1
|
Cruz-Flores M, Lemaire J, Brault-Favrou M, Christensen-Dalsgaard S, Churlaud C, Descamps S, Elliott K, Erikstad KE, Ezhov A, Gavrilo M, Grémillet D, Guillou G, Hatch S, Huffeldt NP, Kitaysky AS, Kolbeinsson Y, Krasnov Y, Langset M, Leclaire S, Linnebjerg JF, Lorentzen E, Mallory ML, Merkel FR, Montevecchi W, Mosbech A, Patterson A, Perret S, Provencher JF, Reiertsen TK, Renner H, Strøm H, Takahashi A, Thiebot JB, Thórarinsson TL, Will A, Bustamante P, Fort J. Spatial distribution of selenium-mercury in Arctic seabirds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123110. [PMID: 38086506 DOI: 10.1016/j.envpol.2023.123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Mercury (Hg) is a metallic trace element toxic for humans and wildlife that can originate from natural and anthropic sources. Hg spatial gradients have been found in seabirds from the Arctic and other oceans, suggesting contrasting toxicity risks across regions. Selenium (Se) plays a protective role against Hg toxicity, but its spatial distribution has been much less investigated than that of Hg. From 2015 to 2017, we measured spatial co-exposure of Hg and Se in blood samples of two seabird species, the Brünnich's guillemot (Uria lomvia) and the black-legged kittiwake (Rissa tridactyla) from 17 colonies in the Arctic and subarctic regions, and we calculated their molar ratios (Se:Hg), as a measure of Hg sequestration by Se and, therefore, of Hg exposure risk. We also evaluated concentration differences between species and ocean basins (Pacific-Arctic and Atlantic-Arctic), and examined the influence of trophic ecology on Hg and Se concentrations using nitrogen and carbon stable isotopes. In the Atlantic-Arctic ocean, we found a negative west-to-east gradient of Hg and Se for guillemots, and a positive west-to-east gradient of Se for kittiwakes, suggesting that these species are better protected from Hg toxicity in the European Arctic. Differences in Se gradients between species suggest that they do not follow environmental Se spatial variations. This, together with the absence of a general pattern for isotopes influence on trace element concentrations, could be due to foraging ecology differences between species. In both oceans, the two species showed similar Hg concentrations, but guillemots showed lower Se concentrations and Se:Hg than kittiwakes, suggesting a higher Hg toxicity risk in guillemots. Within species, neither Hg, nor Se or Se:Hg differed between both oceans. Our study highlights the importance of considering Se together with Hg, along with different species and regions, when evaluating Hg toxic effects on marine predators in international monitoring programs.
Collapse
Affiliation(s)
- Marta Cruz-Flores
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Jérémy Lemaire
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France; Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Maud Brault-Favrou
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | | | - Carine Churlaud
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | | | - Kyle Elliott
- Department of Natural Resource Sciences, McGill University. Ste Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | | | - Alexey Ezhov
- Murmansk Marine Biological Institute Russian Academy of Science, 183010 Vladimirskaya Str. 17, Murmansk, Russia
| | - Maria Gavrilo
- Arctic and Antarctic Research Institute. 199397 St. Petersburg, Russia
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France; Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Gaël Guillou
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Scott Hatch
- U.S. Geological Survey, Alaska Science Center. Anchorage, AK 99508, USA
| | - Nicholas Per Huffeldt
- Greenland Institute of Natural Resources, 3900 Nuuk, Greenland; Department of Ecoscience, Aarhus University. 4000 Roskilde, Denmark
| | - Alexander S Kitaysky
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife. Fairbanks, AK 99775-7000, USA
| | | | - Yuri Krasnov
- Murmansk Marine Biological Institute Russian Academy of Science, 183010 Vladimirskaya Str. 17, Murmansk, Russia
| | | | - Sarah Leclaire
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, Université de Toulouse, CNRS, IRD. 31062 Toulouse, France
| | | | | | - Mark L Mallory
- Biology, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Flemming R Merkel
- Greenland Institute of Natural Resources, 3900 Nuuk, Greenland; Department of Ecoscience, Aarhus University. 4000 Roskilde, Denmark
| | - William Montevecchi
- Memorial University of Newfoundland and Labrador. St. John's, Newfoundland A1C 3X9, Canada
| | - Anders Mosbech
- Department of Ecoscience, Aarhus University. 4000 Roskilde, Denmark
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University. Ste Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | - Samuel Perret
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jennifer F Provencher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, Ontario, Canada, K1A 0H3
| | - Tone K Reiertsen
- Norwegian Institute for Nature Research, FRAM Centre. 9296 Tromsø, Norway
| | - Heather Renner
- U.S. Fish and Wildlife Service, Alaska Maritime Wildlife Refuge, Homer, AK, USA
| | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre. 9296 Tromsø, Norway
| | - Akinori Takahashi
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa. Tokyo 190-8518, Japan
| | - Jean-Baptiste Thiebot
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa. Tokyo 190-8518, Japan; Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | | | - Alexis Will
