1
|
Bringloe TT, Bourret A, Cote D, Marie-Julie R, Herbig J, Robert D, Geoffroy M, Parent GJ. Genomic architecture and population structure of Boreogadus saida from Canadian waters. Sci Rep 2024; 14:19331. [PMID: 39164428 PMCID: PMC11336163 DOI: 10.1038/s41598-024-69782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
The polar cod, Boreogadus saida, is an abundant and ubiquitous forage fish and a crucial link in Arctic marine trophic dynamics. Our objective was to unravel layers of genomic structure in B. saida from Canadian waters, specifically screening for potential hybridization with the Arctic cod, Arctogadus glacialis, large chromosomal inversions, and sex-linked regions, prior to interpreting population structure. Our analysis of 53,384 SNPs in 522 individuals revealed hybridization and introgression between A. glacialis and B. saida. Subsequent population level analyses of B. saida using 12,305 SNPs in 511 individuals revealed three large (ca. 7.4-16.1 Mbp) chromosomal inversions, and a 2 Mbp region featuring sex-linked loci. We showcase population structuring across the Western and Eastern North American Arctic, and subarctic regions ranging from the Hudson Bay to the Canadian Atlantic maritime provinces. Genomic signal for the inferred population structure was highly aggregated into a handful of SNPs (13.8%), pointing to potentially important adaptive evolution across the Canadian range. Our study provides a high-resolution perspective on the genomic structure of B. saida, providing a foundation for work that could be expanded to the entire circumpolar range for the species.
Collapse
Affiliation(s)
- Trevor T Bringloe
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada.
| | - Audrey Bourret
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada
| | - David Cote
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, A0G 2M0, Canada
| | - Roux Marie-Julie
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada
| | - Jennifer Herbig
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial, University of Newfoundland, St. John's, A1C 5R3, Canada
| | - Dominique Robert
- Institut Des Sciences de La Mer, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada
| | - Maxime Geoffroy
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial, University of Newfoundland, St. John's, A1C 5R3, Canada
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9036, Tromsø, Norway
| | - Geneviève J Parent
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada.
| |
Collapse
|
2
|
Kokarev V, Dufour SC, Raeymaekers JAM, Mailli AA, Reiss H. Thyasirid species composition (Bivalvia: Thyasiridae) and genetic connectivity of Parathyasira equalis (A. E. Verrill & K. J. Bush, 1898) in deep basins of sub-Arctic fjords. BMC Ecol Evol 2024; 24:91. [PMID: 38965473 PMCID: PMC11223403 DOI: 10.1186/s12862-024-02278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Thyasirid bivalves are often recorded as a dominant component of macrobenthic infaunal communities in depositional environments such as fjord basins. Fjord basins comprise patchy soft-bottom habitats bounded by steep walls and sills; however, little is known how this semi-isolated nature of fjords affects benthic populations. Accordingly, data on the composition and population connectivity of thyasirids can provide valuable information on the ecology of these ecosystems. RESULTS The species composition of thyasirid bivalves has been studied in the basins of three sub-Arctic fjords (Nordland, Northern Norway). Overall, six thyasirid species were recorded: Parathyasira equalis, Parathyasira dunbari, Mendicula ferruginosa, Genaxinus eumyarius, Thyasira sarsii, and Thyasira obsoleta. The species composition remained stable within the basins during the sampling period (2013-2020) and suggested the importance of local reproduction over advection of individuals for population dynamics. Only one species, Parathyasira equalis, was common in all fjords. We have further investigated the population genetics of this species by combining two types of genetic markers: a 579 bp fragment of the cytochrome c oxidase subunit I (COI) gene and 4043 single-nucleotide polymorphisms (SNPs) generated by genotyping-by-sequencing. The latter provided a more in-depth resolution on the population genetics of this species and revealed a weak but significant differentiation of populations within fjords, further indicating limited connectivity between basins. CONCLUSION Based on our findings, we conclude that limited dispersal between the basin communities results in weakly connected populations and might be an important structuring factor for macrobenthic communities.
