1
|
Chen Y, Huang T, You C, Chen Y, Chen Y, Que Y, Su Y. The function and regulatory network of sugarcane chitinase gene ScChiIV1 in response to pathogen stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109630. [PMID: 39954373 DOI: 10.1016/j.plaphy.2025.109630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Plant chitinase is a pathogenesis-related protein that can hydrolyze chitin, the main component of fungal cell walls, and plays an important role in plant disease defense responses. Our previous study found the sugarcane class IV chitinase gene ScChiIV1 (GenBank Accession No. KP165001) was responding positively to smut pathogen Sporisorium scitamineum stress, but its disease resistance function and mechanism were unclear. Here, the upstream promoter of the ScChiIV1 gene (pro-ScChiIV1) with a length of 1696 bp was cloned which contained cis-acting elements related to hormone and stress response. Transient overexpression of the pro-ScChiIV1 in Nicotiana benthamiana showed inducible transcriptional levels by ABA, Fusarium solani var. coeruleum, and Alternaria longipes stimuli. Furthermore, stable overexpression of the ScChiIV1 gene in N. benthamiana enhanced the resistance of transgenic plants against F. solani var. coeruleum and S. scitamineum. Phenotypic monitoring, relevant physiological indicators, immune-related gene expression, and transcriptome analyses revealed that ScChiIV1 may activate potential TFs and PKs by inducing Ca2+ influx, ROS generation, and MAPK activation, thereby increasing the expression level of genes related to hormone signaling pathways, hypersensitive response (HR), and reactive oxygen species (ROS), as well as the activities of chitinase, superoxide dismutase (SOD), and catalase (CAT). In addition, ScChiIV1 reduced the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in transgenic plants, ultimately increasing disease resistance. This study provides novel insights into the molecular mechanism of the early response of the ScChiIV1 gene to pathogen stress and offers an excellent genetic resource for sugarcane disease resistant breeding.
Collapse
Affiliation(s)
- Yanling Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Tingchen Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Yao Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Li M, Wang W, Chen X, Lu X, Huang Y. Combining resistance indicators, metabolomes and transcriptomes to reveal correlations in disease and cold resistance in tea plant and analyze the key domain NB-ARC. PLANT CELL REPORTS 2025; 44:34. [PMID: 39847084 DOI: 10.1007/s00299-024-03384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/13/2024] [Indexed: 01/24/2025]
Abstract
KEY MESSAGE Integration of resistance indicators, metabolomes, and transcriptomes to elucidate that there is a positive correlation between disease susceptibility and cold tolerance in tea plants. The flavonoid pathway was found to be the major metabolic and transcriptional enrichment pathway. A key domain NB-ARC was identified through joint analysis, along with analysis of key domains within the NB-ARC protein. Tea is a healthy beverage and the tea plant is a woody plant rich in secondary metabolites. In the face of abnormal climate change year by year, it is important to investigate the mechanisms by which tea plants resist both biotic and abiotic stresses. In this study, we found different tea plant cultivars were evaluated for cold and disease resistance have highly correlated. Subsequently, two cold and fungal resistant cultivars were screened from a Shuixian population that had been cold domesticated for 50 years, and transcriptome and metabolome assays were performed on the two materials under cold and anthracnose stresses, using Baiye Dancong as a control. The analyses found that differential metabolites were most enriched in the flavonoid pathway and differentially expressed genes were most enriched in the pathway related to disease course after pathogen stress and cold stress. Combined metabolome and transcriptome analyses identified 30 genes that were positively correlated with flavonoid content after pathogen stress and cold stress, of which the number of genes with NB-ARC structural domains was 11, which accounted for the largest proportion. These 11 genes with NB-ARC structural domains were analyzed by family analysis and found to be highly involved in different tissues transcriptomes of tea plants, indicating the importance of the NB-ARC structural domains in biotic and abiotic stresses, and providing a theoretical basis of analysis for the subsequent related studies. In this study, through the identification of resistance in different varieties of tea plant and the multi-omics approach, we found the genes related to the key structural domain NB-ARC, which lays the foundation for the study of biologically and abiologically important mechanisms in response to the disease in tea plant.