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife. Fairbanks, AK 99775-7000, USA; World Wildlife Fund, US Arctic Program, 810 N Street, Suite 300, Anchorage AK 99501, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
2
|
Annasawmy P, Bustamante P, Point D, Churlaud C, Romanov EV, Bodin N. Trace elements and δ 15N values in micronekton of the south-western Indian Ocean. MARINE POLLUTION BULLETIN 2022; 184:114053. [PMID: 36152493 DOI: 10.1016/j.marpolbul.2022.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Trace elements and δ15N values were analysed in micronekton (crustaceans, fishes and squids) sampled in the south-western Indian Ocean. Myctophids were associated with high concentrations of arsenic at La Pérouse and MAD-Ridge seamounts, and with lead and manganese at MAD-Ridge and in the Mozambique Channel. The difference in cadmium, copper and zinc concentrations between micronekton broad categories reflected differing metabolic and storage processes. When significant, negative relationships were found between micronekton body size and trace element concentrations, which can possibly be attributed to differing metabolic activity in young and old individuals, dietary shifts and/or dilution effect of growth. No relationships were found between trace element concentrations and δ15N values of micronekton (except cobalt which decreased with increasing δ15N values), since most trace elements are not biomagnified in food webs due to regulation and excretion processes within organisms. All trace element pairs were positively correlated in fishes suggesting regulation processes.
Collapse
Affiliation(s)
- Pavanee Annasawmy
- Géosciences Environnement Toulouse (GET), UMR CNRS, IRD, UPS, CNES, Observatoire Midi Pyrénées (OMP), 31400 Toulouse, France.
| | - Paco Bustamante
- Littoral Environnement Société (LIENSs), UMR 7266-CNRS, Université de La Rochelle, 17000 La Rochelle, France; Institut Universitaire de France (IUF), Paris, France
| | - David Point
- Géosciences Environnement Toulouse (GET), UMR CNRS, IRD, UPS, CNES, Observatoire Midi Pyrénées (OMP), 31400 Toulouse, France
| | - Carine Churlaud
- Littoral Environnement Société (LIENSs), UMR 7266-CNRS, Université de La Rochelle, 17000 La Rochelle, France
| | - Evgeny V Romanov
- Centre technique de recherche et de valorisation des milieux aquatiques (CITEB), 97420 Le Port, Île de la Réunion, France
| | - Nathalie Bodin
- Institut de Recherche pour le Développement (IRD), Fishing Port, Victoria, Mahé, Seychelles; Sustainable Ocean Seychelles, BeauBelle, Mahé, Seychelles
| |
Collapse
|
3
|
Chastel O, Fort J, Ackerman JT, Albert C, Angelier F, Basu N, Blévin P, Brault-Favrou M, Bustnes JO, Bustamante P, Danielsen J, Descamps S, Dietz R, Erikstad KE, Eulaers I, Ezhov A, Fleishman AB, Gabrielsen GW, Gavrilo M, Gilchrist G, Gilg O, Gíslason S, Golubova E, Goutte A, Grémillet D, Hallgrimsson GT, Hansen ES, Hanssen SA, Hatch S, Huffeldt NP, Jakubas D, Jónsson JE, Kitaysky AS, Kolbeinsson Y, Krasnov Y, Letcher RJ, Linnebjerg JF, Mallory M, Merkel FR, Moe B, Montevecchi WJ, Mosbech A, Olsen B, Orben RA, Provencher JF, Ragnarsdottir SB, Reiertsen TK, Rojek N, Romano M, Søndergaard J, Strøm H, Takahashi A, Tartu S, Thórarinsson TL, Thiebot JB, Will AP, Wilson S, Wojczulanis-Jakubas K, Yannic G. Mercury contamination and potential health risks to Arctic seabirds and shorebirds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156944. [PMID: 35752241 DOI: 10.1016/j.scitotenv.2022.156944] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of mercury (Hg) on Arctic biota in 2011 and 2018, there has been a considerable number of new Arctic bird studies. This review article provides contemporary Hg exposure and potential health risk for 36 Arctic seabird and shorebird species, representing a larger portion of the Arctic than during previous AMAP assessments now also including parts of the Russian Arctic. To assess risk to birds, we used Hg toxicity benchmarks established for blood and converted to egg, liver, and feather tissues. Several Arctic seabird populations showed Hg concentrations that exceeded toxicity benchmarks, with 50 % of individual birds exceeding the "no adverse health effect" level. In particular, 5 % of all studied birds were considered to be at moderate or higher risk to Hg toxicity. However, most seabirds (95 %) were generally at lower risk to Hg toxicity. The highest Hg contamination was observed in seabirds breeding in the western Atlantic and Pacific Oceans. Most Arctic shorebirds exhibited low Hg concentrations, with approximately 45 % of individuals categorized at no risk, 2.5 % at high risk category, and no individual at severe risk. Although the majority Arctic-breeding seabirds and shorebirds appeared at lower risk to Hg toxicity, recent studies have reported deleterious effects of Hg on some pituitary hormones, genotoxicity, and reproductive performance. Adult survival appeared unaffected by Hg exposure, although long-term banding studies incorporating Hg are still limited. Although Hg contamination across the Arctic is considered low for most bird species, Hg in combination with other stressors, including other contaminants, diseases, parasites, and climate change, may still cause adverse effects. Future investigations on the global impact of Hg on Arctic birds should be conducted within a multi-stressor framework. This information helps to address Article 22 (Effectiveness Evaluation) of the Minamata Convention on Mercury as a global pollutant.
