1
|
Kamileen MO, Nakamura Y, Luck K, Heinicke S, Hong B, Colinas M, Lichman BR, O'Connor SE. Streamlined screening platforms lead to the discovery of pachysiphine synthase from Tabernanthe iboga. THE NEW PHYTOLOGIST 2024; 244:1437-1449. [PMID: 39285533 DOI: 10.1111/nph.20133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/25/2024] [Indexed: 10/18/2024]
Abstract
Plant-specialized metabolism is largely driven by the oxidative tailoring of key chemical scaffolds catalyzed by cytochrome P450 (CYP450s) enzymes. Monoterpene indole alkaloids (MIAs) tabersonine and pseudo-tabersonine, found in the medicinal plant Tabernanthe iboga (commonly known as iboga), are tailored with oxidations, and the enzymes involved remain unknown. Here, we developed a streamlined screening strategy to test the activity of T. iboga CYP450s in Nicotiana benthamiana. Using multigene constructs encoding the biosynthesis of tabersonine and pseudo-tabersonine scaffolds, we aimed to uncover the CYP450s responsible for oxidative transformations in these scaffolds. Our approach identified two T. iboga cytochrome P450 enzymes: pachysiphine synthase (PS) and 16-hydroxy-tabersonine synthase (T16H). These enzymes catalyze an epoxidation and site-specific hydroxylation of tabersonine to produce pachysiphine and 16-OH-tabersonine, respectively. This work provides new insights into the biosynthetic pathways of MIAs and underscores the utility of N. benthamiana and Catharanthus roseus as platforms for the functional characterization of plant enzymes.
Collapse
Affiliation(s)
- Mohamed O Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD, UK
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
- NMR and Natural Product Biosynthesis Group, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Katrin Luck
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Benke Hong
- Department of Chemistry, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, China
| | - Maite Colinas
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Benjamin R Lichman
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD, UK
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| |
Collapse
|
2
|
Joshi A, Yang SY, Song HG, Min J, Lee JH. Genetic Databases and Gene Editing Tools for Enhancing Crop Resistance against Abiotic Stress. BIOLOGY 2023; 12:1400. [PMID: 37997999 PMCID: PMC10669554 DOI: 10.3390/biology12111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Abiotic stresses extensively reduce agricultural crop production globally. Traditional breeding technology has been the fundamental approach used to cope with abiotic stresses. The development of gene editing technology for modifying genes responsible for the stresses and the related genetic networks has established the foundation for sustainable agriculture against environmental stress. Integrated approaches based on functional genomics and transcriptomics are now expanding the opportunities to elucidate the molecular mechanisms underlying abiotic stress responses. This review summarizes some of the features and weblinks of plant genome databases related to abiotic stress genes utilized for improving crops. The gene-editing tool based on clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has revolutionized stress tolerance research due to its simplicity, versatility, adaptability, flexibility, and broader applications. However, off-target and low cleavage efficiency hinder the successful application of CRISPR/Cas systems. Computational tools have been developed for designing highly competent gRNA with better cleavage efficiency. This powerful genome editing tool offers tremendous crop improvement opportunities, overcoming conventional breeding techniques' shortcomings. Furthermore, we also discuss the mechanistic insights of the CRISPR/Cas9-based genome editing technology. This review focused on the current advances in understanding plant species' abiotic stress response mechanism and applying the CRISPR/Cas system genome editing technology to develop crop resilience against drought, salinity, temperature, heavy metals, and herbicides.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
| | - Hyung-Geun Song
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
- Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
3
|
Kumar M, Prusty MR, Pandey MK, Singh PK, Bohra A, Guo B, Varshney RK. Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1157678. [PMID: 37143874 PMCID: PMC10153630 DOI: 10.3389/fpls.2023.1157678] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Abiotic stresses, including drought, salinity, cold, heat, and heavy metals, extensively reducing global agricultural production. Traditional breeding approaches and transgenic technology have been widely used to mitigate the risks of these environmental stresses. The discovery of engineered nucleases as genetic scissors to carry out precise manipulation in crop stress-responsive genes and associated molecular network has paved the way for sustainable management of abiotic stress conditions. In this context, the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas)-based gene-editing tool has revolutionized due to its simplicity, accessibility, adaptability, flexibility, and wide applicability. This system has great potential to build up crop varieties with enhanced tolerance against abiotic stresses. In this review, we summarize the latest findings on understanding the mechanism of abiotic stress response in plants and the application of CRISPR/Cas-mediated gene-editing system towards enhanced tolerance to a multitude of stresses including drought, salinity, cold, heat, and heavy metals. We provide mechanistic insights on the CRISPR/Cas9-based genome editing technology. We also discuss applications of evolving genome editing techniques such as prime editing and base editing, mutant library production, transgene free and multiplexing to rapidly deliver modern crop cultivars adapted to abiotic stress conditions.
