1
|
Klontzas ME, Kakkos GA, Papadakis GZ, Marias K, Karantanas AH. Advanced clinical imaging for the evaluation of stem cell based therapies. Expert Opin Biol Ther 2021; 21:1253-1264. [PMID: 33576278 DOI: 10.1080/14712598.2021.1890711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: As stem cell treatments reach closer to the clinic, the need for appropriate noninvasive imaging for accurate disease diagnosis, treatment planning, follow-up, and early detection of complications, is constantly rising. Clinical radiology affords an extensive arsenal of advanced imaging techniques, to provide anatomical and functional information on the whole spectrum of stem cell treatments from diagnosis to follow-up.Areas covered: This manuscript aims at providing a critical review of major published studies on the utilization of advanced imaging for stem cell treatments. Uses of magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, and positron emission tomography (PET) are reviewed and interrogated for their applicability to stem cell imaging.Expert opinion: A wide spectrum of imaging methods have been utilized for the evaluation of stem cell therapies. The majority of published techniques are not clinically applicable, using methods exclusively applicable to animals or technology irrelevant to current clinical practice. Harmonization of preclinical methods with clinical reality is necessary for the timely translation of stem cell therapies to the clinic. Methods such as diffusion weighted MRI, hybrid imaging, and contrast-enhanced ultrasound hold great promise and should be routinely incorporated in the evaluation of patients receiving stem cell treatments.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece
| | - George A Kakkos
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
| | - Georgios Z Papadakis
- Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Kostas Marias
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Electrical and Computer Engineering, Hellenic Mediterranean University, Heraklion, Crete, Greece
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
2
|
Bogaert J, Eitel I. Role of cardiovascular magnetic resonance in acute coronary syndrome. Glob Cardiol Sci Pract 2016; 2015:24. [PMID: 26779508 PMCID: PMC4614331 DOI: 10.5339/gcsp.2015.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/30/2015] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jan Bogaert
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Leuven, Belgium
| | - Ingo Eitel
- University Heart Center Lübeck, Medical Clinic II (Cardiology, Angiology, Intensive care medicine), Lübeck, Germany
| |
Collapse
|
3
|
Moudgil R, Dick AJ. Regenerative Cell Imaging in Cardiac Repair. Can J Cardiol 2014; 30:1323-34. [DOI: 10.1016/j.cjca.2014.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 01/03/2023] Open
|
4
|
Lu X, Xia R, Zhang B, Gao F. MRI tracking stem cells transplantation for coronary heart disease. Pak J Med Sci 2014; 30:899-903. [PMID: 25097541 PMCID: PMC4121722 DOI: 10.12669/pjms.304.4936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/14/2014] [Accepted: 04/02/2014] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide. Stem cell transplantation has become a new treatment option for cardiovascular disease because the stem cells are able to migrate to damaged cardiac tissue, repair the myocardial infarction area and ultimately reduce the role of the infarct-related mortality. Cardiac magnetic resonance imaging (MRI) is a new robust non-invasive imaging technique that can detect anatomical information and myocardial dysfunction, study the mechanism of stem cells therapy with superb spatial/temporal resolution, relatively safe contrast material and lack of radiation. This review describes the advantages and disadvantages of cardiac MRI applied in stem cells transplantation and discusses how to translate this technique into clinical therapy. Sources of Data/Study Selection: Data from cross-sectional and prospective studies published between the years 2001-2013 on the topic were included. Data searches included both human and animal studies. Data Extraction: The data was extracted from online resources of statistic reports, Pub med, THE MEDLINE, Google Scholar, Medical and Radiological journals. Conclusion: MRI is an appealing technique for cell trafficking depicting engraftment, differentiation and survival.