Collapse
Affiliation(s)
- Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- La Rochelle Université, 79360 Villiers-en-Bois, France.
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 17000 La Rochelle, France.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA 95620, United States.
| | - Céline Albert
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 17000 La Rochelle, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Niladri Basu
- McGill University, Faculty of Agriculture and Environmental Sciences, Montreal, QC H9X 3V9, Canada
| | | | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 17000 La Rochelle, France
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research, FRAM Centre, 9296 Tromsø, Norway
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 75005 Paris, France
| | | | | | - Rune Dietz
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | | | - Igor Eulaers
- Norwegian Polar Institute, Fram center, 9296 Tromsø, Norway; Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Alexey Ezhov
- Murmansk Marine Biological Institute Russian Academy of Science, 183010 Vladimirskaya str. 17 Murmansk, Russia
| | - Abram B Fleishman
- Conservation Metrics, Inc., Santa Cruz, CA, United States of America
| | | | - Maria Gavrilo
- Arctic and Antarctic Research Institute, 199397 St. Petersburg, Russia
| | - Grant Gilchrist
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Raven Road, Carleton University, Ottawa, Ont., Canada K1A 0H3
| | - Olivier Gilg
- Laboratoire Chrono-environnement, UMR 6249, Université de Bourgogne Franche Comté, 25000 Besançon, France; Groupe de Recherche en Ecologie Arctique, 16 rue de Vernot, F-21440 Francheville, France
| | - Sindri Gíslason
- Southwest Iceland Nature Research Centre, Gardvegur 1, 245 Sudurnesjabaer, Iceland
| | - Elena Golubova
- Laboratory of Ornithology, Institute of Biological Problems of the North, RU-685000 Magadan, Portovaya Str., 18, Russia
| | - Aurélie Goutte
- EPHE, PSL Research University, UMR 7619 METIS, F-75005 Paris, France
| | - David Grémillet
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175 Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France,; Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Gunnar T Hallgrimsson
- Department of Life and Environmental Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Erpur S Hansen
- South Iceland Nature Research Centre, Ægisgata 2, 900 Vestmannaeyjar, Iceland
| | | | - Scott Hatch
- Institute for Seabird Research and Conservation, Anchorage, 99516-3185, AK, USA
| | - Nicholas P Huffeldt
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark; Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
| | - Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, University of Gdansk, 80-308 Gdansk, Poland
| | - Jón Einar Jónsson
- University of Iceland's Research Center at Snæfellsnes, 340 Stykkishólmur, Iceland
| | - Alexander S Kitaysky
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife, Fairbanks, AK 99775-7000, United States of America
| | | | - Yuri Krasnov
- Murmansk Marine Biological Institute Russian Academy of Science, 183010 Vladimirskaya str. 17 Murmansk, Russia
| | - Robert J Letcher
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Raven Road, Carleton University, Ottawa, Ont., Canada K1A 0H3
| | | | - Mark Mallory
- Biology, Acadia University Wolfville, Nova Scotia B4P 2R6, Canada
| | - Flemming Ravn Merkel
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark; Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
| | - Børge Moe
- Norwegian Institute for Nature Research, 7485 Trondheim, Norway
| | - William J Montevecchi
- Memorial Univerisity of Newfoundland and Labrador, St. John's, Newoundland A1C 3X9, Canada
| | - Anders Mosbech
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Bergur Olsen
- Faroe Marine Reseaqrch Institute, Nóatún 1, FO-110 Tórshavn, Faroe Islands
| | - Rachael A Orben
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Hatfield Marine Science Center, Newport, OR, USA
| | - Jennifer F Provencher
- Science & Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario, Canada K1A 0H3
| | | | - Tone K Reiertsen
- Norwegian Institute for Nature Research, FRAM Centre, 9296 Tromsø, Norway
| | - Nora Rojek
- U.S. Fish and Wildlife Service, Alaska Maritime Wildlife Refuge, Homer, AK, USA
| | - Marc Romano
- U.S. Fish and Wildlife Service, Alaska Maritime Wildlife Refuge, Homer, AK, USA
| | - Jens Søndergaard
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Hallvard Strøm
- Norwegian Polar Institute, Fram center, 9296 Tromsø, Norway
| | - Akinori Takahashi
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- La Rochelle Université, 79360 Villiers-en-Bois, France
| | | | - Jean-Baptiste Thiebot
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Alexis P Will
