1
|
Worthy FR, Goldberg SD, Thiyagaraja V, Wang LS, Wang XY. Milder winters would alter patterns of freezing damage for epiphytic lichens from the trans-Himalayas. Sci Rep 2024; 14:28522. [PMID: 39557940 PMCID: PMC11574091 DOI: 10.1038/s41598-024-79321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Trans-Himalayan winters are projected to become milder, with shifting precipitation patterns and freeze-thaw cycles; changing stressors for their lichen communities. Lichens from Antarctica and high latitudes are cryoresistant when dry, but susceptible to cell damage if frozen when wet, or subjected to repeated freeze-thaw events. Little is known regarding cryoresistance in high-elevation, mid-latitude lichens. We collected thalli of nine species of epiphytic lichenized fungi, from three regions of the trans-Himalayas; at ≈ 4000 m, 3400 m and 2400 m elevation. We subjected thalli to differing freezing (continuous - 18 °C and - 36 °C or freeze-thaw cycles in natural daylight) and moisture conditions. Even dry thalli suffered some damage. Frozen wet thalli had greater chlorophyll degradation and reduced chlorophyll content. There were no clear elevational trends in freeze-thaw susceptibility: it caused more damage than continuous freezing. The most freeze-thaw resilient lichens were Dolichousnea longissima (from 4000 m) and Usnea florida (from 2400 m). However, species from coldest sites were most resilient to extreme freezing. Under predicted climate change conditions these sites would experience fewer annual freeze-thaw cycles, annual sub-zero days and frost days. Reduced freezing constraints might allow range expansion of mid-elevation lichens, but increase competitive pressures and temperature stressors impacting high-elevation lichens.
Collapse
Affiliation(s)
- Fiona Ruth Worthy
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Stefanie D Goldberg
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- World Agroforestry Centre, East and Central Asia, Kunming, 650201, Yunnan, China
| | - Vinodhini Thiyagaraja
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Li Song Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xin Yu Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
2
|
Jung P, Brand R, Briegel-Williams L, Werner L, Jost E, Lentendu G, Singer D, Athavale R, Nürnberg DJ, Alfaro FD, Büdel B, Lakatos M. The symbiotic alga Trebouxia fuels a coherent soil ecosystem on the landscape scale in the Atacama Desert. ENVIRONMENTAL MICROBIOME 2024; 19:59. [PMID: 39123247 PMCID: PMC11311966 DOI: 10.1186/s40793-024-00601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Biocrusts represent associations of lichens, green algae, cyanobacteria, fungi and other microorganisms, colonizing soils in varying proportions of principally arid biomes. The so-called grit crust represents a recently discovered type of biocrust situated in the Coastal Range of the Atacama Desert (Chile) made of microorganisms growing on and in granitoid pebbles, resulting in a checkerboard pattern visible to the naked eye on the landscape scale. This specific microbiome fulfills a broad range of ecosystem services, all probably driven by fog and dew-induced photosynthetic activity of mainly micro-lichens. To understand its biodiversity and impact, we applied a polyphasic approach on the phototrophic microbiome of this biocrust, combining isolation and characterization of the lichen photobionts, multi-gene phylogeny of the photobionts and mycobionts based on a direct sequencing and microphotography approach, metabarcoding and determination of chlorophylla+b contents. Metabarcoding showed that yet undescribed lichens within the Caliciaceae dominated the biocrust together with Trebouxia as the most abundant eukaryote in all plots. Together with high mean chlorophylla+b contents exceeding 410 mg m-2, this distinguished the symbiotic algae Trebouxia as the main driver of the grit crust ecosystem. The trebouxioid photobionts could be assigned to the I (T. impressa/gelatinosa) and A (T. arboricola) clades and represented several lineages containing five potential species candidates, which were identified based on the unique phylogenetic position, morphological features, and developmental cycles of the corresponding isolates. These results designate the grit crust as the only known coherent soil layer with significant landscape covering impact of at least 440 km2, predominantly ruled by a single symbiotic algal genus.