Collapse
Affiliation(s)
- Valentin Kokarev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, 8049, Norway.
| | - Suzanne C Dufour
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | - Amalia A Mailli
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, 8049, Norway
| | - Henning Reiss
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, 8049, Norway
| |
Collapse
|
3
|
Rosing-Asvid A, Löytynoja A, Momigliano P, Hansen RG, Scharff-Olsen CH, Valtonen M, Kammonen J, Dietz R, Rigét FF, Ferguson SH, Lydersen C, Kovacs KM, Holland DM, Jernvall J, Auvinen P, Tange Olsen M. An evolutionarily distinct ringed seal in the Ilulissat Icefjord. Mol Ecol 2023; 32:5932-5943. [PMID: 37855154 DOI: 10.1111/mec.17163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
The Earth's polar regions are low rates of inter- and intraspecific diversification. An extreme mammalian example is the Arctic ringed seal (Pusa hispida hispida), which is assumed to be panmictic across its circumpolar Arctic range. Yet, local Inuit communities in Greenland and Canada recognize several regional variants; a finding supported by scientific studies of body size variation. It is however unclear whether this phenotypic variation reflects plasticity, morphs or distinct ecotypes. Here, we combine genomic, biologging and survey data, to document the existence of a unique ringed seal ecotype in the Ilulissat Icefjord (locally 'Kangia'), Greenland; a UNESCO World Heritage site, which is home to the most productive marine-terminating glacier in the Arctic. Genomic analyses reveal a divergence of Kangia ringed seals from other Arctic ringed seals about 240 kya, followed by secondary contact since the Last Glacial Maximum. Despite ongoing gene flow, multiple genomic regions appear under strong selection in Kangia ringed seals, including candidate genes associated with pelage coloration, growth and osmoregulation, potentially explaining the Kangia seal's phenotypic and behavioural uniqueness. The description of 'hidden' diversity and adaptations in yet another Arctic species merits a reassessment of the evolutionary processes that have shaped Arctic diversity and the traditional view of this region as an evolutionary freezer. Our study highlights the value of indigenous knowledge in guiding science and calls for efforts to identify distinct populations or ecotypes to understand how these might respond differently to environmental change.
Collapse
Affiliation(s)
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Paolo Momigliano
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo, Spain
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | | | - Mia Valtonen
- Wildlife Ecology Group, Natural Resources Institute Finland, Helsinki, Finland
| | - Juhana Kammonen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | | | | | | | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - David M Holland
- Mathematics and Atmosphere/Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York City, New York, USA
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Morten Tange Olsen
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Spataro F, Patrolecco L, Ademollo N, Præbel K, Rauseo J, Pescatore T, Corsolini S. Multiple exposure of the Boreogadus saida from bessel fjord (NE Greenland) to legacy and emerging pollutants. CHEMOSPHERE 2021; 279:130477. [PMID: 33857648 DOI: 10.1016/j.chemosphere.2021.130477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This work investigates the occurrence of OCPs, such as hexachlorocyclohexane (α-, β-, γ- and δ-HCH) isomers, dichlorodiphenyltrichloroethane (p,p'-DDT) and its metabolite dichlorodiphenyldichloroethylene (p,p'-DDE), endosulfan (α- and β-EDS) isomers, chlorpyrifos (CPF), dacthal (DAC) and phenolic compounds, such as 4-nonylphenol (4-NP) and its precursors nonylphenol polyethoxylates (NP1EO and NP2EO) and bisphenol A (BPA), in polar cod sampled in and outside Bessel Fjord (NE Greenland). Linear regressions between target contaminants and morphological parameters (age, length, weight, gonad- and hepato-somatic indices and Fulton K) have been also evaluated. Polar cod collected at shelf had higher average concentrations of BPA, NP1EO, NP2EO and 4-NP (muscle: 6.2, 13.2, 8.9 and 1.9 ng/g w.w., respectively; liver: 5.8, 7.5, 5.2 and 0.9 ng/g w.w. respectively), than fjord's specimens (muscle: 3.5, 9.1, 3.9 and 1.0 ng/g w.w., respectively; liver: 2.4, 5.3, 2.9 and 1.1 ng/g w.w. respectively). ΣHCHs, ΣEDSs, ΣDDTs, CPF and DAC, were more accumulated in the polar cod from the fjord (average amount in muscle: 9.1, 4.8, 7.9, 3.8 and 2.8 ng/g w.w., respectively; average amount in the liver: 11.2, 9.0, 3.8, 5.9 and 4.9 ng/g w.w., respectively) than shelf's ones (average amount in muscle 3.9, 4.5, 4.2, 0.9 and 1.2 ng/g w.w., respectively; average amount in liver 7.8, 6.3, 2.1, 3.4 and 2.5 ng/g w.w., respectively). The comparison between the concentration of target contaminants and morphologic parameters suggested a different exposure of polar cod occupying the fjord and shelf habitats, due to a combination of genetic and dietary differences, climate change effects and increased human activities.