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife, Fairbanks, AK 99775-7000, United States of America; National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606, Stakkevollan, 9296, Tromsø, Norway
| | | | - Glenn Yannic
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| |
Collapse
|
4
|
Queipo-Abad S, Pedrero Z, Marchán-Moreno C, El Hanafi K, Bérail S, Corns WT, Cherel Y, Bustamante P, Amouroux D. New insights into the biomineralization of mercury selenide nanoparticles through stable isotope analysis in giant petrel tissues. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127922. [PMID: 34894503 DOI: 10.1016/j.jhazmat.2021.127922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 05/12/2023]
Abstract
Tiemannite (HgSe) is considered the end-product of methylmercury (MeHg) demethylation in vertebrates. The biomineralization of HgSe nanoparticles (NPs) is understood to be an efficient MeHg detoxification mechanism; however, the process has not yet been fully elucidated. In order to contribute to the understanding of complex Hg metabolism and HgSe NPs formation, the Hg isotopic signatures of 40 samples of 11 giant petrels were measured. This seabird species is one of the largest avian scavengers in the Southern Ocean, highly exposed to MeHg through their diet, reaching Hg concentrations in the liver up to more than 900 µg g-1. This work constitutes the first species-specific isotopic measurement (δ202Hg, Δ199Hg) of HgSe NPs in seabirds and the largest characterization of this compound in biota. Similar δ202Hg values specifically associated to HgSe (δ202HgHgSe) and tissues (δ202Hgbulk) dominated by inorganic Hg species were found, suggesting that no isotopic fractionation is induced during the biomineralization step from the precursor (demethylated) species. In contrast, the largest variations between δ202Hgbulk and δ202HgHgSe were observed in muscle and brain tissues. This could be attributed to the higher fraction of Hg present as MeHg in these tissues. Hg-biomolecules screening highlights the importance of the isotopic characterization of these (unknown) complexes.
Collapse
Affiliation(s)
- Silvia Queipo-Abad
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Zoyne Pedrero
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France.
| | - Claudia Marchán-Moreno
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Khouloud El Hanafi
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Sylvain Bérail
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Warren T Corns
- PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP, UK
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| |
Collapse
|
5
|
Manceau A, Gaillot AC, Glatzel P, Cherel Y, Bustamante P. In Vivo Formation of HgSe Nanoparticles and Hg-Tetraselenolate Complex from Methylmercury in Seabirds-Implications for the Hg-Se Antagonism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1515-1526. [PMID: 33476140 DOI: 10.1021/acs.est.0c06269] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In vivo and in vitro evidence for detoxification of methylmercury (MeHg) as insoluble mercury selenide (HgSe) underlies the central paradigm that mercury exposure is not or little hazardous when tissue Se is in molar excess (Se:Hg > 1). However, this hypothesis overlooks the binding of Hg to selenoproteins, which lowers the amount of bioavailable Se that acts as a detoxification reservoir for MeHg, thereby underestimating the toxicity of mercury. This question was addressed by determining the chemical forms of Hg in various tissues of giant petrels Macronectes spp. using a combination of high energy-resolution X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopy, and transmission electron microscopy coupled to elemental mapping. Three main Hg species were identified, a MeHg-cysteinate complex, a four-coordinate selenocysteinate complex (Hg(Sec)4), and a HgSe precipitate, together with a minor dicysteinate complex Hg(Cys)2. The amount of HgSe decreases in the order liver > kidneys > brain = muscle, and the amount of Hg(Sec)4 in the order muscle > kidneys > brain > liver. On the basis of biochemical considerations and structural modeling, we hypothesize that Hg(Sec)4 is bound to the carboxy-terminus domain of selenoprotein P (SelP) which contains 12 Sec residues. Structural flexibility allows SelP to form multinuclear Hgx(Se,Sec)y complexes, which can be biomineralized to HgSe by protein self-assembly. Because Hg(Sec)4 has a Se:Hg molar ratio of 4:1, this species severely depletes the stock of bioavailable Se for selenoprotein synthesis and activity to one μg Se/g dry wet in the muscle of several birds. This concentration is still relatively high because selenium is naturally abundant in seawater, therefore it probably does not fall below the metabolic need for essential selenium. However, this study shows that this may not be the case for terrestrial animals, and that muscle may be the first tissue potentially injured by Hg toxicity.