Collapse
Affiliation(s)
- Xi Lu
- Xi Lu, Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, No.1, Ke Yuan Road 4, Gao Xin District, Chengdu, 610041, Sichuan, China
| | - Rui Xia
- Rui Xia, Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, No.1, Ke Yuan Road 4, Gao Xin District, Chengdu, 610041, Sichuan, China
| | - Bing Zhang
- Bing Zhang, Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, No.1, Ke Yuan Road 4, Gao Xin District, Chengdu, 610041, Sichuan, China
| | - Fabao Gao
- Fabao Gao, Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, No.1, Ke Yuan Road 4, Gao Xin District, Chengdu, 610041, Sichuan, China
| |
Collapse
|
5
|
Fan J, Tan Y, Jie L, Wu X, Yu R, Zhang M. Biological activity and magnetic resonance imaging of superparamagnetic iron oxide nanoparticles-labeled adipose-derived stem cells. Stem Cell Res Ther 2013; 4:44. [PMID: 23618360 PMCID: PMC3706947 DOI: 10.1186/scrt191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 04/12/2013] [Indexed: 12/11/2022] Open
Abstract
Introduction No comparative study of adipose-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (BMSCs) by using superparamagnetic iron oxide nanoparticles (SPIOs)-labeling and magnetic resonance imaging (MRI) has been performed. Methods We studied the biological activity and MRI of ADSCs by labeling them with SPIOs and comparing them with BMSCs. After incubating the cells in culture medium with different levels of SPIOs (control group: 0 μg/ml; Groups 1 to 3: 25, 50, and 100 μg/ml) for 24 hours, we compared ADSCs with BMSCs in terms of intracellular iron content, labeling efficiency, and cell viability. Stem cells in the culture medium containing 50 μg/ml SPIOs were induced into osteoblasts and fat cells. Adipogenic and osteogenic differentiation potentials were compared. R2* values of MRI in vitro were compared. Results The results showed that labeling efficiency was highest in Group 2. Intracellular iron content and R2* values increased with increasing concentrations of SPIOs, whereas cell viability decreased with increasing concentrations of SPIOs, and adipogenic and osteogenic differentiation potentials decreased. However, we found no significant difference between the two kinds of cells for any of these indexes. Conclusions ADSCs can be labeled and traced as easily as BMSCs in vitro. Given their abundance and higher proliferative capacity, as was previously shown, ADSCs may be better suited to stem cell therapy than are BMSCs.
Collapse
|
6
|
Gomez-Mauricio RG, Acarregui A, Sánchez-Margallo FM, Crisóstomo V, Gallo I, Hernández RM, Pedraz JL, Orive G, Martín-Cancho MF. A preliminary approach to the repair of myocardial infarction using adipose tissue-derived stem cells encapsulated in magnetic resonance-labelled alginate microspheres in a porcine model. Eur J Pharm Biopharm 2012; 84:29-39. [PMID: 23266493 DOI: 10.1016/j.ejpb.2012.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 11/16/2012] [Accepted: 11/27/2012] [Indexed: 01/18/2023]
Abstract
Adipose tissue-derived stem cells (ASCs) have properties of self-renewal, pluripotency and high proliferative capability that make them useful for the treatment of cardiac ventricular function following ischaemic injury. However, their therapeutic use is limited due to the low retention of the cells at the targeted site. To address this issue, we developed semipermeable membrane microcapsules labelled with Endorem (magnetocapsules) that provide mechanical and immunological immune protection to the cells while maintaining internal cell microenvironment. In addition, the particles allow tracking the presence and migration of injected cells in vivo by Magnetic Resonance Imaging (MRI). Results indicate that after 21 days in culture, the cells encapsulated in the magnetocapsules showed similar viabilities than cells encapsulated in conventional microcapsules. MRI confirmed a gradual loss of the intensity of the iron oxide label in the non-encapsulated Endorem labelled cells, while magnetocapsules were detected throughout the study period, suggesting that cell retention in the myocardium is improved when cells are enclosed within the magnetocapsules. To further evaluate treatment's effect on global cardiac function, MRI determination of infarct size and left ventricular ejection fraction (LVEF) was performed. In vivo results showed no statistically significant differences in heart rate and cardiac output between treatment groups. In conclusion, cells enclosed within magnetocapsules have shown suitable viability and have been detected in vivo throughout the study period. Further studies will evaluate whether increasing cell loading with the particles may help to improve the therapeutic results.