Collapse
Affiliation(s)
- Min Li
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenting Wang
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaodan Chen
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiumei Lu
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yahui Huang
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Chen Y, Gou Y, Huang T, Chen Y, You C, Que Y, Gao S, Su Y. Characterization of the chitinase gene family in Saccharum reveals the disease resistance mechanism of ScChiVII1. PLANT CELL REPORTS 2024; 43:299. [PMID: 39616552 DOI: 10.1007/s00299-024-03389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
KEY MESSAGE A chitinase gene ScChiVII1 which is involved in defense against pathogen stress was characterized in sugarcane. Chitinases, a subclass of pathogenesis-related proteins, catalyze chitin hydrolysis and play a key role in plant defense against chitin-containing pathogens. However, there is little research on disease resistance analysis of chitinase genes in sugarcane, and the systematic identification of their gene families has not been reported. In this study, 85 SsChi and 23 ShChi genes, which were divided into 6 groups, were identified from the wild sugarcane species Saccharum spontaneum and Saccharum hybrid cultivar R570, respectively. Transcriptome analysis and real-time quantitative PCR revealed that SsChi genes responded to smut pathogen stress. The chitinase crude extracted from the leaves of transgenic Nicotiana benthamiana plants overexpressing ScChiVII1 (a homologous gene of SsChi22a) inhibited the hyphal growth of Fusarium solani var. coeruleum and Sporisorium scitamineum. Notably, the chitinase and catalase activities and the jasmonic acid content in the leaves of ScChiVII1 transgenic N. benthamiana increased after inoculation with F solani var. coeruleum, but the salicylic acid, hydrogen peroxide, and malondialdehyde contents decreased. Comprehensive RNA sequencing of leaves before (0 day) and after inoculation (2 days) revealed that ScChiVII1 transgenic tobacco enhanced plant disease resistance by activating transcription factors and disease resistance-related signaling pathways, and modulating the expression of genes involved in the hypersensitive response and ethylene synthesis pathways. Taken together, this study provides comprehensive information on the chitinase gene family and offers potential genetic resources for disease resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Yanling Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxin Gou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tingchen Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yao Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Zhou J, Zhang S, Die P. Multi-Omics Analysis Reveals the Mechanism by Which RpACBP3 Overexpression Contributes to the Response of Robinia pseudoacacia to Pb Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3017. [PMID: 39519936 PMCID: PMC11548633 DOI: 10.3390/plants13213017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Acyl-CoA-binding protein (ACBP) genes have been implicated in lead enrichment and translocation in plants; however, the mechanisms by which these genes contribute to the response to heavy metal stress in various taxa have not been determined. In this study, the molecular mechanisms underlying the response of Robinia pseudoacacia, an economically important deciduous tree, to Pb stress were examined using transcriptomic and metabolomic analyses. RpACBP3 overexpression increased Pb enrichment, translocation, and tolerance. After Pb stress for 3 days, 1125 differentially expressed genes (DEGs) and 485 differentially accumulated metabolites (DAMs) were identified between wild-type and RpACBP3-overexpressing R. pseudoacacia strains; after Pb stress for 45 days, 1746 DEGs and 341 DAMs were identified. Joint omics analyses showed that the DEGs and DAMs were co-enriched in α-linoleic acid metabolism and flavonoid biosynthesis pathways. In particular, DEGs and DAMs involved in α-linoleic acid metabolism and flavonoid biosynthesis were up- and down-regulated, respectively. Moreover, RpACBP3 overexpression enhanced the ability to scavenge reactive oxygen species and repair cell membranes under stress by regulating LOX gene expression and increasing the phosphatidylcholine content, thereby improving the tolerance to Pb stress. These findings lay a theoretical foundation for the future application of RpACBP3 genes in plant germplasm resource creation and phytoremediation of Pb contaminated soil in which R. pseudoacacia grow.
Collapse
Affiliation(s)
- Jian Zhou
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (P.D.)
