1
|
Jo N, Kim K, Jang HK, Park S, Kim J, Whitledge TE, Stockwell DA, Lee SH. Characterizing fluvial impact on the biochemical composition of particulate organic matter in the Laptev Sea and Western East Siberian Sea during the late summer of 2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176259. [PMID: 39276994 DOI: 10.1016/j.scitotenv.2024.176259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The Laptev Sea (LS) and Western East Siberian Sea (W-ESS) are paradigmatic examples of seas dominated by terrestrial organic matter, attributed to substantial Siberian River discharges and coastal erosion. The influx of terrestrial organic matter significantly alters the biochemical composition of particulate organic matter (POM) in these Arctic coastal regions, potentially reducing the nutritional quality available to higher trophic levels. This study investigated the origin and qualitative characteristics of POM in the LS and W-ESS during the late summer of 2018 by analyzing elemental ratios (C/N ratio), stable carbon isotopes (δ13C), and biochemical compositions (biomolecular and amino acid (AA) compositions). The conspicuously depleted δ13C values (mean ± standard deviation (SD) = -30.2 ± 0.5 ‰) and alongside elevated molar C/N ratios (mean ± SD = 18.1 ± 6.2) suggest that terrestrial organic matter is the predominant source of POM in the study area. Although carbohydrates (CHO) were the dominant biomolecules, their prevalence was higher in the river-influenced W-ESS region (67.7 ± 6.6 %) than in the LS region (58.6 ± 13.9 %; p < 0.05). Furthermore, the CHO composition was closely associated with freshwater content and river fraction, suggesting that the heightened contribution of CHO may stem from terrestrial organic matter delivered by river inputs. Lower concentrations of particulate hydrolyzable AA (PAA) and carbon and nitrogen normalized yields of AAs (AA-POC% and AA-PON%) along with reduced contribution of glycine suggested a substantial contribution of terrestrial POM to both LS and W-ESS POM. Overall, this study provides valuable insights into the terrestrial influence on POM composition in Arctic marine ecosystems, emphasizing the need for continued monitoring of the consequences of terrestrial carbon inputs in the changing Arctic environment.
Collapse
Affiliation(s)
- Naeun Jo
- Shipbuilding and Marine Center, Convergence Research Institute, Korea Testing and Research Institute, Ulsan, Republic of Korea; Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Kwanwoo Kim
- Marine Environmental Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hyo Keun Jang
- Oceanic Climate and Ecology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Sanghoon Park
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, Republic of Korea
| | - Jaesoon Kim
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, Republic of Korea
| | | | - Dean A Stockwell
- Institute of Marine Science, University of Alaska, Fairbank, USA
| | - Sang Heon Lee
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
2
|
Duncan RJ, Nielsen D, Søreide JE, Varpe Ø, Tobin MJ, Pitusi V, Heraud P, Petrou K. Biomolecular profiles of Arctic sea-ice diatoms highlight the role of under-ice light in cellular energy allocation. ISME COMMUNICATIONS 2024; 4:ycad010. [PMID: 38328449 PMCID: PMC10848308 DOI: 10.1093/ismeco/ycad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024]
Abstract
Arctic sea-ice diatoms fuel polar marine food webs as they emerge from winter darkness into spring. Through their photosynthetic activity they manufacture the nutrients and energy that underpin secondary production. Sea-ice diatom abundance and biomolecular composition vary in space and time. With climate change causing short-term extremes and long-term shifts in environmental conditions, understanding how and in what way diatoms adjust biomolecular stores with environmental perturbation is important to gain insight into future ecosystem energy production and nutrient transfer. Using synchrotron-based Fourier transform infrared microspectroscopy, we examined the biomolecular composition of five dominant sea-ice diatom taxa from landfast ice communities covering a range of under-ice light conditions during spring, in Svalbard, Norway. In all five taxa, we saw a doubling of lipid and fatty acid content when light transmitted to the ice-water interface was >5% but <15% (85%-95% attenuation through snow and ice). We determined a threshold around 15% light transmittance after which biomolecular synthesis plateaued, likely because of photoinhibitory effects, except for Navicula spp., which continued to accumulate lipids. Increasing under-ice light availability led to increased energy allocation towards carbohydrates, but this was secondary to lipid synthesis, whereas protein content remained stable. It is predicted that under-ice light availability will change in the Arctic, increasing because of sea-ice thinning and potentially decreasing with higher snowfall. Our findings show that the nutritional content of sea-ice diatoms is taxon-specific and linked to these changes, highlighting potential implications for future energy and nutrient supply for the polar marine food web.