Collapse
Affiliation(s)
- F Spataro
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy
| | - L Patrolecco
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy
| | - N Ademollo
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy.
| | - K Præbel
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, 9037, Tromsø, Norway; Department of Forestry and Wildlife Management, Campus Evenstad, Inland Norway University of Applied Science, 2418, Elverum, Norway
| | - J Rauseo
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy
| | - T Pescatore
- Water Research Institute- National Research Council (IRSA-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy; Department of Ecological and Biological Science, Tuscia University, 01100, Viterbo, Italy
| | - S Corsolini
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy; Department of Physical, Earth and Environmental Sciences, Via P.A. Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
5
|
Distinct genetic clustering in the weakly differentiated polar cod, Boreogadus saida Lepechin, 1774 from East Siberian Sea to Svalbard. Polar Biol 2021. [DOI: 10.1007/s00300-021-02911-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe cold-adapted polar cod Boreogadus saida, a key species in Arctic ecosystems, is vulnerable to global warming and ice retreat. In this study, 1257 individuals sampled in 17 locations within the latitudinal range of 75–81°N from Svalbard to East Siberian Sea were genotyped with a dedicated suite of 116 single-nucleotide polymorphic loci (SNP). The overall pattern of isolation by distance (IBD) found was driven by the two easternmost samples (East Siberian Sea and Laptev Sea), whereas no differentiation was registered in the area between the Kara Sea and Svalbard. Eleven SNP under strong linkage disequilibrium, nine of which could be annotated to chromosome 2 in Atlantic cod, defined two genetic groups of distinct size, with the major cluster containing seven-fold larger number of individuals than the minor. No underlying geographic basis was evident, as both clusters were detected throughout all sampling sites in relatively similar proportions (i.e. individuals in the minor cluster ranging between 4 and 19% on the location basis). Similarly, females and males were also evenly distributed between clusters and age groups. A differentiation was, however, found regarding size at age: individuals belonging to the major cluster were significantly longer in the second year. This study contributes to increasing the population genetic knowledge of this species and suggests that an appropriate management should be ensured to safeguard its diversity.
Collapse
|
6
|
Maes SM, Christiansen H, Mark FC, Lucassen M, Van de Putte A, Volckaert FAM, Flores H. High gene flow in polar cod (Boreogadus saida) from West-Svalbard and the Eurasian Basin. JOURNAL OF FISH BIOLOGY 2021; 99:49-60. [PMID: 33559136 DOI: 10.1111/jfb.14697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/24/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The current and projected environmental change of the Arctic Ocean contrasts sharply with the limited knowledge of its genetic biodiversity. Polar cod Boreogadus saida (Lepechin, 1774) is an abundant circumpolar marine fish and ecological key species. The central role of polar cod in the Arctic marine food web warrants a better understanding of its population structure and connectivity. In this study, the genetic population structure of 171 juveniles, collected from several fjords off West-Svalbard (Billefjorden, Hornsund and Kongsfjorden), the northern Sophia Basin and the Eurasian Basin of the Arctic Ocean, was analysed using nine DNA microsatellite loci. Genetic analyses indicated moderate to high genetic diversity, but absence of spatial population structure and isolation-by-distance, suggesting ongoing gene flow between the studied sampling regions. High levels of connectivity may be key for polar cod to maintain populations across wide spatial scales. The adaptive capacity of the species will be increasingly important to face challenges such as habitat fragmentation, ocean warming and changes in prey composition. In view of a limited understanding of the population dynamics and evolution of polar cod, a valuable next step to predict future developments should be an integrated biological evaluation, including population genomics, a life-history approach, and habitat and biophysical dispersal modelling.