- Henan Province Engineering Center of Horticulture Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Songyan Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (P.D.)
| | - Pengxiang Die
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (P.D.)
| |
Collapse
|
5
|
Ma X, Ai X, Li C, Wang S, Zhang N, Ren J, Wang J, Zhong C, Zhao X, Zhang H, Yu H. A Genome-Wide Analysis of the Jasmonic Acid Biosynthesis Gene Families in Peanut Reveals Their Crucial Roles in Growth and Abiotic Stresses. Int J Mol Sci 2024; 25:7054. [PMID: 39000161 PMCID: PMC11241683 DOI: 10.3390/ijms25137054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Abiotic stress is a limiting factor in peanut production. Peanut is an important oil crop and cash crop in China. Peanut yield is vulnerable to abiotic stress due to its seeds grown underground. Jasmonic acid (JA) is essential for plant growth and defense against adversity stresses. However, the regulation and mechanism of the jasmonic acid biosynthesis pathway on peanut defense against abiotic stresses are still limitedly understood. In this study, a total of 64 genes encoding key enzymes of JA biosynthesis were identified and classified into lipoxygenases (AhLOXs), alleno oxide synthases (AhAOSs), allene oxide cyclases (AhAOCs), and 12-oxo-phytodienoic acid reductases (AhOPRs) according to gene structure, conserved motif, and phylogenetic feature. A cis-regulatory element analysis indicated that some of the genes contained stress responsive and hormone responsive elements. In addition to proteins involved in JA biosynthesis and signaling, they also interacted with proteins involved in lipid biosynthesis and stress response. Sixteen putative Ah-miRNAs were identified from four families targeting 35 key genes of JA biosynthesis. A tissue expression pattern analysis revealed that AhLOX2 was the highest expressed in leaf tissues, and AhLOX32 was the highest expressed in shoot, root, and nodule tissues. AhLOX16, AhOPR1, and AhOPR3 were up-regulated under drought stress. AhLOX16, AhAOS3, AhOPR1, and AhAOC4 had elevated transcript levels in response to cold stress. AhLOX5, AhLOX16, AhAOC3, AhOPR1, and AhOPR3 were up-regulated for expression under salt stress. Our study could provide a reference for the study of the abiotic stress resistance mechanism in peanut.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - He Zhang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110161, China
| | - Haiqiu Yu
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
6
|
Zou W, Sun T, Chen Y, Wang D, You C, Zang S, Lin P, Wu Q, Su Y, Que Y. Sugarcane ScOPR1 gene enhances plant disease resistance through the modulation of hormonal signaling pathways. PLANT CELL REPORTS 2024; 43:158. [PMID: 38822833 DOI: 10.1007/s00299-024-03241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
KEY MESSAGE Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.
Collapse
Affiliation(s)
- Wenhui Zou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Tingting Sun
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Yao Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chuihuai You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
7
|
Mehdi F, Cao Z, Zhang S, Gan Y, Cai W, Peng L, Wu Y, Wang W, Yang B. Factors affecting the production of sugarcane yield and sucrose accumulation: suggested potential biological solutions. FRONTIERS IN PLANT SCIENCE 2024; 15:1374228. [PMID: 38803599 PMCID: PMC11128568 DOI: 10.3389/fpls.2024.1374228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
Environmental stresses are the main constraints on agricultural productivity and food security worldwide. This issue is worsened by abrupt and severe changes in global climate. The formation of sugarcane yield and the accumulation of sucrose are significantly influenced by biotic and abiotic stresses. Understanding the biochemical, physiological, and environmental phenomena associated with these stresses is essential to increase crop production. This review explores the effect of environmental factors on sucrose content and sugarcane yield and highlights the negative effects of insufficient water supply, temperature fluctuations, insect pests, and diseases. This article also explains the mechanism of reactive oxygen species (ROS), the role of different metabolites under environmental stresses, and highlights the function of environmental stress-related resistance genes in sugarcane. This review further discusses sugarcane crop improvement approaches, with a focus on endophytic mechanism and consortium endophyte application in sugarcane plants. Endophytes are vital in plant defense; they produce bioactive molecules that act as biocontrol agents to enhance plant immune systems and modify environmental responses through interaction with plants. This review provides an overview of internal mechanisms to enhance sugarcane plant growth and environmental resistance and offers new ideas for improving sugarcane plant fitness and crop productivity.
