1
|
Ortiz-Rivero J, Garrido-Benavent I, Heiðmarsson S, de los Ríos A. Moss and Liverwort Covers Structure Soil Bacterial and Fungal Communities Differently in the Icelandic Highlands. MICROBIAL ECOLOGY 2023; 86:1893-1908. [PMID: 36802019 PMCID: PMC10497656 DOI: 10.1007/s00248-023-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Cryptogamic covers extend over vast polar tundra regions and their main components, e.g., bryophytes and lichens, are frequently the first visible colonizers of deglaciated areas. To understand their role in polar soil development, we analyzed how cryptogamic covers dominated by different bryophyte lineages (mosses and liverworts) influence the diversity and composition of edaphic bacterial and fungal communities as well as the abiotic attributes of underlying soils in the southern part of the Highlands of Iceland. For comparison, the same traits were examined in soils devoid of bryophyte covers. We measured an increase in soil C, N, and organic matter contents coupled with a lower pH in association with bryophyte cover establishment. However, liverwort covers showed noticeably higher C and N contents than moss covers. Significant changes in diversity and composition of bacterial and fungal communities were revealed between (a) bare and bryophyte-covered soils, (b) bryophyte covers and the underlying soils, and (c) moss and liverworts covers. These differences were more obvious for fungi than bacteria, and involved different lineages of saprotrophic and symbiotic fungi, which suggests a certain specificity of microbial taxa to particular bryophyte groups. In addition, differences observed in the spatial structure of the two bryophyte covers may be also responsible for the detected differences in microbial community diversity and composition. Altogether, our findings indicate that soil microbial communities and abiotic attributes are ultimately affected by the composition of the most conspicuous elements of cryptogamic covers in polar regions, which is of great value to predict the biotic responses of these ecosystems to future climate change.
Collapse
Affiliation(s)
- Javier Ortiz-Rivero
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), C/ Serrano 115 dpdo, E-28045 Madrid, Spain
| | - Isaac Garrido-Benavent
- Departament de Botànica i Geologia, Fac. CC. Biològiques, Universitat de València, C/ Doctor Moliner 50, E-46100 Burjassot, Valencia Spain
| | - Starri Heiðmarsson
- Icelandic Institute of Natural History, Akureyri Division, Borgir Nordurslod, 600 Akureyri, Iceland
- Present address: Northwest Iceland Nature Research Centre, Aðalgötu 2, 550 Sauðárkrókur, Iceland
| | - Asunción de los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), C/ Serrano 115 dpdo, E-28045 Madrid, Spain
| |
Collapse
|
2
|
Glaser K, Van AT, Pushkareva E, Barrantes I, Karsten U. Microbial Communities in Biocrusts Are Recruited From the Neighboring Sand at Coastal Dunes Along the Baltic Sea. Front Microbiol 2022; 13:859447. [PMID: 35783389 PMCID: PMC9245595 DOI: 10.3389/fmicb.2022.859447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Biological soil crusts occur worldwide as pioneer communities stabilizing the soil surface. In coastal primary sand dunes, vascular plants cannot sustain due to scarce nutrients and the low-water-holding capacity of the sand sediment. Thus, besides planted dune grass, biocrusts are the only vegetation there. Although biocrusts can reach high coverage rates in coastal sand dunes, studies about their biodiversity are rare. Here, we present a comprehensive overview of the biodiversity of microorganisms in such biocrusts and the neighboring sand from sampling sites along the Baltic Sea coast. The biodiversity of Bacteria, Cyanobacteria, Fungi, and other microbial Eukaryota were assessed using high-throughput sequencing (HTS) with a mixture of universal and group-specific primers. The results showed that the biocrusts recruit their microorganisms mainly from the neighboring sand rather than supporting a universal biocrust microbiome. Although in biocrusts the taxa richness was lower than in sand, five times more co-occurrences were identified using network analysis. This study showed that by comparing neighboring bare surface substrates with biocrusts holds the potential to better understand biocrust development. In addition, the target sequencing approach helps outline potential biotic interactions between different microorganisms groups and identify key players during biocrust development.