Collapse
|
7
|
Wu KC. CMR of microvascular obstruction and hemorrhage in myocardial infarction. J Cardiovasc Magn Reson 2012; 14:68. [PMID: 23021401 PMCID: PMC3514126 DOI: 10.1186/1532-429x-14-68] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/03/2012] [Indexed: 12/16/2022] Open
Abstract
Microvascular obstruction (MO) or no-reflow phenomenon is an established complication of coronary reperfusion therapy for acute myocardial infarction. It is increasingly recognized as a poor prognostic indicator and marker of subsequent adverse LV remodeling. Although MO can be assessed using various imaging modalities including electrocardiography, myocardial contrast echocardiography, nuclear scintigraphy, and coronary angiography, evaluation by cardiovascular magnetic resonance (CMR) is particularly useful in enhancing its detection, diagnosis, and quantification, as well as following its subsequent effects on infarct evolution and healing. MO assessment has become a routine component of the CMR evaluation of acute myocardial infarction and will increasingly play a role in clinical trials of adjunctive reperfusion agents and strategies. This review will summarize the pathophysiology of MO, current CMR approaches to diagnosis, clinical implications, and future directions needed for improving our understanding of this common clinical problem.
Collapse
Affiliation(s)
- Katherine C Wu
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, 600 N. Wolfe Street/Carnegie 568, Baltimore, MD 21287, USA.
| |
Collapse
|
8
|
Nejadnik H, Henning TD, Castaneda RT, Boddington S, Taubert S, Jha P, Tavri S, Golovko D, Ackerman L, Meier R, Daldrup-Link HE. Somatic differentiation and MR imaging of magnetically labeled human embryonic stem cells. Cell Transplant 2012; 21:2555-67. [PMID: 22862886 DOI: 10.3727/096368912x653156] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance (MR) imaging of superparamagnetic iron oxide (SPIO)-labeled stem cells offers a noninvasive evaluation of stem cell engraftment in host organs. Excessive cellular iron load from SPIO labeling, however, impairs stem cell differentiation. The purpose of this study was to magnetically label human embryonic stem cells (hESCs) via a reduced exposure protocol that maintains a significant MR signal and no significant impairment to cellular pluripotency or differentiation potential. hESCs were labeled by simple incubation with Food and Drug Administration-approved ferumoxides, using concentrations of 50- 200 µg Fe/ml and incubation times of 3-24 h. The most reduced exposure labeling protocol that still provided a significant MR signal comparable to accepted labeling protocols was selected for subsequent studies. Labeled hESCs were compared to unlabeled controls for differences in pluripotency as studied by fluorescence staining for SSEA-1, SSEA-4, TRA-60, and TRA-81 and in differentiation capacity as studied by quantitative real-time PCR for hOCT4, hACTC1, hSOX1, and hAFP after differentiation into embryoid bodies (EBs). Subsequent MR and microscopy imaging were performed to evaluate for cellular iron distribution and long-term persistence of the label. An incubation concentration of 50 µg Fe/ml and incubation time of 3 h demonstrated a significantly reduced exposure protocol that yielded an intracellular iron uptake of 4.50 ± 0.27 pg, an iron content comparable to currently accepted SPIO labeling protocols. Labeled and unlabeled hESCs showed no difference in pluripotency or differentiation capacity. Ferumoxide-labeled hESCs demonstrated persistent MR contrast effects as embryoid bodies for 21 days. Electron microscopy confirmed persistent lysosomal storage of iron oxide particles in EBs up to 9 days, while additional microscopy visualization confirmed the iron distribution within single and multiple EBs. Labeling hESCs with ferumoxides by this tailored protocol reduces exposure of cells to the labeling agent while allowing for long-term visualization with MR imaging and the retention of cellular pluripotency and differentiation potential.
Collapse
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Association of platelet-SDF-1 with hemodynamic function and infarct size using cardiac MR in patients with AMI. Eur J Radiol 2012; 81:e486-90. [DOI: 10.1016/j.ejrad.2011.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/01/2011] [Indexed: 11/22/2022]
|
10
|
Vallée JP, Hauwel M, Lepetit-Coiffé M, Bei W, Montet-Abou K, Meda P, Gardier S, Zammaretti P, Kraehenbuehl TP, Herrmann F, Hubbell JA, Jaconi ME. Embryonic stem cell-based cardiopatches improve cardiac function in infarcted rats. Stem Cells Transl Med 2012. [PMID: 23197784 DOI: 10.5966/sctm.2011-0028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pluripotent stem cell-seeded cardiopatches hold promise for in situ regeneration of infarcted hearts. Here, we describe a novel cardiopatch based on bone morphogenetic protein 2-primed cardiac-committed mouse embryonic stem cells, embedded into biodegradable fibrin matrices and engrafted onto infarcted rat hearts. For in vivo tracking of the engrafted cardiac-committed cells, superparamagnetic iron oxide nanoparticles were magnetofected into the cells, thus enabling detection and functional evaluation by high-resolution magnetic resonance imaging. Six weeks after transplantation into infarcted rat hearts, both local (p < .04) and global (p < .015) heart function, as well as the left ventricular dilation (p < .0011), were significantly improved (p < .001) as compared with hearts receiving cardiopatches loaded with iron nanoparticles alone. Histological analysis revealed that the fibrin scaffolds had degraded over time and clusters of myocyte enhancer factor 2-positive cardiac-committed cells had colonized most of the infarcted myocardium, including the fibrotic area. De novo CD31-positive blood vessels were formed in the vicinity of the transplanted cardiopatch. Altogether, our data provide evidence that stem cell-based cardiopatches represent a promising therapeutic strategy to achieve efficient cell implantation and improved global and regional cardiac function after myocardial infarction.
