1
|
Antarctic fur seal (Arctocephalus gazella) annual migration and temporal patterns of on-shore occurrence of leucistic individuals on King George Island. Polar Biol 2020. [DOI: 10.1007/s00300-020-02694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractNon-invasive tracking the on-shore occurrence of the atypically pigmented animals and determination of land residency duration of leucistic seals would help us find out more about the rotation of the migrating population. During seven austral summer seasons (2011–2018), by counting the animals every 10 days at the Cape Lions Rump shore, King George Island, South Shetlands, in the Antarctic Specially Protected Area No. 151 and the adjacent ice-free land (31.52 km2) we registered fourteen leucistic individuals per a total of 43,919 animals. Moreover, daily monitoring of local fauna resulted in further 33 leucistic animals (together 47, in all seasons). Whilst the results of 10-day censuses of the total population were similar inter-seasonally, a tendency for increased occurrence of leucistic individuals in successive seasons was revealed. Generally, the number of animals increased significantly as season progressed. Since leucistic individuals stayed on-shore for 1–2 days usually, it can be hypothesised that the observation of migrating Antarctic fur seals every 3 days does not involve the same individuals. Also, additional every 5-day censuses taken in one season in ASPA 151 resulted in a higher seasonal number of animals, which proves that more frequent counts help us estimate population abundance more efficiently. Thus, every 5-day counts are proposed as a feasible and justified method of population monitoring.
Collapse
|
4
|
Hoffman JI, Bauer E, Paijmans AJ, Humble E, Beckmann LM, Kubetschek C, Christaller F, Kröcker N, Fuchs B, Moreras A, Shihlomule YD, Bester MN, Cleary AC, De Bruyn PJN, Forcada J, Goebel ME, Goldsworthy SD, Guinet C, Hoelzel AR, Lydersen C, Kovacs KM, Lowther A. A global cline in a colour polymorphism suggests a limited contribution of gene flow towards the recovery of a heavily exploited marine mammal. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181227. [PMID: 30473858 PMCID: PMC6227926 DOI: 10.1098/rsos.181227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Evaluating how populations are connected by migration is important for understanding species resilience because gene flow can facilitate recovery from demographic declines. We therefore investigated the extent to which migration may have contributed to the global recovery of the Antarctic fur seal (Arctocephalus gazella), a circumpolar distributed marine mammal that was brought to the brink of extinction by the sealing industry in the eighteenth and nineteenth centuries. It is widely believed that animals emigrating from South Georgia, where a relict population escaped sealing, contributed to the re-establishment of formerly occupied breeding colonies across the geographical range of the species. To investigate this, we interrogated a genetic polymorphism (S291F) in the melanocortin 1 receptor gene, which is responsible for a cream-coloured phenotype that is relatively abundant at South Georgia and which appears to have recently spread to localities as far afield as Marion Island in the sub-Antarctic Indian Ocean. By sequencing a short region of this gene in 1492 pups from eight breeding colonies, we showed that S291F frequency rapidly declines with increasing geographical distance from South Georgia, consistent with locally restricted gene flow from South Georgia mainly to the South Shetland Islands and Bouvetøya. The S291F allele was not detected farther afield, suggesting that although emigrants from South Georgia may have been locally important, they are unlikely to have played a major role in the recovery of geographically more distant populations.
Collapse
Affiliation(s)
- J. I. Hoffman
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - E. Bauer
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - A. J. Paijmans
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - E. Humble
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - L. M. Beckmann
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - C. Kubetschek
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - F. Christaller
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - N. Kröcker
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - B. Fuchs
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - A. Moreras
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - Y. D. Shihlomule
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - M. N. Bester
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - A. C. Cleary
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - P. J. N. De Bruyn
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - J. Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - M. E. Goebel
- Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Marine Fisheries, National Oceanographic and Atmospheric Administration, 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA
| | - S. D. Goldsworthy
- South Australian Research and Development Institute, 2 Hamra Avenue, West Beach, South Australia 5024, Australia
| | - C. Guinet
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS and Université de La Rochelle - UMR 7372, 79360 Villiers en Bois, France
| | - A. R. Hoelzel
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - C. Lydersen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - K. M. Kovacs
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - A. Lowther
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| |
Collapse
|
6
|
Peters L, Humble E, Kröcker N, Fuchs B, Forcada J, Hoffman JI. Born blonde: a recessive loss-of-function mutation in the melanocortin 1 receptor is associated with cream coat coloration in Antarctic fur seals. Ecol Evol 2016; 6:5705-17. [PMID: 27547348 PMCID: PMC4983585 DOI: 10.1002/ece3.2290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023] Open
Abstract
Although the genetic basis of color variation has been extensively studied in humans and domestic animals, the genetic polymorphisms responsible for different color morphs remain to be elucidated in many wild vertebrate species. For example, hypopigmentation has been observed in numerous marine mammal species but the underlying mutations have not been identified. A particularly compelling candidate gene for explaining color polymorphism is the melanocortin 1 receptor (MC1R), which plays a key role in the regulation of pigment production. We therefore used Antarctic fur seals (Arctocephalus gazella) as a highly tractable marine mammal system with which to test for an association between nucleotide variation at the MC1R and melanin‐based coat color phenotypes. By sequencing 70 wild‐type individuals with dark‐colored coats and 26 hypopigmented individuals with cream‐colored coats, we identified a nonsynonymous mutation that results in the substitution of serine with phenylalanine at an evolutionarily highly conserved structural domain. All of the hypopigmented individuals were homozygous for the allele coding for phenylalanine, consistent with a recessive loss‐of‐function allele. In order to test for cryptic population structure, which can generate artefactual associations, and to evaluate whether homozygosity at the MC1R could be indicative of low genome‐wide heterozygosity, we also genotyped all of the individuals at 50 polymorphic microsatellite loci. We were unable to detect any population structure and also found that wild‐type and hypopigmented individuals did not differ significantly in their standardized multilocus heterozygosity. Such a lack of association implies that hypopigmented individuals are unlikely to suffer disproportionately from inbreeding depression, and hence, we have no reason to believe that they are at a selective disadvantage in the wider population.
Collapse
Affiliation(s)
- Lucy Peters
- Department of Animal Behaviour University of Bielefeld Postfach 100131 33501 Bielefeld Germany; College of Medical, Veterinary & Life Sciences University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Emily Humble
- Department of Animal Behaviour University of Bielefeld Postfach 100131 33501 Bielefeld Germany; British Antarctic Survey High Cross, Madingley Road Cambridge CB3 OET UK
| | - Nicole Kröcker
- Department of Animal Behaviour University of Bielefeld Postfach 100131 33501 Bielefeld Germany
| | - Birgit Fuchs
- Department of Animal Behaviour University of Bielefeld Postfach 100131 33501 Bielefeld Germany
| | - Jaume Forcada
- British Antarctic Survey High Cross, Madingley Road Cambridge CB3 OET UK
| | - Joseph I Hoffman
- Department of Animal Behaviour University of Bielefeld Postfach 100131 33501 Bielefeld Germany
| |
Collapse
|