Collapse
Affiliation(s)
- Alain Manceau
- Université Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France
| | - Anne-Claire Gaillot
- Université Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, 44000 Nantes, France
| | - Pieter Glatzel
- European Synchrotron Radiation Facility (ESRF), 71 Rue des Martyrs, 38000 Grenoble, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- La Rochelle Université, CNRS, Littoral Environnement et Sociétés (LIENSs), 17000, La Rochelle, France
| |
Collapse
|
6
|
Thébault J, Bustamante P, Massaro M, Taylor G, Quillfeldt P. Influence of Species-Specific Feeding Ecology on Mercury Concentrations in Seabirds Breeding on the Chatham Islands, New Zealand. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:454-472. [PMID: 33201544 DOI: 10.1002/etc.4933] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is a toxic metal that accumulates in organisms and biomagnifies along food webs; hence, long-lived predators such as seabirds are at risk as a result of high Hg bioaccumulation. Seabirds have been widely used to monitor the contamination of marine ecosystems. In the present study, we investigated Hg concentrations in blood, muscle, and feathers of 7 procellariform seabirds breeding on the Chatham Islands, New Zealand. Using bulk and compound-specific stable isotope ratios of carbon and nitrogen as a proxy of trophic position and distribution, we also tested whether Hg contamination is related to the species-specific feeding ecology. Mercury exposure varied widely within the seabird community. The highest contaminated species, the Magenta petrel, had approximately 29 times more Hg in its blood than the broad-billed prion, and approximately 35 times more Hg in its feathers than the grey-backed storm petrel. Variations of Hg concentrations in blood and feathers were significantly and positively linked to feeding habitats and trophic position, highlighting the occurrence of efficient Hg biomagnification processes along the food web. Species and feeding habitats were the 2 main drivers of Hg exposure within the seabird community. The Pterodroma species had high blood and feather Hg concentrations, which can be caused by their specific physiology and/or because of their foraging behavior during the interbreeding period (i.e., from the Tasman Sea to the Humboldt Current system). These 2 threatened species are at risk of suffering detrimental effects from Hg contamination and further studies are required to investigate potential negative impacts, especially on their reproduction capability. Environ Toxicol Chem 2021;40:454-472. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Justine Thébault
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- Institut Universitaire de France (IUF), Paris, France
| | - Melanie Massaro
- Institute for Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, Australia
| | - Graeme Taylor
- Department of Conservation, Biodiversity Group, Wellington, New Zealand
| | - Petra Quillfeldt
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
7
|
Renedo M, Pedrero Z, Amouroux D, Cherel Y, Bustamante P. Mercury isotopes of key tissues document mercury metabolic processes in seabirds. CHEMOSPHERE 2021; 263:127777. [PMID: 32828051 DOI: 10.1016/j.chemosphere.2020.127777] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 05/12/2023]
Abstract
Seabirds accumulate significant amounts of mercury (Hg) due to their long-life span together with their medium to high trophic position in marine food webs. Hg speciation and Hg isotopic analyses of total Hg in different tissues (pectoral muscles, liver, brain, kidneys, blood and feathers) were assessed to investigate their detoxification mechanisms. Three species with contrasted ecological characteristics were studied: the Antarctic prion (zooplankton feeder), the white-chinned petrel (pelagic generalist consumer) and the southern giant petrel (scavenger on seabirds and marine mammals). The difference of mass-dependent fractionation (MDF, δ202Hg) values between liver and muscles (up to 0.94 ‰) in all three seabirds strongly suggests hepatic demethylation of the isotopically lighter methylmercury (MeHg) and subsequent redistribution of the isotopically heavier fraction of MeHg towards the muscles. Similarly, higher δ202Hg values in feathers (up to 1.88 ‰) relative to muscles and higher proportion of MeHg in feathers (94-97%) than muscles (30-70%) likely indicate potential MeHg demethylation in muscle and preferential excretion of MeHg (isotopically heavier) in the growing feathers during moult. The extents of these key detoxification processes were strongly dependent on the species-specific detoxification strategies and levels of dietary MeHg exposure. We also found higher mass-independent fractionation (MIF, Δ199Hg) values in feathers relative to internal tissues, possibly due to different integration times of Hg exposure between permanently active organs and inert tissues as feathers. Hg isotope variations reported in this study show evidence of detoxification processes in seabirds and propose a powerful approach for deep investigation of the Hg metabolic processes in seabirds.
