1
|
Kumari M, Yagnik KN, Gupta V, Singh IK, Gupta R, Verma PK, Singh A. Metabolomics-driven investigation of plant defense response against pest and pathogen attack. PHYSIOLOGIA PLANTARUM 2024; 176:e14270. [PMID: 38566280 DOI: 10.1111/ppl.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The advancement of metabolomics has assisted in the identification of various bewildering characteristics of the biological system. Metabolomics is a standard approach, facilitating crucial aspects of system biology with absolute quantification of metabolites using minimum samples, based on liquid/gas chromatography, mass spectrometry and nuclear magnetic resonance. The metabolome profiling has narrowed the wide gaps of missing information and has enhanced the understanding of a wide spectrum of plant-environment interactions by highlighting the complex pathways regulating biochemical reactions and cellular physiology under a particular set of conditions. This high throughput technique also plays a prominent role in combined analyses of plant metabolomics and other omics datasets. Plant metabolomics has opened a wide paradigm of opportunities for developing stress-tolerant plants, ensuring better food quality and quantity. However, despite advantageous methods and databases, the technique has a few limitations, such as ineffective 3D capturing of metabolites, low comprehensiveness, and lack of cell-based sampling. In the future, an expansion of plant-pathogen and plant-pest response towards the metabolite architecture is necessary to understand the intricacies of plant defence against invaders, elucidation of metabolic pathway operational during defence and developing a direct correlation between metabolites and biotic stresses. Our aim is to provide an overview of metabolomics and its utilities for the identification of biomarkers or key metabolites associated with biotic stress, devising improved diagnostic methods to efficiently assess pest and pathogen attack and generating improved crop varieties with the help of combined application of analytical and molecular tools.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Kalpesh Nath Yagnik
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Vaishali Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, Republic of Korea
| | - Praveen K Verma
- Plant-Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, India
| |
Collapse
|
2
|
Ding F, Zhang Y, Lin J, Zhong S, Li P, Li Y, Chen C, Jin S. Comparative transcriptome and metabolome analyses revealed quality difference between beauty tea processed through indoor withering and outdoor solar withering. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1039-1050. [PMID: 37743412 DOI: 10.1002/jsfa.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/20/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Withering is the first processing procedure of beauty tea, and there are few reports on the impact of withering methods on the quality of beauty tea and its regulatory mechanisms. RESULTS Through comparison of fresh tea leaves (FT) with the leaves after indoor natural withering for 18 h (IWT-18) and outdoor solar withering for 6 h (OWT-6), which were collected at the end of the two withering processes, 17 282 and 13 984 differentially expressed genes (DEGs) were respectively screened and 267 and 154 differential metabolites (DMs) were respectively identified. The coexpression network revealed that a large number of DEGs and DMs were enriched in phenylpropanoid, flavonoid, and adenosine triphosphate binding cassette (ABC) transporter pathways, and the number of DMs and DEGs in IWT-18 versus FT exceeded that in OWT-6 versus FT. Both withering methods promoted a significant increase in content of phenylalanine and upregulation of β-glucoside expression in the phenylpropanoid metabolism pathway. Five theaflavin-type proanthocyanidins in the flavonoid synthesis pathway were more significantly accumulated in FT versus IWT-18 than in FT versus OWT-6. Meanwhile, both withering methods can affect the ABC transporter pathway to promote the accumulation of amino acids and their derivatives, but different withering methods affect different ABC transporter families. Outdoor withering with more severe abiotic stress has a greater impact on the ABCG family, whereas indoor withering has a more significant effect on the ABCC family. Sensory evaluation results showed that the dry tea of IWT-18 was slightly better than that of OWT-6 because of the longer withering time and more thorough substance transformation. CONCLUSION In conclusion, the formation of honey flavor in beauty tea may be closely related to the DEGs and DMs in these three pathways. Our research provides theoretical data support for further revealing the mechanism of quality formation during the withering process of beauty tea. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengjiao Ding
- College of Horticulture, Fujian Agriculture and Forestry University/Fujian University Key Laboratory of Tea Science, Fuzhou, China
| | - Yunzhi Zhang
- College of Horticulture, Fujian Agriculture and Forestry University/Fujian University Key Laboratory of Tea Science, Fuzhou, China
| | - Jinlong Lin
- College of Horticulture, Fujian Agriculture and Forestry University/Fujian University Key Laboratory of Tea Science, Fuzhou, China
| | - Sitong Zhong
- College of Horticulture, Fujian Agriculture and Forestry University/Fujian University Key Laboratory of Tea Science, Fuzhou, China
| | - Pengchun Li
- Fujian Jiangshan Meiren Tea Co., Ltd, Sanming, China
| | - Yuanchao Li
- College of Horticulture, Fujian Agriculture and Forestry University/Fujian University Key Laboratory of Tea Science, Fuzhou, China
| | - Chunmei Chen
- Fujian Fengyuan Tea Industry Co., Ltd, Sanming, China
| | - Shan Jin
- College of Horticulture, Fujian Agriculture and Forestry University/Fujian University Key Laboratory of Tea Science, Fuzhou, China
| |
Collapse
|
3
|