Collapse
Affiliation(s)
- Faisal Mehdi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Zhengying Cao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Shuzhen Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Yimei Gan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Wenwei Cai
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Lishun Peng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Yuanli Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Wenzhi Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Benpeng Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| |
Collapse
|
8
|
Wu Q, Zhang C, Xu F, Zang S, Wang D, Sun T, Su Y, Yang S, Ding Y, Que Y. Transcriptional Regulation of SugarCane Response to Sporisorium scitamineum: Insights from Time-Course Gene Coexpression and Ca 2+ Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10506-10520. [PMID: 38651833 PMCID: PMC11082935 DOI: 10.1021/acs.jafc.4c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Sugarcane response to Sporisorium scitamineum is determined by multiple major genes and numerous microeffector genes. Here, time-ordered gene coexpression networks were applied to explore the interaction between sugarcane and S. scitamineum. Totally, 2459 differentially expressed genes were identified and divided into 10 levels, and several stress-related subnetworks were established. Interestingly, the Ca2+ signaling pathway was activated to establish the response to sugarcane smut disease. Accordingly, two CAX genes (ScCAX2 and ScCAX3) were cloned and characterized from sugarcane. They were significantly upregulated under ABA stress but inhibited by MeJA treatment. Furthermore, overexpression of ScCAX2 and ScCAX3 enhanced the susceptibility of transgenic plants to the pathogen infection, suggesting its negative role in disease resistance. A regulatory model for ScCAX genes in disease response was thus depicted. This work helps to clarify the transcriptional regulation of sugarcane response to S. scitamineum stress and the function of the CAX gene in disease response.
Collapse
Affiliation(s)
- Qibin Wu
- National
Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience
and Biotechnology, Chinese Academy of Tropical
Agricultural Sciences, Sanya 572024, Haikou 571101, Hainan, China
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Zhang
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Fu Xu
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujian Zang
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongjiao Wang
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Sun
- National
Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience
and Biotechnology, Chinese Academy of Tropical
Agricultural Sciences, Sanya 572024, Haikou 571101, Hainan, China
| | - Yachun Su
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaolin Yang
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
- Yunnan
Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research
Institute, Yunnan Academy of Agricultural
Sciences, Kaiyuan 661600, China
| | - Yinghong Ding
- College
of Landscape Architecture and Art, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- National
Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience
and Biotechnology, Chinese Academy of Tropical
Agricultural Sciences, Sanya 572024, Haikou 571101, Hainan, China
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Hu X, Luo Z, Xu C, Wu Z, Wu C, Ebid MHM, Zan F, Zhao L, Liu X, Liu J. A Comprehensive Analysis of Transcriptomics and Metabolomics Revealed Key Pathways Involved in Saccharum spontaneum Defense against Sporisorium scitamineum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4476-4492. [PMID: 38373255 DOI: 10.1021/acs.jafc.3c07768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Sugarcane smut, caused by Sporisorium scitamineum, poses a severe threat to sugarcane production. The genetic basis of sugarcane resistance to S. scitamineum remains elusive. A comparative transcriptomic and metabolomic study was conducted on two wild Saccharum species of S. spontaneum with contrast smut resistance. Following infection, the resistant line exhibited greater down-regulation of genes and metabolites compared to the susceptible line, indicating distinct biological processes. Lignan and lignin biosynthesis and SA signal transduction were activated in the resistant line, while flavonoid biosynthesis and auxin signal transduction were enhanced in the susceptible line. TGA2.2 and ARF14 were identified as playing positive and negative roles, respectively, in plant defense. Exogenous auxin application significantly increased the susceptibility of S. spontaneum to S. scitaminum. This study established the significant switching of defense signaling pathways in contrast-resistant S. spontaneum following S. scitamineum infection, offering a hypothetical model and candidate genes for further research into sugarcane smut disease.