Collapse
Affiliation(s)
- Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany.
| | - Rebekah Brand
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Laura Briegel-Williams
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Lina Werner
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Emily Jost
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Guillaume Lentendu
- Laboratory of Soil Biodiversity, Université de Neuchâtel, Neuchâtel, Switzerland
| | - David Singer
- Soil Science and Environment Group, Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Rujuta Athavale
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Dennis J Nürnberg
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
| | - Burkhard Büdel
- Biology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Kaiserslautern, Germany
| | - Michael Lakatos
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| |
Collapse
|
3
|
Worthy FR, Schaefer DA, Wanasinghe D, Xu JC, Wang LS, Wang XY. Acquisition of green algal photobionts enables both chlorolichens and chloro-cyanolichens to activate photosynthesis at low humidity without liquid water. AOB PLANTS 2024; 16:plae025. [PMID: 38770101 PMCID: PMC11102867 DOI: 10.1093/aobpla/plae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Cyanobacteria require liquid water for photosynthesis, whereas green algae can photosynthesise with water vapour alone. We discovered that several Lobaria spp. which normally have cyanobacteria as the sole photobiont, in some regions of the trans-Himalayas also harboured green algae. We tested whether green algal acquisition was: limited to high elevations; obtained from neighbouring chloro-Lobaria species; enabled photosynthesis at low humidity. Lobaria spp. were collected from 2000 to 4000 m elevation. Spectrophotometry quantified green algal abundance by measuring chlorophyll b (absent in cyanobacteria). Thalli cross-sections visually confirmed green algal presence. We sequenced gene regions: Lobaria (ITS-EF-1α-RPB2), green algae (18S-RBC-L) and Nostoc (16S). Phylogenetic analysis determined myco-photobiont associations. We used a custom closed-circuit gas exchange system with an infrared gas analyser to measure CO2 exchange rates for desiccated specimens at 33%, 76%, 86% and 98% humidity. Cross-sections revealed that the photobiont layers in putative cyano-Lobaria contained both cyanobacteria and green algae, indicating that they should be considered chloro-cyanolichens. Chloro-Lobaria had no visible cephalodia nor cyanobacteria in the photobiont layer. Chloro-Lobaria and chloro-cyano-Lobaria had comparable levels of chlorophyll b. Chloro-Lobaria usually contained Symbiochloris. Chloro-cyano-Lobaria mainly associated with Parachloroidium and Nostoc; infrequently with Symbiochloris, Apatococcus, Chloroidium, Pseudochlorella, Trebouxia. Sequences from two green algal genera were obtained from within some thalli. Desiccated specimens of every Lobaria species could attain net photosynthesis with light exposure and 33% humidity. CO2 exchange dynamics over a five-day period differed between species. At all elevations, chloro-cyano-Lobaria spp. had abundant green algae in the photobiont layer, but green algal strains mostly differed to those of chloro-Lobaria spp. Both chloro-Lobaria and chloro-cyano-Lobaria were capable of conducting photosynthesis without liquid water. The data strongly suggest that they attained positive net photosynthesis.
Collapse
Affiliation(s)
- Fiona Ruth Worthy
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
| | - Douglas Allen Schaefer
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
| | - Dhanushka Wanasinghe
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Jian Chu Xu
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
| | - Li Song Wang
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
| | - Xin Yu Wang
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
| |
Collapse
|
4
|
La Torre RD, Ramos D, Mejía MD, Neyra E, Loarte E, Orjeda G. Survey of Lichenized Fungi DNA Barcodes on King George Island (Antarctica): An Aid to Species Discovery. J Fungi (Basel) 2023; 9:jof9050552. [PMID: 37233263 DOI: 10.3390/jof9050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 05/27/2023] Open
Abstract
DNA barcoding is a powerful method for the identification of lichenized fungi groups for which the diversity is already well-represented in nucleotide databases, and an accurate, robust taxonomy has been established. However, the effectiveness of DNA barcoding for identification is expected to be limited for understudied taxa or regions. One such region is Antarctica, where, despite the importance of lichens and lichenized fungi identification, their genetic diversity is far from characterized. The aim of this exploratory study was to survey the lichenized fungi diversity of King George Island using a fungal barcode marker as an initial identification tool. Samples were collected unrestricted to specific taxa in coastal areas near Admiralty Bay. Most samples were identified using the barcode marker and verified up to the species or genus level with a high degree of similarity. A posterior morphological evaluation focused on samples with novel barcodes allowed for the identification of unknown Austrolecia, Buellia, and Lecidea s.l. species. These results contribute to better represent the lichenized fungi diversity in understudied regions such as Antarctica by increasing the richness of the nucleotide databases. Furthermore, the approach used in this study is valuable for exploratory surveys in understudied regions to guide taxonomic efforts towards species recognition and discovery.