Collapse
Affiliation(s)
- Marina Renedo
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France.
| | - Zoyne Pedrero
- Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France.
| | - David Amouroux
- Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 Du CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| |
Collapse
|
8
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
9
|
Pacyna AD, Jakubas D, Ausems ANMA, Frankowski M, Polkowska Ż, Wojczulanis-Jakubas K. Storm petrels as indicators of pelagic seabird exposure to chemical elements in the Antarctic marine ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:382-392. [PMID: 31351282 DOI: 10.1016/j.scitotenv.2019.07.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Data on trace element bioavailability in the south-polar marine ecosystem is still scarce, compared to that relating to temperate zones. Seabirds can be used as indicators of ecosystem health and sentinels of environmental pollution, constituting a link between marine and terrestrial environments. Here, we analysed the concentration of 17 elements (with special emphasis on mercury, Hg) in feathers of adults and chicks of two pelagic seabirds - the Wilson's storm petrel Oceanites oceanicus and the black-bellied storm petrel Fregetta tropica - breeding sympatrically in the maritime Antarctic. Since adult feathers are formed during the non-breeding period away from the breeding grounds, but down and body feathers of chicks grow at the breeding sites, we were able to evaluate the birds' exposure to contaminants at various stages of their annual life cycle and in various marine zones. We found that of the two studied species, adult black-bellied storm petrels had significantly higher mercury, selenium and copper levels (5.47 ± 1.61; 5.19 ± 1.18; 8.20 ± 0.56 μg g-1 dw, respectively) than Wilson's storm petrels (2.38 ± 1.47; 1.81 ± 0.98; 2.52 ± 2.35 μg g-1 dw, respectively). We found that Wilson's storm petrel chicks had a significantly different contaminant profile than adults. Arsenic, bismuth and antimony were detected exclusively in the chick feathers, and the Se:Hg molar ratio was higher in chicks than in adults. Our study also suggests considerable maternal transfer of Hg (to down feathers) in both species. As global contaminant emissions are expected to increase, birds inhabiting remote areas with sparse anthropogenic pollution can indicate the temporal trends in global contamination.
Collapse
Affiliation(s)
- Aneta Dorota Pacyna
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk, Poland.
| | - Dariusz Jakubas
- University of Gdańsk, Faculty of Biology, Department of Vertebrate Ecology and Zoology, Gdańsk, Poland
| | - Anne N M A Ausems
- University of Gdańsk, Faculty of Biology, Department of Vertebrate Ecology and Zoology, Gdańsk, Poland
| | - Marcin Frankowski
- Adam Mickiewicz University Poznań, Faculty of Chemistry, Poznań, Poland
| | - Żaneta Polkowska
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk, Poland.
| | | |
Collapse
|
10
|
Philpot SM, Lavers JL, Nugegoda D, Gilmour ME, Hutton I, Bond AL. Trace element concentrations in feathers of seven petrels (Pterodroma spp.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9640-9648. [PMID: 30729429 DOI: 10.1007/s11356-019-04406-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Gadfly petrels (Pterodroma spp.) are one of the most threatened and poorly studied seabird groups, and as marine predators, are exposed to biomagnified and bioaccumulated chemical pollutants from their prey. We quantified trace element concentrations in breast feathers of seven petrel species that breed in the southern hemisphere to quantify current concentrations. Selenium (Se) concentrations were significantly lower in chicks than adults; this was not observed for zinc (Zn) or lead (Pb). Overall, the species examined here exhibited similar concentrations of Se, with Pb and Zn concentrations more variable among species. The mean Se concentration in adult birds exceeded those thought to be potentially deleterious, and three species had concentrations that were above the assumed threshold for Pb toxicity. Further investigation of potentially toxic trace elements in gadfly petrels is warranted.