Collapse
Affiliation(s)
- Xin Hu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Zhengying Luo
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Chaohua Xu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Zhuandi Wu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Caiwen Wu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Mahmoud H M Ebid
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Sugar Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Fengang Zan
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Liping Zhao
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Xinlong Liu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| | - Jiayong Liu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, China
| |
Collapse
|
10
|
Xu Y, Hu W, Song S, Ye X, Ding Z, Liu J, Wang Z, Li J, Hou X, Xu B, Jin Z. MaDREB1F confers cold and drought stress resistance through common regulation of hormone synthesis and protectant metabolite contents in banana. HORTICULTURE RESEARCH 2023; 10:uhac275. [PMID: 36789258 PMCID: PMC9923210 DOI: 10.1093/hr/uhac275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
Adverse environmental factors severely affect crop productivity. Improving crop resistance to multiple stressors is an important breeding goal. Although CBFs/DREB1s extensively participate in plant resistance to abiotic stress, the common mechanism underlying CBFs/DREB1s that mediate resistance to multiple stressors remains unclear. Here, we show the common mechanism for MaDREB1F conferring cold and drought stress resistance in banana. MaDREB1F encodes a dehydration-responsive element binding protein (DREB) transcription factor with nuclear localization and transcriptional activity. MaDREB1F expression is significantly induced after cold, osmotic, and salt treatments. MaDREB1F overexpression increases banana resistance to cold and drought stress by common modulation of the protectant metabolite levels of soluble sugar and proline, activating the antioxidant system, and promoting jasmonate and ethylene syntheses. Transcriptomic analysis shows that MaDREB1F activates or alleviates the repression of jasmonate and ethylene biosynthetic genes under cold and drought conditions. Moreover, MaDREB1F directly activates the promoter activities of MaAOC4 and MaACO20 for jasmonate and ethylene syntheses, respectively, under cold and drought conditions. MaDREB1F also targets the MaERF11 promoter to activate MaACO20 expression for ethylene synthesis under drought stress. Together, our findings offer new insight into the common mechanism underlying CBF/DREB1-mediated cold and drought stress resistance, which has substantial implications for engineering cold- and drought-tolerant crops.
Collapse
Affiliation(s)
| | - Wei Hu
- Corresponding authors. E-mail: ; ;
| | | | - Xiaoxue Ye
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Zehong Ding
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Juhua Liu
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Zhuo Wang
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Jingyang Li
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Xiaowan Hou
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Guangdong, China
| | - Biyu Xu
- Corresponding authors. E-mail: ; ;
| | | |
Collapse
|
11
|
Cen G, Sun T, Chen Y, Wang W, Feng A, Liu A, Que Y, Gao S, Su Y, You C. Characterization of silicon transporter gene family in Saccharum and functional analysis of the ShLsi6 gene in biotic stress. Gene X 2022; 822:146331. [PMID: 35183686 DOI: 10.1016/j.gene.2022.146331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 11/04/2022] Open
Abstract
Silicon, one of the most prevalent elements in the soil, is beneficial for plant growth and defense against different stresses. The silicon transporter gene (Lsi) plays an important role in the uptake and transport of silicon in higher plants. In this study, a total of 32 Lsi genes, including 20 SsLsi in sugarcane wild species Saccharum spontaneum, 5 ShLsi in Saccharum hybrid cultivar R570 and 7 SbLsi in sugarcane related species Sorghum bicolor, were identified and classified into three groups. Bioinformatics analysis showed that instability, hydrophobicity, localization of cell membranes and vacuoles were the main features of the Lsi proteins. Whole genome and segmental duplication contributed to the main expansion of Lsi gene family. Collinearity analysis of the Lsi genes showed that S. spontanum and R570 had a collinear relationship with monocotyledonous plants S. bicolor and Oryza sativa, but not with dicotyledonous plants Arabidopsis thaliana and Vitis vinifera. The replicated Lsi genes were mainly subjected to strong selection pressure for purification. The diverse cis-regulatory elements in the promoter of SsLsi, ShLsi and SbLsi genes suggested that they were widely involved in the response of plants to various stresses and the regulation of the growth and development. Transcriptome data and real time quantitative PCR analysis showed that the Lsi genes exhibited different expression profiles in sugarcane tissues and under Sporisorium scitamineum, drought and cold stresses. In addition, the cDNA and genomic DNA sequences of ShLsi6 that was homologous to SsLsi1b gene was cloned from Saccharum hybrid cultivar ROC22. Transient expression analysis showed that, compared with the control, Nicotiana benthamiana leaves which overexpressed the ShLsi6 gene showed a high sensitivity after inoculation with tobacco pathogens Ralstonia solanacearum and Fusarium solani var. coeruleum. This study provides important information for further functional analysis of Lsi genes and resistant breeding in sugarcane.