Collapse
Affiliation(s)
- Jean-Paul Vallée
- Department of Radiology, Geneva University Hospitals and University of Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Castaneda RT, Boddington S, Henning TD, Wendland M, Mandrussow L, Liu S, Daldrup-Link H. Labeling human embryonic stem-cell-derived cardiomyocytes for tracking with MR imaging. Pediatr Radiol 2011; 41:1384-92. [PMID: 21594541 DOI: 10.1007/s00247-011-2130-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/12/2011] [Accepted: 04/18/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human embryonic stem cells (hESC) can generate cardiomyocytes (CM), which offer promising treatments for cardiomyopathies in children. However, challenges for clinical translation result from loss of transplanted cell from target sites and high cell death. An imaging technique that noninvasively and repetitively monitors transplanted hESC-CM could guide improvements in transplantation techniques and advance therapies. OBJECTIVE To develop a clinically applicable labeling technique for hESC-CM with FDA-approved superparamagnetic iron oxide nanoparticles (SPIO) by examining labeling before and after CM differentiation. MATERIALS AND METHODS Triplicates of hESC were labeled by simple incubation with 50 μg/ml of ferumoxides before or after differentiation into CM, then imaged on a 7T MR scanner using a T2-weighted multi-echo spin-echo sequence. Viability, iron uptake and T2-relaxation times were compared between groups using t-tests. RESULTS hESC-CM labeled before differentiation demonstrated significant MR effects, iron uptake and preserved function. hESC-CM labeled after differentiation showed no significant iron uptake or change in MR signal (P < 0.05). Morphology, differentiation and viability were consistent between experimental groups. CONCLUSION hESC-CM should be labeled prior to CM differentiation to achieve a significant MR signal. This technique permits monitoring delivery and engraftment of hESC-CM for potential advancements of stem cell-based therapies in the reconstitution of damaged myocardium.
Collapse
Affiliation(s)
- Rosalinda T Castaneda
- Pediatric Radiology, Lucile Packard Children's Hospital, Stanford School of Medicine, Stanford, CA 94305-5654, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Psaltis PJ, Simari RD, Rodriguez-Porcel M. Emerging roles for integrated imaging modalities in cardiovascular cell-based therapeutics: a clinical perspective. Eur J Nucl Med Mol Imaging 2011; 39:165-81. [PMID: 21901381 DOI: 10.1007/s00259-011-1925-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 12/20/2022]
Abstract
Despite preclinical promise, the progress of cell-based therapy to clinical cardiovascular practice has been slowed by several challenges and uncertainties that have been highlighted by the conflicting results of human trials. Most telling has been the revelation that current strategies fall short of achieving sufficient retention and engraftment of cells to meet the ambitious objective of myocardial regeneration. This has sparked novel research into the refinement of cell biology and delivery to overcome these shortcomings. Within this context, molecular imaging has emerged as a valuable tool for providing noninvasive surveillance of cell fate in vivo. Direct and indirect labelling of cells can be coupled with clinically relevant imaging modalities, such as radionuclide single photon emission computed tomography and positron emission tomography, and magnetic resonance imaging, to assess their short- and long-term distributions, along with their viability, proliferation and functional interaction with the host myocardium. This review details the strengths and limitations of the different cell labelling and imaging techniques and their potential application to the clinical realm. We also consider the broader, multifaceted utility of imaging throughout the cell therapy process, providing a discussion of its considerable value during cell delivery and its importance during the evaluation of cardiac outcomes in clinical studies.