Collapse
Affiliation(s)
- Susan M Philpot
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania, 7004, Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania, 7004, Australia.
| | - Dayanthi Nugegoda
- School of Science, RMIT University, GPO Box 71, Bundoora, Victoria, Australia
| | - Morgan E Gilmour
- Ocean Sciences Department, University of California, Santa Cruz, CA, 95060, USA
| | - Ian Hutton
- Lord Howe Island Museum, P.O. Box 157, Lord Howe Island, New South Wales, 2898, Australia
| | - Alexander L Bond
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania, 7004, Australia
- RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire, SG19 2DL, UK
- Bird Group, Department of Life Sciences, The Natural History Museum, Akeman Street, Tring, Hertfordshire, HP23 6AP, UK
| |
Collapse
|
11
|
Carravieri A, Cherel Y, Brault-Favrou M, Churlaud C, Peluhet L, Labadie P, Budzinski H, Chastel O, Bustamante P. From Antarctica to the subtropics: Contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:464-473. [PMID: 28570991 DOI: 10.1016/j.envpol.2017.05.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/07/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Seabirds integrate bioaccumulative contaminants via food intake and have revealed geographical trends of contamination in a variety of ecosystems. Pre-fledging seabird chicks are particularly interesting as bioindicators of chemical contamination, because concentrations in their tissues reflect primarily dietary sources from the local environment. Here we measured 14 trace elements and 18 persistent organic pollutants (POPs) in blood of chicks of skuas that breed in four sites encompassing a large latitudinal range within the southern Indian Ocean, from Antarctica (Adélie Land, south polar skua Catharacta maccormicki), through subantarctic areas (Crozet and Kerguelen Islands, brown skua C. lonnbergi), to the subtropics (Amsterdam Island, C. lonnbergi). Stables isotopes of carbon (δ13C, feeding habitat) and nitrogen (δ15N, trophic position) were also measured to control for the influence of feeding habits on contaminant burdens. Concentrations of mercury (Hg) and selenium (Se) were very high at all the four sites, with Amsterdam birds having the highest concentrations ever reported in chicks worldwide (4.0 ± 0.8 and 646 ± 123 μg g-1 dry weight, respectively). Blood Hg concentrations showed a clear latitudinal pattern, increasing from chicks in Antarctica to chicks in the subantarctic and subtropical islands. Interestingly, blood Se concentrations showed similar between-population differences to Hg, suggesting its involvement in protective mechanisms against Hg toxicity. Chicks' POPs pattern was largely dominated by organochlorine pesticides, in particular DDT metabolites and hexachlorobenzene (HCB). Skua chicks from subantarctic islands presented high concentrations and diversity of POPs. By contrast, chicks from the Antarctic site overall had the lowest concentrations and diversity of both metallic and organic contaminants, with the exception of HCB and arsenic. Skua populations from these sites, being naturally exposed to different quantities of contaminants, are potentially good models for testing toxic effects in developing chicks in the wild.
Collapse
Affiliation(s)
- Alice Carravieri
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de La Rochelle, 79360 Villiers-en-Bois, France.
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Laurent Peluhet
- CNRS, UMR 5805 EPOC (LPTC Research group), Université de Bordeaux, 351 Cours de la Libération, F 33405 Talence Cedex, France
| | - Pierre Labadie
- CNRS, UMR 5805 EPOC (LPTC Research group), Université de Bordeaux, 351 Cours de la Libération, F 33405 Talence Cedex, France
| | - Hélène Budzinski
- CNRS, UMR 5805 EPOC (LPTC Research group), Université de Bordeaux, 351 Cours de la Libération, F 33405 Talence Cedex, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
12
|
|
13
|
Cipro CVZ, Montone RC, Bustamante P. Mercury in the ecosystem of Admiralty Bay, King George Island, Antarctica: Occurrence and trophic distribution. MARINE POLLUTION BULLETIN 2017; 114:564-570. [PMID: 27717573 DOI: 10.1016/j.marpolbul.2016.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/05/2016] [Accepted: 09/10/2016] [Indexed: 05/27/2023]
Abstract
Mercury (Hg) can reach the environment through natural and human-related sources, threatening ecosystems all over the planet due to its well known deleterious effects. Therefore, Antarctic trophic webs, despite being relatively isolated, are not exempt of its influence. To evaluate Hg concentrations in an Antarctic ecosystem, different tissues from 2 species of invertebrates, 2 of fish, 8 of birds, 4 of pinnipeds and at least 5 of vegetation were investigated (n=176). For animals, values ranged from 0.018 to 48.7μgg-1 dw (whole Antarctic krill and Antarctic Fur Seal liver). They were generally correlated to trophic position (assessed by δ15N and δ13C) but also to cephalopods and myctophids consumption. For vegetation, values ranged from 0.014 to 0.227μgg-1 dw (Colobanthus quitensis and an unidentified lichen), with lichens presenting significantly higher values than mosses, likely due to year-round exposure and absorption of animal derived organic matter, as hypothesized by literature.
