyoto University, Kizugawa, 619-0218 Japan
- Present Address: Tropical Agriculture Research Front Japan International Research Center Agricultural Sciences, 1091-1, Kawarabaru, Aza Maezato, Ishigaki, Okinawa 907-0002 Japan
| | - Tsuyoshi Habu
- Graduate School of Agriculture, Ehime University, Matsuyama, 790-8566 Japan
| | - Akira Kitajima
- Graduate School of Agriculture, Kyoto University, Kizugawa, 619-0218 Japan
| |
Collapse
|
9
|
Yin W, Yu X, Chen G, Tang B, Wang Y, Liao C, Zhang Y, Hu Z. Suppression of SlMBP15 Inhibits Plant Vegetative Growth and Delays Fruit Ripening in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:938. [PMID: 30022990 PMCID: PMC6039764 DOI: 10.3389/fpls.2018.00938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/11/2018] [Indexed: 05/04/2023]
Abstract
MADS-box genes have been demonstrated to participate in a number of processes in tomato development, especially fruit ripening. In this study, we reported a novel MADS-box gene, SlMBP15, which is implicated in fruit ripening. Based on statistical analysis, the ripening time of SlMBP15-silenced tomato was delayed by 2-4 days compared with that of the wild-type (WT). The accumulation of carotenoids and biosynthesis of ethylene in fruits were decreased in SlMBP15-silenced tomato. Genes related to carotenoid and ethylene biosynthesis were greatly repressed. SlMBP15 can interact with RIN, a MADS-box regulator affecting the carotenoid accumulation and ethylene biosynthesis in tomato. In addition, SlMBP15-silenced tomato produced dark green leaves, and its plant height was reduced. The gibberellin (GA) content of transgenic plants was lower than that of the WT and GA biosynthesis genes were repressed. These results demonstrated that SlMBP15 not only positively regulated tomato fruit ripening but also affected the morphogenesis of the vegetative organs.
Collapse
Affiliation(s)
- Wencheng Yin
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Boyan Tang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Yanjie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
- *Correspondence: Zongli Hu,
| |
Collapse
|