Collapse
Affiliation(s)
- Renato Daniel La Torre
- Laboratorio de Genómica y Bioinformática para la Biodiversidad, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, German Amezaga 375, Lima 15081, Peru
- Dirección de Investigación en Glaciares, Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña, Centenario 2656, Huaraz 02002, Peru
| | - Daniel Ramos
- Herbario Sur Peruano-Instituto Científico Michael Owen Dillon, Jorge Chavez 610, Arequipa 04001, Peru
| | - Mayra Doris Mejía
- Dirección de Investigación en Glaciares, Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña, Centenario 2656, Huaraz 02002, Peru
| | - Edgar Neyra
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, Lima 15102, Peru
- Unidad de Investigación Genómica, Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, Lima 15102, Peru
| | - Edwin Loarte
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Centenario 200, Huaraz 02002, Peru
| | - Gisella Orjeda
- Laboratorio de Genómica y Bioinformática para la Biodiversidad, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, German Amezaga 375, Lima 15081, Peru
| |
Collapse
|
5
|
Coleine C, Delgado-Baquerizo M, Zerboni A, Turchetti B, Buzzini P, Franceschi P, Selbmann L. Rock Traits Drive Complex Microbial Communities at the Edge of Life. ASTROBIOLOGY 2023; 23:395-406. [PMID: 36812458 DOI: 10.1089/ast.2022.0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antarctic deserts are among the driest and coldest ecosystems of the planet; there, some microbes survive under these extreme conditions inside porous rocks, forming the so-called endolithic communities. Yet the contribution of distinct rock traits to support complex microbial assemblies remains poorly determined. Here, we combined an extensive Antarctic rock survey with rock microbiome sequencing and ecological networks and found that contrasting combinations of microclimatic and rock traits such as thermal inertia, porosity, iron concentration, and quartz cement can help explain the multiple complex microbial assemblies found in Antarctic rocks. Our work highlights the pivotal role of rocky substrate heterogeneity in sustaining contrasting groups of microorganisms, which is essential to understand life at the edge on Earth and for the search for life on other rocky planets such as Mars.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, Sevilla, Spain
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, Milano, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Pietro Franceschi
- Research and Innovation Center, Fondazione Edmund Mach, Trento, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy
| |
Collapse
|
6
|
De Carolis R, Cometto A, Moya P, Barreno E, Grube M, Tretiach M, Leavitt SD, Muggia L. Photobiont Diversity in Lichen Symbioses From Extreme Environments. Front Microbiol 2022; 13:809804. [PMID: 35422771 PMCID: PMC9002315 DOI: 10.3389/fmicb.2022.809804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
Fungal–algal relationships—both across evolutionary and ecological scales—are finely modulated by the presence of the symbionts in the environments and by the degree of selectivity and specificity that either symbiont develop reciprocally. In lichens, the green algal genus Trebouxia Puymaly is one of the most frequently recovered chlorobionts. Trebouxia species-level lineages have been recognized on the basis of their morphological and phylogenetic diversity, while their ecological preferences and distribution are still only partially unknown. We selected two cosmopolitan species complexes of lichen-forming fungi as reference models, i.e., Rhizoplaca melanophthalma and Tephromela atra, to investigate the diversity of their associated Trebouxia spp. in montane habitats across their distributional range worldwide. The greatest diversity of Trebouxia species-level lineages was recovered in the altitudinal range 1,000–2,500 m a.s.l. A total of 10 distinct Trebouxia species-level lineages were found to associate with either mycobiont, for which new photobionts are reported. One previously unrecognized Trebouxia species-level lineage was identified and is here provisionally named Trebouxia “A52.” Analyses of cell morphology and ultrastructure were performed on axenically isolated strains to fully characterize the new Trebouxia “A52” and three other previously recognized lineages, i.e., Trebouxia “A02,” T. vagua “A04,” and T. vagua “A10,” which were successfully isolated in culture during this study. The species-level diversity of Trebouxia associating with the two lichen-forming fungi in extreme habitats helps elucidate the evolutionary pathways that this lichen photobiont genus traversed to occupy varied climatic and vegetative regimes.