Li M, Zhang Y, Yan J, Ding F, Chen C, Zhong S, Li M, Zhu Y, Yue P, Li P, You S, Jin S. Comparative Metabolomic Analysis Reveals the Differences in Nonvolatile and Volatile Metabolites and Their Quality Characteristics in Beauty Tea with Different Extents of Punctured Leaves by Tea Green Leafhopper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16233-16247. [PMID: 37850863 DOI: 10.1021/acs.jafc.3c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The fresh leaves were processed into beauty tea from the Camellia sinensis "Jinxuan" cultivar, which were punctured by tea green leafhoppers to different extents. Low-puncturing dry tea (LPDT) exhibited a superior quality. Altogether, 101 and 129 differential metabolites, including tea polyphenols, lipids, and saccharides, were identified from the fresh leaves and dry beauty tea, respectively. Most metabolite levels increased in the fresh leaves punctured by leafhoppers, but the opposite was observed for the dry beauty tea. According to relative odor activity values (rOAVs) and partial least-squares discriminant analysis (PLS-DA), four characteristic volatiles, including linalool, geraniol, benzeneacetaldehyde, and dihydrolinalool, were selected. Mechanical injury to leaves caused by leafhoppers, watery saliva secreted by the leafhopper, and different water contents of the fresh leaves in different puncturing degrees are the possible reasons for the difference in the quality of the beauty tea with different levels of puncturing. Overall, this study identified a wide range of chemicals that are affected by the degrees of leafhopper puncturing.
Collapse
Affiliation(s)
- Mingjin Li
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yunzhi Zhang
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jiawei Yan
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Fengjiao Ding
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chunmei Chen
- Fujian Fengyuan Tea Industry Co. LTD, Datian 366100, Fujian, China
| | - Sitong Zhong
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Minxuan Li
- College of Plant Protection/Institute of Applied Ecology Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yanyu Zhu
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Panpan Yue
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Pengchun Li
- Fujian Jiangshan Beauty Tea Co., LTD., Datian 366100, Fujian, China
| | - Shijun You
- College of Plant Protection/Institute of Applied Ecology Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shan Jin
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
4
|
Liu H, Zhuang S, Gu Y, Shen Y, Zhang W, Ma L, Xiao G, Wang Q, Zhong Y. Effect of storage time on the volatile compounds and taste quality of Meixian green tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Rautela A, Kumar S. Engineering plant family TPS into cyanobacterial host for terpenoids production. PLANT CELL REPORTS 2022; 41:1791-1803. [PMID: 35789422 PMCID: PMC9253243 DOI: 10.1007/s00299-022-02892-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/05/2022] [Indexed: 05/03/2023]
Abstract
Terpenoids are synthesized naturally by plants as secondary metabolites, and are diverse and complex in structure with multiple applications in bioenergy, food, cosmetics, and medicine. This makes the production of terpenoids such as isoprene, β-phellandrene, farnesene, amorphadiene, and squalene valuable, owing to which their industrial demand cannot be fulfilled exclusively by plant sources. They are synthesized via the Methylerythritol phosphate pathway (MEP) and the Mevalonate pathway (MVA), both existing in plants. The advent of genetic engineering and the latest accomplishments in synthetic biology and metabolic engineering allow microbial synthesis of terpenoids. Cyanobacteria manifest to be the promising hosts for this, utilizing sunlight and CO2. Cyanobacteria possess MEP pathway to generate precursors for terpenoid synthesis. The terpenoid synthesis can be amplified by overexpressing the MEP pathway and engineering MVA pathway genes. According to the desired terpenoid, terpene synthases unique to the plant kingdom must be incorporated in cyanobacteria. Engineering an organism to be used as a cell factory comes with drawbacks such as hampered cell growth and disturbance in metabolic flux. This review set forth a comparison between MEP and MVA pathways, strategies to overexpress these pathways with their challenges.
Collapse
Affiliation(s)
- Akhil Rautela
- School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Zhao S, Cheng H, Xu P, Wang Y. Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant ( Camellia sinensis): A review. Crit Rev Food Sci Nutr 2022; 63:10520-10535. [PMID: 35608014 DOI: 10.1080/10408398.2022.2078787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the process of adapting to the environment, tea plants (Camellia sinensis) endow tea with unique flavor and health functions, which should be attributed to secondary metabolites, including catechins, L-theanine, caffeine and terpene volatiles. Since the content of these flavor-contributing metabolites are mainly determined by the growth of tea plant, it is very important to understand their alteration and regulation mechanisms. In the present work, we first summarize the distribution, change characteristics of the main flavor-contributing metabolites in different cultivars, organs and under environmental stresses of tea plant. Subsequently, we discuss the regulating mechanisms involved in the biosynthesis of these metabolites based on the existing evidence. Finally, we propose the remarks and perspectives on the future study relating flavor-contributing metabolites. This review would contribute to the acceleration of research on the characteristic secondary metabolites and the breeding programs in tea plants.
Collapse
Affiliation(s)
- Shiqi Zhao
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Haiyan Cheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|