Collapse
Affiliation(s)
- Peter J Psaltis
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
13
|
Vandsburger MH, Epstein FH. Emerging MRI methods in translational cardiovascular research. J Cardiovasc Transl Res 2011; 4:477-92. [PMID: 21452060 DOI: 10.1007/s12265-011-9275-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022]
Abstract
Cardiac magnetic resonance imaging (CMR) has become a reference standard modality for imaging of left ventricular (LV) structure and function and, using late gadolinium enhancement, for imaging myocardial infarction. Emerging CMR techniques enable a more comprehensive examination of the heart, making CMR an excellent tool for use in translational cardiovascular research. Specifically, emerging CMR methods have been developed to measure the extent of myocardial edema, changes in ventricular mechanics, changes in tissue composition as a result of fibrosis, and changes in myocardial perfusion as a function of both disease and infarct healing. New CMR techniques also enable the tracking of labeled cells, molecular imaging of biomarkers of disease, and changes in calcium flux in cardiomyocytes. In addition, MRI can quantify blood flow velocity and wall shear stress in large blood vessels. Almost all of these techniques can be applied in both pre-clinical and clinical settings, enabling both the techniques themselves and the knowledge gained using such techniques in pre-clinical research to be translated from the lab bench to the patient bedside.
Collapse
Affiliation(s)
- Moriel H Vandsburger
- Department of Biological Regulation, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | | |
Collapse
|
14
|
Arthurs OJ, Gallagher FA. Functional and molecular imaging with MRI: potential applications in paediatric radiology. Pediatr Radiol 2011; 41:185-98. [PMID: 20972674 DOI: 10.1007/s00247-010-1842-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/29/2010] [Accepted: 08/25/2010] [Indexed: 01/17/2023]
Abstract
MRI is a very versatile tool for noninvasive imaging and it is particularly attractive as an imaging technique in paediatric patients given the absence of ionizing radiation. Recent advances in the field of MRI have enabled tissue function to be probed noninvasively, and increasingly MRI is being used to assess cellular and molecular processes. For example, dynamic contrast-enhanced MRI has been used to assess tissue vascularity, diffusion-weighted imaging can quantify molecular movements of water in tissue compartments and MR spectroscopy provides a quantitative assessment of metabolite levels. A number of targeted contrast agents have been developed that bind specifically to receptors on the vascular endothelium or cell surface and there are several MR methods for labelling cells and tracking cellular movements. Hyperpolarization techniques have the capability of massively increasing the sensitivity of MRI and these have been used to image tissue pH, successful response to drug treatment as well as imaging the microstructure of the lungs. Although there are many challenges to be overcome before these techniques can be translated into routine paediatric imaging, they could potentially be used to aid diagnosis, predict disease outcome, target biopsies and determine treatment response noninvasively.
Collapse
Affiliation(s)
- Owen J Arthurs
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Teaching Hospitals NHS Foundation Trust, University of Cambridge, Box 218, Level 5, Hills Road, Cambridge, CB2 0QQ, UK
| | | |
Collapse
|
15
|
Gallagher F. An introduction to functional and molecular imaging with MRI. Clin Radiol 2010; 65:557-66. [DOI: 10.1016/j.crad.2010.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 04/22/2010] [Accepted: 04/30/2010] [Indexed: 11/25/2022]
|
16
|
Bernsen MR, Moelker AD, Wielopolski PA, van Tiel ST, Krestin GP. Labelling of mammalian cells for visualisation by MRI. Eur Radiol 2009; 20:255-74. [DOI: 10.1007/s00330-009-1540-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 06/11/2009] [Accepted: 06/23/2009] [Indexed: 12/21/2022]
|
17
|
Groman EV, Yang M, Reinhardt CP, Weinberg JS, Vaccaro DE. Polycationic Nanoparticles: (1) Synthesis of a Polylysine-MION Conjugate and its Application in Labeling Fibroblasts. J Cardiovasc Transl Res 2009; 2:30-8. [DOI: 10.1007/s12265-008-9082-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/12/2008] [Indexed: 12/21/2022]
|
18
|
Bibliography. Current world literature. Imaging and echocardiography. Curr Opin Cardiol 2008; 23:512-5. [PMID: 18670264 DOI: 10.1097/hco.0b013e32830d843f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|