Collapse
Affiliation(s)
| | - Agnese Cometto
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Patricia Moya
- Botánica, ICBIBE, Faculty of CC. Biológicas, Universitat de València, Valencia, Spain
| | - Eva Barreno
- Botánica, ICBIBE, Faculty of CC. Biológicas, Universitat de València, Valencia, Spain
| | - Martin Grube
- Institute of Biology, University of Graz, Graz, Austria
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Steven D Leavitt
- Department of Biology, Brigham Young University, Provo, UT, United States
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
7
|
Nelsen MP, Leavitt SD, Heller K, Muggia L, Lumbsch HT. Contrasting Patterns of Climatic Niche Divergence in Trebouxia-A Clade of Lichen-Forming Algae. Front Microbiol 2022; 13:791546. [PMID: 35242115 PMCID: PMC8886231 DOI: 10.3389/fmicb.2022.791546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
Lichen associations are overwhelmingly supported by carbon produced by photosynthetic algal symbionts. These algae have diversified to occupy nearly all climates and continents; however, we have a limited understanding of how their climatic niches have evolved through time. Here we extend previous work and ask whether phylogenetic signal in, and the evolution of, climatic niche, varies across climatic variables, phylogenetic scales, and among algal lineages in Trebouxia—the most common genus of lichen-forming algae. Our analyses reveal heterogeneous levels of phylogenetic signal across variables, and that contrasting models of evolution underlie the evolution of climatic niche divergence. Together these analyses demonstrate the variable processes responsible for shaping climatic tolerance in Trebouxia, and provide a framework within which to better understand potential responses to climate change-associated perturbations. Such predictions reveal a disturbing trend in which the pace at which modern climate change is proceeding will vastly exceed the rate at which Trebouxia climatic niches have previously evolved.
Collapse
Affiliation(s)
- Matthew P Nelsen
- The Field Museum, Negaunee Integrative Research Center, Chicago, IL, United States
| | - Steven D Leavitt
- Department of Biology, M. L. Bean Life Science Museum, Brigham Young University, Provo, UT, United States
| | - Kathleen Heller
- The Field Museum, Negaunee Integrative Research Center, Chicago, IL, United States.,Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - H Thorsten Lumbsch
- The Field Museum, Negaunee Integrative Research Center, Chicago, IL, United States
| |
Collapse
|
8
|
Medeiros ID, Mazur E, Miadlikowska J, Flakus A, Rodriguez-Flakus P, Pardo-De la Hoz CJ, Cieślak E, Śliwa L, Lutzoni F. Turnover of Lecanoroid Mycobionts and Their Trebouxia Photobionts Along an Elevation Gradient in Bolivia Highlights the Role of Environment in Structuring the Lichen Symbiosis. Front Microbiol 2021; 12:774839. [PMID: 34987486 PMCID: PMC8721194 DOI: 10.3389/fmicb.2021.774839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
Shifts in climate along elevation gradients structure mycobiont-photobiont associations in lichens. We obtained mycobiont (lecanoroid Lecanoraceae) and photobiont (Trebouxia alga) DNA sequences from 89 lichen thalli collected in Bolivia from a ca. 4,700 m elevation gradient encompassing diverse natural communities and environmental conditions. The molecular dataset included six mycobiont loci (ITS, nrLSU, mtSSU, RPB1, RPB2, and MCM7) and two photobiont loci (ITS, rbcL); we designed new primers to amplify Lecanoraceae RPB1 and RPB2 with a nested PCR approach. Mycobionts belonged to Lecanora s.lat., Bryonora, Myriolecis, Protoparmeliopsis, the "Lecanora" polytropa group, and the "L." saligna group. All of these clades except for Lecanora s.lat. occurred only at high elevation. No single species of Lecanoraceae was present along the entire elevation gradient, and individual