Collapse
Affiliation(s)
- Rebecca J Duncan
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, 9170, Norway
| | - Daniel Nielsen
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Janne E Søreide
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, 9170, Norway
| | - Øystein Varpe
- Department of Biological Sciences, University of Bergen, Bergen, 5020, Norway
- Norwegian Institute for Nature Research, Bergen, 5006, Norway
| | - Mark J Tobin
- Australian Synchrotron—ANSTO, Clayton, Victoria, 3168, Australia
| | - Vanessa Pitusi
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, 9170, Norway
- Department of Arctic and Marine Biology, University in Tromsø (UiT), Tromsø, 9010, Norway
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Katherina Petrou
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| |
Collapse
|
3
|
Ismail MM, Diab MH, El-Sheekh MM. Trophic status determination of the Egyptian Eastern Mediterranean Sea based on phytoplankton diversity and their biochemical contents. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1040. [PMID: 37582905 PMCID: PMC10427522 DOI: 10.1007/s10661-023-11690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
The present study attempted to test the applicability of using phytoplankton as a bioindicator for assessing water quality along the Eastern Alexandria coast, Egypt. Eight stations were selected to cover the different characteristics of seawater during the summer 2022. Six algal groups were detected in different ratios: Bacillariophyceae, Cyanophyceae, Dinophyceae, Chlorophyceae, Silicoflagellata, and Euglenophyceae. Phytoplankton abundance was found highest at the Port Said (PS) beach, and the lowest abundance was detected at Ras El Bar (RB) beach. According to the evaluation of phytoplankton abundance, all the studied stations are oligotrophic state except PS was eutrophic. Based on Chl a concentration, the selected stations could be described as good-bad from west to east. The Shannon diversity and Pielou evenness indexes classified the studied stations as being moderate pollution except for PS and RB stations. The existence of organic pollution indicators species like Navicula, Synedra, and Euglena is a warning indication of the declining water quality especially in B and M stations. The biochemical compositions of the collected phytoplankton were spatial fluctuated. Protein and carbohydrates were the dominant macromolecules in the phytoplankton community compared with lipids. These macromolecules are used to assess trophic states whereas the ratio between protein and carbohydrate > 1 represents a healthy coast as observed in some stations. Thus, phytoplankton should be considered a bioindicator within Water Framework Directive monitoring programs for the Mediterranean Sea. For the long-term monitoring of the Mediterranean Sea's ecosystem, it is recommended that the macromolecules of phytoplankton should be determined.
Collapse
Affiliation(s)
- Mona M Ismail
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed H Diab
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | | |
Collapse
|
4
|
Spatial Patterns of Macromolecular Composition of Phytoplankton in the Arctic Ocean. WATER 2021. [DOI: 10.3390/w13182495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The macromolecular concentrations and compositions of phytoplankton are crucial for the growth or nutritional structure of higher trophic levels through the food web in the ecosystem. To understand variations in macromolecular contents of phytoplankton, we investigated the macromolecular components of phytoplankton and analyzed their spatial pattern on the Chukchi Shelf and the Canada Basin. The carbohydrate (CHO) concentrations on the Chukchi Shelf and the Canada Basin were 50.4–480.8 μg L−1 and 35.2–90.1 μg L−1, whereas the lipids (LIP) concentrations were 23.7–330.5 μg L−1 and 11.7–65.6 μg L−1, respectively. The protein (PRT) concentrations were 25.3–258.5 μg L−1 on the Chukchi Shelf and 2.4–35.1 μg L−1 in the Canada Basin. CHO were the predominant macromolecules, accounting for 42.6% on the Chukchi Shelf and 60.5% in the Canada Basin. LIP and PRT contributed to 29.7% and 27.7% of total macromolecular composition on the Chukchi Shelf and 30.8% and 8.7% in the Canada Basin, respectively. Low PRT concentration and composition in the Canada Basin might be a result from the severe nutrient-deficient conditions during phytoplankton growth. The calculated food material concentrations were 307.8 and 98.9 μg L−1, and the average calorie contents of phytoplankton were 1.9 and 0.6 kcal m−3 for the Chukchi Shelf and the Canada Basin, respectively, which indicates the phytoplankton on the Chukchi Shelf could provide the large quantity of food material and high calories to the higher trophic levels. Overall, our results highlight that the biochemical compositions of phytoplankton are considerably different in the regions of the Arctic Ocean. More studies on the changes in the biochemical compositions of phytoplankton are still required under future environmental changes.