Collapse
Affiliation(s)
- Sarah M Maes
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Henrik Christiansen
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Felix C Mark
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Magnus Lucassen
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anton Van de Putte
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Hauke Flores
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
7
|
Aune M, Raskhozheva E, Andrade H, Augustine S, Bambulyak A, Camus L, Carroll J, Dolgov AV, Hop H, Moiseev D, Renaud PE, Varpe Ø. Distribution and ecology of polar cod (Boreogadus saida) in the eastern Barents Sea: A review of historical literature. MARINE ENVIRONMENTAL RESEARCH 2021; 166:105262. [PMID: 33513484 DOI: 10.1016/j.marenvres.2021.105262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The polar cod (Boreogadus saida) has a circumpolar distribution and is the most abundant planktivorous fish in the Arctic. Declining sea-ice coverage impacts polar cod directly and also facilitates expansion of human activities in the region leading to increasing anthropogenic pressures on biota. Here we summarize current data and knowledge on polar cod from the Russian sector of the Barents Sea and discuss knowledge needs for the management of polar cod under changing environmental conditions and anthropogenic impacts. We review 36 Russian historical (1935 - 2020) sources of data and knowledge largely unknown to western researchers, in addition to sources already published in the English language. This effort allowed for digitalization and visualization of 69 separate datasets on polar cod ecology, including maturation, fertility, feeding intensity, diet, lipid content, length-weight relationships and seasonal variation in larval size. Our review suggests that polar cod abundances are particularly large in the eastern Barents Sea and adjacent waters. Here, we identify and discuss key knowledge gaps. The review of polar cod in the eastern Barents Sea revealed 1) major variation in the timing and area of polar cod spawning, 2) uncertainty as to what degree the polar cod is dependent on sea ice, 3) deficient knowledge of juvenile (e.g., 0-group) distributions, particularly in the north-eastern Barents Sea, 4) deficient knowledge of the species' genetic structure and spatio-temporal distributions, and 5) insufficient understanding as to whether ongoing environmental change may induce phenological changes affecting the availability of potential food items for polar cod larvae and their match in space and time. Filling these knowledge gaps would provide an important step towards the reliable knowledge base needed in order to perform well-founded management and impact assessment under environmental changes and increasing anthropogenic impacts.
Collapse
Affiliation(s)
- Magnus Aune
- Akvaplan-niva AS, Fram Centre, 9007, Tromsø, Norway.
| | - Evgeniia Raskhozheva
- Murmansk Marine Biological Institute, Vladimirskaya St. 17, 183010, Murmansk, Russian Federation
| | | | | | | | - Lionel Camus
- Akvaplan-niva AS, Fram Centre, 9007, Tromsø, Norway
| | | | - Andrey V Dolgov
- Polar Branch of the Federal State Budget Scientific Institution "Russian Federal Research Institute of Fisheries and Oceanography" ("PINRO" named after N. M. Knipovich), 6 Knipovich Street, 183038, Murmansk, Russian Federation; Federal State Educational Institution of Higher Education "Murmansk State Technical University",13, Sportivnaya Street, Murmansk, 183010, Russia; Tomsk State University, 36, Lenin Avenue, Tomsk, 634050, Russia
| | - Haakon Hop
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
| | - Denis Moiseev
- Murmansk Marine Biological Institute, Vladimirskaya St. 17, 183010, Murmansk, Russian Federation
| | - Paul E Renaud
- Akvaplan-niva AS, Fram Centre, 9007, Tromsø, Norway; University Centre in Svalbard; 9071, Longyearbyen, Norway
| | - Øystein Varpe
- Akvaplan-niva AS, Fram Centre, 9007, Tromsø, Norway; Department of Biological Sciences, University of Bergen, Thormøhlensgt. 53 A/B, 5020, Bergen, Norway
| |
Collapse
|
8
|
Mueter F, Bouchard C, Hop H, Laurel B, Norcross B. Arctic gadids in a rapidly changing environment. Polar Biol 2020. [DOI: 10.1007/s00300-020-02696-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
|
10
|
Cusa M, Berge J, Varpe Ø. Seasonal shifts in feeding patterns: Individual and population realized specialization in a high Arctic fish. Ecol Evol 2019; 9:11112-11121. [PMID: 31641459 PMCID: PMC6802042 DOI: 10.1002/ece3.5615] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/20/2023] Open
Abstract
Species with a broad and flexible diet may be at an advantage in a rapidly changing environment such as in today's Arctic ecosystems. Polar cod (Boreogadus saida), an abundant and ecologically important circumpolar Arctic fish, is often described as a zooplankton generalist feeder, which suggests that it may cope successfully with changes in prey composition. This description is justified based on the relatively broad diet of polar cod across sites and seasons. In this case study, we used polar cod dietary data from fall and winter and from two distinct environments, dominated either by Arctic or Atlantic water masses in Svalbard. Our results point to the importance of time and space when drawing conclusions on dietary plasticity and degree of specialization. Polar cod diet differed significantly between fall and the winter and between Arctic and Atlantic domains. Polar cod from Arctic domains displayed a strong realized population specialization on Themisto libellula in fall, and the larger dietary niche width observed in the winter was the product of realized individual specialization, with increased feeding on fish prey. Overall, we did not observe a generalized feeding behavior. If dietary niche width is to inform conservation management, we argue it must be recognized that populations from a single species may adopt seasonally contrasting degrees of dietary specialization and that these populations may differ in their vulnerability to climate-induced changes in prey community composition.