clades were restricted to a subset of the gradient. Most Lecanoraceae samples represent species which have not previously been sequenced. Trebouxia clade C, which has not previously been recorded in association with species of Lecanoraceae, predominates at low- to mid-elevation sites. Photobionts from Trebouxia clade I occur at the upper extent of mid-elevation forest and at some open, high-elevation sites, while Trebouxia clades A and S dominate open habitats at high elevation. We did not find Trebouxia clade D. Several putative new species were found in Trebouxia clades A, C, and I. These included one putative species in clade A associated with Myriolecis species growing on limestone at high elevation and a novel lineage sister to the rest of clade C associated with Lecanora on bark in low-elevation grassland. Three different kinds of photobiont switching were observed, with certain mycobiont species associating with Trebouxia from different major clades, species within a major clade, or haplotypes within a species. Lecanoraceae mycobionts and Trebouxia photobionts exhibit species turnover along the elevation gradient, but with each partner having a different elevation threshold at which the community shifts completely. A phylogenetically defined sampling of a single diverse family of lichen-forming fungi may be sufficient to document regional patterns of Trebouxia diversity and distribution.
Collapse
Affiliation(s)
- Ian D. Medeiros
- Department of Biology, Duke University, Durham, NC, United States
| | - Edyta Mazur
- W. Szafer Institute of Botany, Polish Academy of Sciences (PAS), Kraków, Poland
| | | | - Adam Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences (PAS), Kraków, Poland
| | | | | | - Elżbieta Cieślak
- W. Szafer Institute of Botany, Polish Academy of Sciences (PAS), Kraków, Poland
| | - Lucyna Śliwa
- W. Szafer Institute of Botany, Polish Academy of Sciences (PAS), Kraków, Poland
| | - François Lutzoni
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
9
|
Wagner M, Brunauer G, Bathke AC, Cary SC, Fuchs R, Sancho LG, Türk R, Ruprecht U. Macroclimatic conditions as main drivers for symbiotic association patterns in lecideoid lichens along the Transantarctic Mountains, Ross Sea region, Antarctica. Sci Rep 2021; 11:23460. [PMID: 34873261 PMCID: PMC8648759 DOI: 10.1038/s41598-021-02940-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/15/2021] [Indexed: 11/12/2022] Open
Abstract
Lecideoid lichens as dominant vegetation-forming organisms in the climatically harsh areas of the southern part of continental Antarctica show clear preferences in relation to environmental conditions (i.e. macroclimate). 306 lichen samples were included in the study, collected along the Ross Sea coast (78°S-85.5°S) at six climatically different sites. The species compositions as well as the associations of their two dominant symbiotic partners (myco- and photobiont) were set in context with environmental conditions along the latitudinal gradient. Diversity values were nonlinear with respect to latitude, with the highest alpha diversity in the milder areas of the McMurdo Dry Valleys (78°S) and the most southern areas (Durham Point, 85.5°S; Garden Spur, 84.5°S), and lowest in the especially arid and cold Darwin Area (~ 79.8°S). Furthermore, the specificity of mycobiont species towards their photobionts decreased under more severe climate conditions. The generalist lichen species Lecanora fuscobrunnea and Lecidea cancriformis were present in almost all habitats, but were dominant in climatically extreme areas. Carbonea vorticosa, Lecidella greenii and Rhizoplaca macleanii were confined to milder areas. In summary, the macroclimate is considered to be the main driver of species distribution, making certain species useful as bioindicators of climate conditions and, consequently, for assessing the consequences of climate change.