Collapse
|
5
|
Seasonal Variations in the Biochemical Compositions of Phytoplankton and Transparent Exopolymer Particles (TEPs) at Jang Bogo Station (Terra Nova Bay, Ross Sea), 2017–2018. WATER 2021. [DOI: 10.3390/w13162173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biochemical composition of particulate organic matter (POM) mainly originates from phytoplankton. Transparent exopolymer particles (TEPs) depend on environmental conditions and play a role in the food web and biogeochemical cycle in marine ecosystems. However, little information on their characteristics in the Southern Ocean is available, particularly in winter. To investigate the seasonal characteristics of POM and TEPSs, seawater samples were collected once every two weeks from November 2017 to October 2018 at Jang Bogo Station (JBS) located on the coast of Terra Nova Bay in the Ross Sea. The total chlorophyll-a (Chl-a) concentrations increased from spring (0.08 ± 0.06 μg L−1) to summer (0.97 ± 0.95 μg L−1) with a highest Chl-a value of 2.15 μg L−1. After sea ice formation, Chl-a rapidly decreased in autumn (0.12 ± 0.10 μg L−1) and winter (0.01 ± 0.01 μg L−1). The low phytoplankton Chl-a measured in this study was related to a short ice-free period in summer. Strong seasonal variations were detected in the concentrations of proteins and lipids (one-way ANOVA test, p < 0.05), whereas no significant difference in carbohydrate concentrations was observed among different seasons (one-way ANOVA test, p > 0.05). The phytoplankton community was mostly composed of diatoms (88.8% ± 11.6%) with a large accumulation of lipids. During the summer, the POM primarily consisted of proteins. The composition being high in lipids and proteins and the high caloric content in summer indicated that the phytoplankton would make a good food source. In winter, the concentrations of proteins decreased sharply. In contrast, relatively stable concentrations of carbohydrates and lipids have been utilized for respiration and long-term energy storage in the survival of phytoplankton. The TEPS values were significantly correlated with variations in the biomass and species of the phytoplankton. Our study site was characterized by dominant diatoms and low Chl-a concentrations, which could have resulted in relatively low TEP concentrations compared to other areas. The average contributions of TEP-C to the total POC were relatively high in autumn (26.9% ± 6.1%), followed by those in summer (21.9% ± 7.1%), winter (13.0% ± 4.2%), and spring (9.8% ± 3.1%).
Collapse
|
6
|
Jo N, La HS, Kim JH, Kim K, Kim BK, Kim MJ, Son W, Lee SH. Different Biochemical Compositions of Particulate Organic Matter Driven by Major Phytoplankton Communities in the Northwestern Ross Sea. Front Microbiol 2021; 12:623600. [PMID: 33552041 PMCID: PMC7858670 DOI: 10.3389/fmicb.2021.623600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Marine particulate organic matter (POM) largely derived from phytoplankton is a primary food source for upper trophic consumers. Their biochemical compositions are important for heterotrophs. Especially, essential amino acids (EAAs) in phytoplankton are well known to have impacts on the survival and egg productions of herbivorous zooplankton. To estimate the nutritional quality of POM, the biochemical compositions [biomolecular and amino acid (AA) compositions] of POM were investigated in the northwestern Ross Sea during the late austral summer in 2018. Carbohydrates (CHO) accounted for the highest portion among different biomolecules [CHO, proteins (PRT), and lipids (LIP)] of POM. However, the higher contribution of PRT and lower contribution of CHO were observed in the southern section of our study area compared to those in the northern section. The spatial distribution of total hydrolyzable AAs in POM was considerably influenced by phytoplankton biomass, which indicates that the main source of particulate AA was generated by phytoplankton. Our results showed that the relative contribution of EAA to the total AAs was strongly associated with EAA index (EAAI) for determining protein quality. This result indicates that higher EAA contribution in POM suggests a better protein quality in consistency with high EAAI values. In this study, variations in the biochemical compositions in POM were principally determined by two different bloom-forming taxa (diatoms and Phaeocystis antarctica). The southern region dominated majorly by diatoms was positively correlated with PRT, EAA, and EAAI indicating a good protein quality, while P. antarctica-abundant northern region with higher CHO contribution was negatively correlated with good protein quality factors. Climate-driven environmental changes could alter not only the phytoplankton community but also the physiological conditions of phytoplankton. Our findings could provide a better understanding for future climate-induced changes in the biochemical compositions of phytoplankton and consequently their potential impacts on higher trophic levels.