Collapse
Affiliation(s)
- Caio V Z Cipro
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico, Universidade de São Paulo, 05508-120 São Paulo, SP, Brazil; Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex 01, France.
| | - Rosalinda C Montone
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico, Universidade de São Paulo, 05508-120 São Paulo, SP, Brazil
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex 01, France
| |
Collapse
|
14
|
Fort J, Lacoue-Labarthe T, Nguyen HL, Boué A, Spitz J, Bustamante P. Mercury in wintering seabirds, an aggravating factor to winter wrecks? THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:448-454. [PMID: 25984703 DOI: 10.1016/j.scitotenv.2015.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
Every year, thousands of seabirds are cast ashore and are found dead along the coasts of North America and Western Europe. These massive mortality events called 'winter wrecks' have generally been attributed to harsh climatic conditions and prolonged storms which affect bird energy balance and impact their body condition. Nevertheless, additional stress factors, such as contaminant body burden, could potentially cumulate to energy constraints and actively contribute to winter wrecks. However, the role played by these additional factors in seabird massive winter mortality has received little attention to date. In February/March 2014, an unprecedented seabird wreck occurred along the Atlantic French coasts during which > 43,000 seabirds were found dead. By analyzing mercury (Hg) concentrations in various tissues collected on stranded birds, we tested the hypothesis that Hg played a significant role in this mortality. More specifically, we aimed to (1) describe Hg contamination in wintering seabirds found along the French coasts in 2014, and (2) determine if Hg concentrations measured in some vital organs such as kidney and brain reached toxicity thresholds that could have led to deleterious effects and to an enhanced mortality. We found some of the highest Hg levels ever reported in Atlantic puffins, common guillemots, razorbills and kittiwakes. Measured concentrations ranged from 0.8 to 3.6 μg · g(-1) of dry weight in brain, 1.3 to 7.2 μg · g(-1) in muscle, 2.5 to 13.5 μg · g(-1) in kidney, 2.9 to 18.6 μg · g(-1) in blood and from 3.1 to 19.5 μg · g(-1) in liver. Hg concentrations in liver and brain were generally below the estimated acute toxicity levels. However, kidney concentrations were not different than those measured in the liver, and above levels associated to renal sub-lethal effects, suggesting a potential Hg poisoning. We concluded that although Hg was not directly responsible for the high observed mortality, it has been a major aggravating stress factor for emaciated birds already on the edge. Importantly, this study also demonstrated that total blood, which can be non-lethally collected in seabirds, can be used as a predictor of Hg contamination in other tissues.
Collapse
Affiliation(s)
- Jérôme Fort
- Littoral, Environnement et Sociétés, UMRi 7266 CNRS - Université La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Thomas Lacoue-Labarthe
- Littoral, Environnement et Sociétés, UMRi 7266 CNRS - Université La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Hanh Linh Nguyen
- Littoral, Environnement et Sociétés, UMRi 7266 CNRS - Université La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France; University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
| | - Amélie Boué
- LPO (Ligue pour la Protection des Oiseaux), Fonderies Royales, 8 rue du Dr Pujos, 17305 Rochefort, France.
| | - Jérôme Spitz
- Observatoire PELAGIS, UMS 3462 CNRS - Université La Rochelle, La Rochelle, France.
| | - Paco Bustamante
- Littoral, Environnement et Sociétés, UMRi 7266 CNRS - Université La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| |
Collapse
|
15
|
Carravieri A, Cherel Y, Blévin P, Brault-Favrou M, Chastel O, Bustamante P. Mercury exposure in a large subantarctic avian community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 190:51-57. [PMID: 24727293 DOI: 10.1016/j.envpol.2014.03.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 06/03/2023]
Abstract
Mercury (Hg) contamination poses potential threats to ecosystems worldwide. In order to study Hg bioavailability in the poorly documented southern Indian Ocean, Hg exposure was investigated in the large avian community of Kerguelen Islands. Adults of 27 species (480 individuals) showed a wide range of feather Hg concentrations, from 0.4 ± 0.1 to 16.6 ± 3.8 μg g(-1) dry weight in Wilson's storm petrels and wandering albatrosses, respectively. Hg concentrations increased roughly in the order crustacean- < fish- ≤ squid- ≤ carrion-consumers, confirming that diet, rather than taxonomy, is an important driver of avian Hg exposure. Adults presented higher Hg concentrations than chicks, due to a longer duration of exposure, with the only exception being the subantarctic skua, likely because of feeding habits' differences of the two age-classes in this species. High Hg concentrations were reported for three species of the poorly known gadfly petrels, which merit further investigation.
Collapse
Affiliation(s)
- Alice Carravieri
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de La Rochelle, BP 14, 79360 Villiers-en-Bois, France.
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de La Rochelle, BP 14, 79360 Villiers-en-Bois, France
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de La Rochelle, BP 14, 79360 Villiers-en-Bois, France
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de La Rochelle, BP 14, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|