Collapse
Affiliation(s)
- Monika Wagner
- Department of Biosciences, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - Georg Brunauer
- Department of Biosciences, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - Arne C Bathke
- Department of Mathematics, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - S Craig Cary
- School of Science, The University of Waikato, Hamilton, New Zealand
- The International Centre for Terrestrial Antarctic Research, School of Science, The University of Waikato, Hamilton, New Zealand
| | - Roman Fuchs
- Department of Biosciences, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - Leopoldo G Sancho
- Botany Unit, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Roman Türk
- Department of Biosciences, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - Ulrike Ruprecht
- Department of Biosciences, Paris Lodron Universität Salzburg, Salzburg, Austria.
| |
Collapse
|
10
|
Nelsen MP, Leavitt SD, Heller K, Muggia L, Lumbsch HT. Macroecological diversification and convergence in a clade of keystone symbionts. FEMS Microbiol Ecol 2021; 97:6279059. [PMID: 34014310 DOI: 10.1093/femsec/fiab072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022] Open
Abstract
Lichens are classic models of symbiosis, and one of the most frequent nutritional modes among fungi. The ecologically and geographically widespread lichen-forming algal (LFA) genus Trebouxia is one of the best-studied groups of LFA and associates with over 7000 fungal species. Despite its importance, little is known about its diversification. We synthesized twenty years of publicly available data by characterizing the ecological preferences of this group and testing for time-variant shifts in climatic regimes over a distribution of trees. We found evidence for limited shifts among regimes, but that disparate lineages convergently evolved similar ecological tolerances. Early Trebouxia lineages were largely forest specialists or habitat generalists that occupied a regime whose extant members occur in moderate climates. Trebouxia then convergently diversified in non-forested habitats and expanded into regimes whose modern representatives occupy wet-warm and cool-dry climates. We rejected models in which climatic diversification slowed through time, suggesting climatic diversification is inconsistent with that expected under an adaptive radiation. In addition, we found that climatic and vegetative regime shifts broadly coincided with the evolution of biomes and associated or similar taxa. Together, our work illustrates how this keystone symbiont from an iconic symbiosis evolved to occupy diverse habitats across the globe.
Collapse
Affiliation(s)
- Matthew P Nelsen
- The Field Museum, Negaunee Integrative Research Center, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| | - Steven D Leavitt
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, 4102 Life Science Building, Provo, UT 84602, USA
| | - Kathleen Heller
- The Field Museum, Negaunee Integrative Research Center, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA.,Biological Sciences Division, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| | - H Thorsten Lumbsch
- The Field Museum, Negaunee Integrative Research Center, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
11
|
Coleine C, Biagioli F, de Vera JP, Onofri S, Selbmann L. Endolithic microbial composition in Helliwell Hills, a newly investigated Mars-like area in Antarctica. Environ Microbiol 2021; 23:4002-4016. [PMID: 33538384 DOI: 10.1111/1462-2920.15419] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023]
Abstract
The diversity and composition of Antarctic cryptoendolithic microbial communities in the Mars-analogue site of Helliwell Hills (Northern Victoria Land, Continental Antarctica) are investigated, for the first time, applying both culture-dependent and high-throughput sequencing approaches. The study includes all the domains of the tree of life: Eukaryotes, Bacteria and Archaea to give a complete overview of biodiversity and community structure. Furthermore, to explore the geographic distribution of endoliths throughout the Victoria Land (Continental Antarctica), we compared the fungal and bacterial community composition and structure of endolithically colonized rocks, collected in >30 sites in 10 years of Italian Antarctic Expeditions. Compared with the fungi and other eukaryotes, the prokaryotic communities were richer in species, more diverse and highly heterogeneous. Despite the diverse community compositions, shared populations were found and were dominant in all sites. Local diversification was observed and included prokaryotes as members of Alphaproteobacteria and Crenarchaeota (Archaea), the last detected for the first time in these cryptoendolithic communities. Few eukaryotes, namely lichen-forming fungal species as Lecidella grenii, were detected in Helliwell Hills only. These findings suggest that geographic distance and isolation in these remote areas may promote the establishment of peculiar locally diversified microorganisms.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Federico Biagioli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Jean Pierre de Vera
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.,Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy
| |
Collapse
|