Collapse
Affiliation(s)
- Karin Glaser
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- *Correspondence: Karin Glaser
| | - Ahn Tu Van
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Ekaterina Pushkareva
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| | - Israel Barrantes
- Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Ulf Karsten
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Perez-Mon C, Stierli B, Plötze M, Frey B. Fast and persistent responses of alpine permafrost microbial communities to in situ warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150720. [PMID: 34610405 DOI: 10.1016/j.scitotenv.2021.150720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Global warming in mid-latitude alpine regions results in permafrost thawing, together with greater availability of carbon and nutrients in soils and frequent freeze-thaw cycles. Yet it is unclear how these multifactorial changes will shape the 1 m-deep permafrost microbiome in the future, and how this will in turn modulate microbially-mediated feedbacks between mountain soils and climate (e.g. soil CO2 emissions). To unravel the responses of the alpine permafrost microbiome to in situ warming, we established a three-year experiment in a permafrost monitoring summit in the Alps. Specifically, we simulated conditions of warming by transplanting permafrost soils from a depth of 160 cm either to the active-layer topsoils in the north-facing slope or in the warmer south-facing slope, near the summit. qPCR-based and amplicon sequencing analyses indicated an augmented microbial abundance in the transplanted permafrost, driven by the increase in copiotrophic prokaryotic taxa (e.g. Noviherbaspirillum and Massilia) and metabolically versatile psychrotrophs (e.g. Tundrisphaera and Granulicella); which acclimatized to the changing environment and potentially benefited from substrates released upon thawing. Metabolically restricted Patescibacteria lineages vastly decreased with warming, as reflected in the loss of α-diversity in the transplanted soils. Ascomycetous sapro-pathotrophs (e.g. Tetracladium) and a few lichenized fungi (e.g. Aspicilia) expanded in the transplanted permafrost, particularly in soils transplanted to the warmer south-facing slope, replacing basidiomycetous yeasts (e.g. Glaciozyma). The transplantation-induced loosening of microbial association networks in the permafrost could potentially indicate lesser cooperative interactions between neighboring microorganisms. Broader substrate-use microbial activities measured in the transplanted permafrost could relate to altered soil C dynamics. The three-year simulated warming did not, however, enhance heterotrophic respiration, which was limited by the carbon-depleted permafrost conditions. Collectively, our quantitative findings suggest the vulnerability of the alpine permafrost microbiome to warming, which might improve predictions on microbially-modulated transformations of mountain soil ecosystems under the future climate.
Collapse
Affiliation(s)
- Carla Perez-Mon
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Michael Plötze
- Institute for Geotechnical Engineering, ETH Zurich, Zurich, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
| |
Collapse
|
4
|
González-Pleiter M, Velázquez D, Casero MC, Tytgat B, Verleyen E, Leganés F, Rosal R, Quesada A, Fernández-Piñas F. Microbial colonizers of microplastics in an Arctic freshwater lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148640. [PMID: 34246139 DOI: 10.1016/j.scitotenv.2021.148640] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 05/12/2023]
Abstract
Microplastics (MPs) have been found everywhere as they are easily transported between environmental compartments. Through their transport, MPs are quickly colonized by microorganisms; this microbial community is known as the plastisphere. Here, we characterized the plastisphere of three MPs, one biodegradable (PHB) and two non-biodegradables (HDPE and LDPE), deployed in an Arctic freshwater lake for eleven days. The plastisphere was found to be complex, confirming that about a third of microbial colonizers were viable. Plastisphere was compared to microbial communities on the surrounding water and microbial mats on rocks at the bottom of the lake. Microbial mats followed by MPs showed the highest diversity regarding both prokaryotes and eukaryotes as compared to water samples; however, for fungi, MPs showed the highest diversity of the tested substrates. Significant differences on microbial assemblages on the three tested substrates were found; regarding microbial assemblages on MPs, bacterial genera found in polar environments such as Mycoplana, Erythromicrobium and Rhodoferax with species able to metabolize recalcitrant chemicals were abundant. Eukaryotic communities on MPs were characterized by the presence of ciliates of the genera Stentor, Vorticella and Uroleptus and the algae Cryptomonas, Chlamydomonas, Tetraselmis and Epipyxis. These ciliates normally feed on algae so that the complexity of these assemblages may serve to unravel trophic relationships between co-existing taxa. Regarding fungal communities on MPs, the most abundant genera were Betamyces, Cryptococcus, Arrhenia and Paranamyces. MPs, particularly HDPE, were enriched in the sulI and ermB antibiotic resistance genes (ARGs) which may raise concerns about human health-related issues as ARGs may be transferred horizontally between bacteria. This study highlights the importance of proper waste management and clean-up protocols to protect the environmental health of pristine environments such as polar regions in a context of global dissemination of MPs which may co-transport microorganisms, some of them including ARGs.
Collapse
Affiliation(s)
- Miguel González-Pleiter
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - David Velázquez
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - María Cristina Casero
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, E-28006 Madrid, Spain
| | - Bjorn Tytgat
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Elie Verleyen
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Francisco Leganés
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | |
Collapse
|
5
|
Kemppinen J, Niittynen P, le Roux PC, Momberg M, Happonen K, Aalto J, Rautakoski H, Enquist BJ, Vandvik V, Halbritter AH, Maitner B, Luoto M. Consistent trait-environment relationships within and across tundra plant communities. Nat Ecol Evol 2021; 5:458-467. [PMID: 33633373 DOI: 10.1038/s41559-021-01396-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
A fundamental assumption in trait-based ecology is that relationships between traits and environmental conditions are globally consistent. We use field-quantified microclimate and soil data to explore if trait-environment relationships are generalizable across plant communities and spatial scales. We collected data from 6,720 plots and 217 species across four distinct tundra regions from both hemispheres. We combined these data with over 76,000 database trait records to relate local plant community trait composition to broad gradients of key environmental drivers: soil moisture, soil temperature, soil pH and potential solar radiation. Results revealed strong, consistent trait-environment relationships across Arctic and Antarctic regions. This indicates that the detected relationships are transferable between tundra plant communities also when fine-scale environmental heterogeneity is accounted for, and that variation in local conditions heavily influences both structural and leaf economic traits. Our results strengthen the biological and mechanistic basis for climate change impact predictions of vulnerable high-latitude ecosystems.
Collapse
Affiliation(s)
| | | | | | - Mia Momberg
- University of Pretoria, Pretoria, South Africa
| | | | - Juha Aalto
- Finnish Meteorological Institute, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|