Collapse
Affiliation(s)
- Naeun Jo
- Department of Oceanography, Pusan National University, Busan, South Korea
| | - Hyoung Sul La
- Division of Ocean Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Jeong-Hoon Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Kwanwoo Kim
- Department of Oceanography, Pusan National University, Busan, South Korea
| | - Bo Kyung Kim
- Division of Ocean Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Myung Joon Kim
- Department of Oceanography, Pusan National University, Busan, South Korea
| | - Wuju Son
- Division of Ocean Sciences, Korea Polar Research Institute, Incheon, South Korea.,Department of Polar Science, University of Science and Technology, Daejeon, South Korea
| | - Sang Heon Lee
- Department of Oceanography, Pusan National University, Busan, South Korea
| |
Collapse
|
7
|
Characteristics of the Biochemical Composition and Bioavailability of Phytoplankton-Derived Particulate Organic Matter in the Chukchi Sea, Arctic. WATER 2020. [DOI: 10.3390/w12092355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Analysis of the biochemical composition (carbohydrates, CHO; proteins, PRT; lipids, LIP) of particulate organic matter (POM, mainly phytoplankton) is used to assess trophic states, and the quantity of food material is generally assessed to determine bioavailability; however, bioavailability is reduced or changed by enzymatic hydrolysis. Here, we investigated the current trophic state and bioavailability of phytoplankton in the Chukchi Sea (including the Chukchi Borderland) during the summer of 2017. Based on a cluster analysis, our 12 stations were divided into three groups: the southern, middle, and northern parts of the Chukchi Sea. A principal component analysis (PCA) revealed that relatively nutrient-rich and high-temperature waters in the southern part of the Chukchi Sea enhanced the microphytoplankton biomass, while picophytoplankton were linked to a high contribution of meltwater derived from sea ice melting in the northern part of the sea. The total PRT accounted for 41.8% (±7.5%) of the POM in the southern part of the sea, and this contribution was higher than those in the middle (26.5 ± 7.5%) and northern (26.5 ± 10.6%) parts, whereas the CHO accounted for more than half of the total POM in the northern parts. As determined by enzymatic hydrolysis, LIP were more rapidly mineralized in the southern part of the Chukchi Sea, whereas CHO were largely used as source of energy for higher trophic levels in the northern part of the Chukchi Sea. Specifically, the bioavailable fraction of POM in the northern part of the Chukchi Sea was higher than it was in the other parts. The findings indicate that increasing meltwater and a low nutrient supply lead to smaller cell sizes of phytoplankton and their taxa (flagellate and green algae) with more CHO and a negative effect on the total concentration of POM. However, in terms of bioavailability (food utilization), which determines the rate at which digested food is used by consumers, potentially available food could have positive effects on ecosystem functioning.
Collapse
|
8
|
Ahn SH, Kim K, Jo N, Kang JJ, Lee JH, Whitledge TE, Stockwell DA, Lee HW, Lee SH. Fluvial influence on the biochemical composition of particulate organic matter in the Laptev and Western East Siberian seas during 2015. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104873. [PMID: 31965975 DOI: 10.1016/j.marenvres.2020.104873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Here, we investigated the elemental (C/N ratio) and isotopic signatures (δ13C) and major biomolecules (carbohydrates, proteins, and lipids) and their relative abundance (i.e., the biochemical composition) in particulate organic matter (POM) to assess their origin and fate in the Laptev and western East Siberian seas during late summer/fall of 2015. In addition, we compared our results with the summer data of 2013 collected from Laptev and northwestern East Siberian seas. In accordance with the observed hydrological structure (i.e., a northward, warmer, diluted freshwater plume than previously observed in 2013), the more depleted δ13C (-28.2 ± 0.9‰) and higher C/N ratio (10.8 ± 2.0) than those of 2013 signalled that fluvially released terrestrial organic carbon (TerrOC) was the main source of the POM, unlike in 2013, when phytoplankton was the dominant source (δ13C = -24.9 ± 1.0‰, C/N ratio = 7.6 ± 2.4; Ahn et al., 2019). During the offshore transport of heterogeneous TerrOC, carbohydrates seem to be the primary contributor to the bulk POM as a result of selective degradation and hydrodynamic sorting. Despite the TerrOC-dominated system in 2015, some marine influence was also found. The estimated phytoplankton biomass was low and comparable among the study sites. In addition, the presence of resting spores and high ammonium concentrations within the water column may suggest senescent and, to some extent, degrading conditions of the resident phytoplankton. In this regard, carbohydrate concentrations and freshwater content were significantly correlated (r = 0.79, p < 0.01), suggesting that carbohydrates are useful inferences of freshwater within overall study sites, at least when the marine influence is similar or low.
Collapse
Affiliation(s)
- So Hyun Ahn
- University of Maryland Center for Environmental Science, Horn Point Laboratory, Cambridge, MD, 21613, USA
| | - KwanWoo Kim
- Department of Oceanography, Pusan National University, Busan, 46241, South Korea
| | - Naeun Jo
- Department of Oceanography, Pusan National University, Busan, 46241, South Korea
| | - Jae Joong Kang
- Department of Oceanography, Pusan National University, Busan, 46241, South Korea
| | - Jae Hyung Lee
- Department of Oceanography, Pusan National University, Busan, 46241, South Korea
| | - Terry E Whitledge
- University of Alaska, Institute of Marine Science, Fairbank, AK, 99775, USA
| | - Dean A Stockwell
- University of Alaska, Institute of Marine Science, Fairbank, AK, 99775, USA
| | - Ho Won Lee
- Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Sang Heon Lee
- Department of Oceanography, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|