Collapse
Affiliation(s)
- Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
- *Correspondence: Rajeev K. Varshney, ; Baozhu Guo, ; Manoj Kumar,
| | - Manas Ranjan Prusty
- Institute for Cereal Crop Improvement, Plant Science, Tel Aviv University, Tel Aviv, Israel
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College, Aizawl, India
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Baozhu Guo
- Crop Genetics and Breeding Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, GA, United States
- *Correspondence: Rajeev K. Varshney, ; Baozhu Guo, ; Manoj Kumar,
| | - Rajeev K. Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- *Correspondence: Rajeev K. Varshney, ; Baozhu Guo, ; Manoj Kumar,
| |
Collapse
|
4
|
Zhang J, Xing J, Mi Q, Yang W, Xiang H, Xu L, Zeng W, Wang J, Deng L, Jiang J, Yang G, Gao Q, Li X. Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111523. [PMID: 36334622 DOI: 10.1016/j.plantsci.2022.111523] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
CRISPR/Cas9 genome-editing technology has revolutionized plant science and holds enormous promise for crop improvement. The exploration of this system received much attention regarding plant genome editing. Here, by editing the NtPDS gene in tobacco, we first verified that incorporating an OsU3-tRNA promoter combination into the CRISPR/Cas9 system contributed to the highest editing efficiency, as the sgRNA expression level was greater than that resulting from the AtU6-tRNA and AtU6 promoters. Then, we optimized the existing tobacco CRISPR/Cas9 system, pORE-Cas9, by using the OsU3-tRNA promoter combination instead of AtU6 and by fusing an AtUb10-Ros1 expression cassette to the T-DNA to monitor the transgene events. The new system was named pOREU3TR. As expected, 49 transgene-free and homozygous gene-edited green plants were effectively screened in the T1 generation as a result of editing the NtLHT1 gene in tobacco, and the plant height and the contents of most free amino acids in the leaves of the T2 mutant plants were significantly different from those in the leaves of WT plants, demonstrating the high efficiency of the new editing system. This OsU3-tRNA-sgRNA/AtUb10-Ros1 system provides essential improvements for increasing the efficiency of plant genome editing.
Collapse
Affiliation(s)
- Jianduo Zhang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Jiaxin Xing
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Qili Mi
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Wenwu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Haiying Xiang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Li Xu
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Wanli Zeng
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Jin Wang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Lele Deng
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Jiarui Jiang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Guangyu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Qian Gao
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China.
| | - Xuemei Li
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China.
| |
Collapse
|
5
|
Zhang Z, Xiong L, Xie C, Shen L, Chen X, Ye M, Sun L, Yang X, Yao S, Yue Z, Liang Z, You M, You S. Optimization and Application of CRISPR/Cas9 Genome Editing in a Cosmopolitan Pest, Diamondback Moth. Int J Mol Sci 2022; 23:ijms232113042. [PMID: 36361828 PMCID: PMC9657529 DOI: 10.3390/ijms232113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The CRISPR/Cas9 system is an efficient tool for reverse genetics validation, and the application of this system in the cell lines provides a new perspective on target gene analysis for the development of biotechnology tools. However, in the cell lines of diamondback moth, Plutella xylostella, the integrity of the CRISPR/Cas9 system and the utilization of this cell lines still need to be improved to ensure the application of the system. Here, we stabilize the transfection efficiency of the P. xylostella cell lines at different passages at about 60% by trying different transfection reagents and adjusting the transfection method. For Cas9 expression in the CRIPSPR/Cas9 system, we identified a strong endogenous promoter: the 217–2 promoter. The dual-luciferase and EGFP reporter assay demonstrated that it has a driving efficiency close to that of the IE1 promoter. We constructed pB-Cas9-Neo plasmid and pU6-sgRNA plasmid for CRISPR/Cas9 system and subsequent cell screening. The feasibility of the CRISPR/Cas9 system in P. xylostella cell lines was verified by knocking out endogenous and exogenous genes. Finally, we generated a transgenic Cas9 cell line of P. xylostella that would benefit future exploitation, such as knock-in and multi-threaded editing. Our works provides the validity of the CRISPR/Cas9 system in the P. xylostella cell lines and lays the foundation for further genetic and molecular studies on insects, particularly favoring gene function analysis.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Lei Xiong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Chao Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Lingling Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Xuanhao Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Min Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Linyang Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Xiaozhen Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Shuyuan Yao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Zhen Yue
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | | | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
- Correspondence:
| |
Collapse
|
6
|
Kumar M, Tripathi PK, Ayzenshtat D, Marko A, Forotan Z, Bocobza SE. Increased rates of gene-editing events using a simplified RNAi configuration designed to reduce gene silencing. PLANT CELL REPORTS 2022; 41:1987-2003. [PMID: 35849200 DOI: 10.1007/s00299-022-02903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
An optimal RNAi configuration that could restrict gene expression most efficiently was determined. This approach was also used to target PTGS and yielded higher rates of gene-editing events. Although it was characterized long ago, transgene silencing still strongly impairs transgene overexpression, and thus is a major barrier to plant crop gene-editing. The development of strategies that could prevent transgene silencing is therefore essential to the success of gene editing assays. Transgene silencing occurs via the RNA silencing process, which regulates the expression of essential genes and protects the plant from viral infections. The RNA silencing machinery thereby controls central biological processes such as growth, development, genome integrity, and stress resistance. RNA silencing is typically induced by aberrant RNA, that may lack 5' or 3' processing, or may consist in double-stranded or hairpin RNA, and involves DICER and ARGONAUTE family proteins. In this study, RNAi inducing constructs were designed in eleven different configurations and were evaluated for their capacity to induce silencing in Nicotiana spp. using transient and stable transformation assays. Using reporter genes, it was found that the overexpression of a hairpin consisting of a forward tandem inverted repeat that started with an ATG and that was not followed downstream by a transcription terminator, could downregulate gene expression most potently. Furthermore, using this method, the downregulation of the NtSGS3 gene caused a significant increase in transgene expression both in transient and stable transformation assays. This SGS3 silencing approach was also employed in gene-editing assays and caused higher rates of gene-editing events. Taken together, these findings suggested the optimal genetic configuration to cause RNA silencing and showed that this strategy may be used to restrict PTGS during gene-editing experiments.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Pankaj Kumar Tripathi
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Adar Marko
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Zohar Forotan
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Samuel E Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel.