Collapse
Affiliation(s)
- Marine Cusa
- Department of Arctic BiologyThe University Centre in SvalbardLongyearbyenNorway
- Department of Arctic and Marine BiologyUiT ‐ The Arctic University of NorwayTromsøNorway
| | - Jørgen Berge
- Department of Arctic BiologyThe University Centre in SvalbardLongyearbyenNorway
- Department of Arctic and Marine BiologyUiT ‐ The Arctic University of NorwayTromsøNorway
| | - Øystein Varpe
- Department of Arctic BiologyThe University Centre in SvalbardLongyearbyenNorway
- Akvaplan‐nivaFram CentreTromsøNorway
| |
Collapse
|
11
|
Barth JMI, Berg PR, Jonsson PR, Bonanomi S, Corell H, Hemmer-Hansen J, Jakobsen KS, Johannesson K, Jorde PE, Knutsen H, Moksnes PO, Star B, Stenseth NC, Svedäng H, Jentoft S, André C. Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Mol Ecol 2017. [DOI: 10.1111/mec.14207] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Julia M. I. Barth
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Paul R. Berg
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
- Faculty of Medicine; Centre for Molecular Medicine Norway (NCMM); University of Oslo; Oslo Norway
| | - Per R. Jonsson
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| | - Sara Bonanomi
- Section for Marine Living Resources; National Institute of Aquatic Resources; Technical University of Denmark; Silkeborg Denmark
- National Research Council (CNR); Fisheries Section; Institute of Marine Sciences (ISMAR); Ancona Italy
| | - Hanna Corell
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| | - Jakob Hemmer-Hansen
- Section for Marine Living Resources; National Institute of Aquatic Resources; Technical University of Denmark; Silkeborg Denmark
| | - Kjetill S. Jakobsen
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Kerstin Johannesson
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| | - Per Erik Jorde
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Halvor Knutsen
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
- Institute of Marine Research; Flødevigen; His Norway
- Department of Natural Sciences; Centre for Coastal Research; University of Agder; Kristiansand Norway
| | - Per-Olav Moksnes
- Department of Marine Sciences; University of Gothenburg; Gothenburg Sweden
| | - Bastiaan Star
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Nils Chr. Stenseth
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
- Department of Natural Sciences; Centre for Coastal Research; University of Agder; Kristiansand Norway
| | - Henrik Svedäng
- Swedish Institute for the Marine Environment (SIME); Gothenburg Sweden
| | - Sissel Jentoft
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
- Department of Natural Sciences; Centre for Coastal Research; University of Agder; Kristiansand Norway
| | - Carl André
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| |
Collapse
|
12
|
The ecology of gadid fishes in the circumpolar Arctic with a special emphasis on the polar cod (Boreogadus saida). Polar Biol 2016. [DOI: 10.1007/s00300-016-1965-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
New encounters in Arctic waters: a comparison of metabolism and performance of polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua) under ocean acidification and warming. Polar Biol 2016. [DOI: 10.1007/s00300-016-1932-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|