Collapse
Affiliation(s)
- Guangli Cen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province (Fujian Agriculture and Forestry University), Fuzhou, Fujian 350002, China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yanling Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenju Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Aoyin Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Anyu Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province (Fujian Agriculture and Forestry University), Fuzhou, Fujian 350002, China.
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
12
|
Sun T, Meng Y, Cen G, Feng A, Su W, Chen Y, You C, Que Y, Su Y. Genome-wide identification and expression analysis of the coronatine-insensitive 1 (COI1) gene family in response to biotic and abiotic stresses in Saccharum. BMC Genomics 2022; 23:38. [PMID: 34998383 PMCID: PMC8742417 DOI: 10.1186/s12864-021-08255-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background The coronatine insensitive 1 (COI1) gene is the core member of jasmonate signaling pathway, which is closely related to plant biotic and abiotic resistance. However, there have been no reports on COI1 in sugarcane (Sacharum spp.). Hence, systematically investigating the characteristics of the COI1 multigene family in sugarcane can provide a means to study and manipulate the jasmonic acid signaling pathway. Results A total of 156 COI1 proteins were obtained from the genomes of 19 land plants, while none were obtained from five algae species. A phylogenetic tree demonstrated that these COI1 proteins were classified into four groups, while 31 proteins of SsCOI1 from Saccharum spontaneum, SbCOI1 from Sorghum bicolor, and ShCOI1 from Saccharum spp. hybrid cultivar R570 clustered into three groups. Synteny analysis and duplication patterns revealed that COI1 genes expanded through various genome replication events and could have experienced strong purifying selective pressure during evolution in S. spontaneum, S. bicolor, and R570. An investigation of cis-acting elements suggests that COI1 genes may be involved in plant growth and development and response to various stresses. Expression analysis implied that 21 SsCOI1 genes were constitutively expressed, and had positive responses to drought, cold, and Sporisorium scitamineum stresses with different expression patterns. Among them, seven SsCOI1 haplotype genes may play different roles in response to methyl jasmonate. Furthermore, the ShCOI1–4, ShCOI1–5, and ShCOI1–6 genes were cloned from Saccharum spp. hybrid cultivar ROC22. Real-time quantitative PCR (RT-qPCR) analysis demonstrated that these three ShCOI1 genes had divergent expression profiles in response to salicylic acid, abscisic acid, polyethylene glycol, cold, and S. scitamineum. Conclusions These results suggest that COI1 genes may act in sugarcane growth, development, and response to various stresses via different regulatory mechanisms, which laying a foundation for the functional identification of the sugarcane COI1 gene. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08255-0.