| |
Collapse
|
7
|
Rather GA, Ayzenshtat D, Teper-Bamnolker P, Kumar M, Forotan Z, Eshel D, Bocobza S. Advances in protoplast transfection promote efficient CRISPR/Cas9-mediated genome editing in tetraploid potato. PLANTA 2022; 256:14. [PMID: 35713718 DOI: 10.1007/s00425-022-03933-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
An efficient method of DNA-free gene-editing in potato protoplasts was developed using linearized DNA fragments, UBIQUITIN10 promoters of several plant species, kanamycin selection, and transient overexpression of the BABYBOOM transcription factor. Plant protoplasts represent a reliable experimental system for the genetic manipulation of desired traits using gene editing. Nevertheless, the selection and regeneration of mutated protoplasts are challenging and subsequent recovery of successfully edited plants is a significant bottleneck in advanced plant breeding technologies. In an effort to alleviate the obstacles related to protoplasts' transgene expression and protoplasts' regeneration, a new method was developed. In so doing, it was shown that linearized DNA could efficiently transfect potato protoplasts and that UBIQUITIN10 promoters from various plants could direct transgene expression in an effective manner. Also, the inhibitory concentration of kanamycin was standardized for transfected protoplasts, and the NEOMYCIN PHOSPHOTRANSFERASE2 (NPT2) gene could be used as a potent selection marker for the enrichment of transfected protoplasts. Furthermore, transient expression of the BABYBOOM (BBM) transcription factor promoted the regeneration of protoplast-derived calli. Together, these methods significantly increased the selection for protoplasts that displayed high transgene expression, and thereby significantly increased the rate of gene editing events in protoplast-derived calli to 95%. The method developed in this study facilitated gene-editing in tetraploid potato plants and opened the way to sophisticated genetic manipulation in polyploid organisms.
Collapse
Affiliation(s)
- Gulzar A Rather
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Paula Teper-Bamnolker
- Department of Postharvest Science, The Institute of Postharvest and Food Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Zohar Forotan
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Dani Eshel
- Department of Postharvest Science, The Institute of Postharvest and Food Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel
| | - Samuel Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeTsiyon, Israel.
| |
Collapse
|
8
|
Identification and Functional Evaluation of Three Polyubiquitin Promoters from Hevea brasiliensis. FORESTS 2022. [DOI: 10.3390/f13060952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hevea brasiliensis is an economically important tree species that provides the only commercial source of natural rubber. The replacement of the CaMV35S promoter by endogenous polyubiquitin promoters may be a viable way to improve the genetic transformation of this species. However, no endogenous polyubiquitin promoters in Hevea have been reported yet. Here, we identified three Hevea polyubiquitin genes HbUBI10.1, HbUBI10.2 and HbUBI10.3, which encode ubiquitin monomers having nearly identical amino acid sequences to that of AtUBQ10. The genomic fragments upstream of these HbUBI genes, including the signature leading introns, were amplified as putative HbUBI promoters. In silico analysis showed that a number of cis-acting elements which are conserved within strong constitutive polyubiquitin promoters were presented in these HbUBI promoters. Transcriptomic data revealed that HbUBI10.1 and HbUBI10.2 had a constitutive expression in Hevea plants. Semi-quantitative RT-PCR showed that these three HbUBI genes were expressed higher than the GUS gene driven by CaMV35S in transgenic Hevea leaves. All three HbUBI promoters exhibited the capability to direct GFP expression in both transient and stable transformation assays, although they produced lower protoplast transformation efficiencies than the CaMV35S promoter. These HbUBI promoters will expand the availability of promoters for driving the transgene expression in Hevea genetic engineering.
Collapse
|