Collapse
Affiliation(s)
- Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yintian Meng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guangli Cen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Aoyin Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yanling Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
13
|
Liptáková Ľ, Demecsová L, Valentovičová K, Zelinová V, Tamás L. Early gene expression response of barley root tip to toxic concentrations of cadmium. PLANT MOLECULAR BIOLOGY 2022; 108:145-155. [PMID: 34928487 DOI: 10.1007/s11103-021-01233-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Already a short-term Cd treatment induces changes in gene expression in barley root tips via IAA and ROS signaling during mild and severe Cd stress, respectively. Even a short, 30 min, Cd treatment of roots induced a considerable alteration in gene expression in the barley root tips within an hour after the treatments. The very early activation of MYB1 transcription factor expression is partially regulated by auxin signaling in mildly stressed seedlings. An increase in allene oxide cyclase and NADPH oxidase expression was a distinguishing feature of root tips response to mild Cd stress and their expression is activated via IAA signaling. Meanwhile, early changes in the level of dehydrin transcripts were detected in moderately and severely stressed root tips, and their induction is related to altered ROS homeostasis in cells. The early activation of glutathione peroxidase expression by mild Cd stress indicates the involvement of IAA in the signaling process. In contrast, early ascorbate peroxidase expression was induced only with Cd treatment causing severe stress and ROS play central roles in its induction. The expression of cysteine protease was activated similarly in both mildly and severely Cd-stressed roots; consequently, both increased IAA and ROS levels take part in the regulation of cysteine protease expression. The Cd-evoked accumulation of BAX Inhibitor-1 mRNA was characteristic for moderately and severely stressed roots. Whereas decreased IAA level did not affect its expression, rotenone-mediated ROS depletion markedly reduced the Cd-induced expression of BAX Inhibitor-1. An early increase of alternative oxidase levels in the root tip cells indicated that the reduction of mitochondrial superoxide generation is an important component of barley root response to severe Cd stress.
Collapse
Affiliation(s)
- Ľubica Liptáková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Katarína Valentovičová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|
14
|
Su W, Zhang C, Wang D, Ren Y, Sun T, Feng J, Su Y, Xu L, Shi M, Que Y. The CaCA superfamily genes in Saccharum: comparative analysis and their functional implications in response to biotic and abiotic stress. BMC Genomics 2021; 22:549. [PMID: 34275454 PMCID: PMC8286586 DOI: 10.1186/s12864-021-07828-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plants, Calcium (Ca2+) acts as a universal messenger in various signal transduction pathways, including responses to biotic and abiotic stresses and regulation of cellular and developmental processes. The Ca2+/cation antiporter (CaCA) superfamily proteins play vital roles in the transport of Ca2+ and/or other cations. However, the characteristics of these superfamily members in Saccharum and their evolutionary and functional implications have remained unclear. RESULTS A total of 34 CaCA genes in Saccharum spontaneum, 5 CaCA genes in Saccharum spp. R570, and 14 CaCA genes in Sorghum bicolor were identified and characterized. These genes consisted of the H+/cation exchanger (CAX), cation/Ca2+ exchanger (CCX), EF-hand / CAX (EFCAX), and Mg2+/H+ exchanger (MHX) families, among which the CCX and EFCAX could be classified into three groups while the CAX could be divided into two groups. The exon/intron structures and motif compositions suggested that the members in the same group were highly conserved. Synteny analysis of CaCAs established their orthologous and paralogous relationships among the superfamily in S. spontaneum, R570, and S. bicolor. The results of protein-protein interactions indicated that these CaCA proteins had direct or indirect interactions. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis demonstrated that most members of Saccharum CaCA genes exhibited a similar expression pattern in response to hormonal (abscisic acid, ABA) treatment but played various roles in response to biotic (Sporisorium scitamineum) and abiotic (cold) stresses. Furthermore, ScCAX4, a gene encoding a cytoplasm, plasma membrane and nucleus positioning protein, was isolated from sugarcane. This gene was constitutively expressed in different sugarcane tissues and its expression was only induced at 3 and 6 h time points after ABA treatment, however was inhibited and indued in the whole process under cold and S. scitamineum stresses, respectively. CONCLUSIONS This study systematically conducted comparative analyses of CaCA superfamily genes among S. spontaneum, R570, and S. bicolor, delineating their sequence and structure characteristics, classification, evolutionary history, and putative functions. These results not only provided rich gene resources for exploring the molecular mechanism of the CaCA superfamily genes but also offered guidance and reference for research on other gene families in Saccharum.
Collapse
Affiliation(s)
- Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Chang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Yongjuan Ren
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Jingfang Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Mutian Shi
- College of Horticulture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian Province China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| |
Collapse
|