1
|
Morsink C, Klaassen N, van de Maat G, Boswinkel M, Arranja A, Bruggink R, van Houwelingen I, Schaafsma I, Hesselink JW, Nijsen F, van Nimwegen B. Quantitative CT imaging and radiation-absorbed dose estimations of 166Ho microspheres: paving the way for clinical application. Eur Radiol Exp 2024; 8:116. [PMID: 39400769 PMCID: PMC11473764 DOI: 10.1186/s41747-024-00511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Microbrachytherapy enables high local tumor doses sparing surrounding tissues by intratumoral injection of radioactive holmium-166 microspheres (166Ho-MS). Magnetic resonance imaging (MRI) cannot properly detect high local Ho-MS concentrations and single-photon emission computed tomography has insufficient resolution. Computed tomography (CT) is quicker and cheaper with high resolution and previously enabled Ho quantification. We aimed to optimize Ho quantification on CT and to implement corresponding dosimetry. METHODS Two scanners were calibrated for Ho detection using phantoms and multiple settings. Quantification was evaluated in five phantoms and seven canine patients using subtraction and thresholding including influences of the target tissue, injected amounts, acquisition parameters, and quantification volumes. Radiation-absorbed dose estimation was implemented using a three-dimensional 166Ho specific dose point kernel generated with Monte Carlo simulations. RESULTS CT calibration showed a near-perfect linear relation between radiodensity (HU) and Ho concentrations for all conditions, with differences between scanners. Ho detection during calibration was higher using lower tube voltages, soft-tissue kernels, and without a scanner detection limit. The most accurate Ho recovery in phantoms was 102 ± 11% using a threshold of mean tissue HU + (2 × standard deviation) and in patients 98 ± 31% using a 100 HU threshold. Thresholding allowed better recovery with less variation and dependency on the volume of interest compared to the subtraction of a single HU reference value. Corresponding doses and histograms were successfully generated. CONCLUSION CT quantification and dosimetry of 166Ho should be considered for further clinical application with on-site validation using radioactive measurements and intra-operative Ho-MS and dose visualizations. RELEVANCE STATEMENT Image-guided holmium-166 microbrachytherapy currently lacks reliable quantification and dosimetry on CT to ensure treatment safety and efficacy, while it is the only imaging modality capable of quantifying high in vivo holmium concentrations. KEY POINTS Local injection of 166Ho-MS enables high local tumor doses while sparing surrounding tissue. CT enables imaging-based quantification and radiation-absorbed dose estimation of concentrated Ho in vivo, essential for treatment safety and efficacy. Two different CT scanners and multiple acquisition and reconstruction parameters showed near-perfect linearity between radiodensity and Ho concentration. The most accurate Ho recoveries on CT were 102 ± 11% in five phantoms and 98 ± 31% in seven canine patients using thresholding methods. Dose estimations and volume histograms were successfully implemented for clinical application using a dose point kernel based on Monte Carlo simulations.
Collapse
Affiliation(s)
- Chiron Morsink
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands.
| | - Nienke Klaassen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Milou Boswinkel
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Robin Bruggink
- 3D Lab, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Irene Schaafsma
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands
| | - Jan Willem Hesselink
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands
| | - Frank Nijsen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Bas van Nimwegen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands
| |
Collapse
|
2
|
Chakraborty K, Mondal J, An JM, Park J, Lee YK. Advances in Radionuclides and Radiolabelled Peptides for Cancer Therapeutics. Pharmaceutics 2023; 15:pharmaceutics15030971. [PMID: 36986832 PMCID: PMC10054444 DOI: 10.3390/pharmaceutics15030971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Radiopharmaceutical therapy, which can detect and treat tumours simultaneously, was introduced more than 80 years ago, and it has changed medical strategies with respect to cancer. Many radioactive radionuclides have been developed, and functional, molecularly modified radiolabelled peptides have been used to produce biomolecules and therapeutics that are vastly utilised in the field of radio medicine. Since the 1990s, they have smoothly transitioned into clinical application, and as of today, a wide variety of radiolabelled radionuclide derivatives have been examined and evaluated in various studies. Advanced technologies, such as conjugation of functional peptides or incorporation of radionuclides into chelating ligands, have been developed for advanced radiopharmaceutical cancer therapy. New radiolabelled conjugates for targeted radiotherapy have been designed to deliver radiation directly to cancer cells with improved specificity and minimal damage to the surrounding normal tissue. The development of new theragnostic radionuclides, which can be used for both imaging and therapy purposes, allows for more precise targeting and monitoring of the treatment response. The increased use of peptide receptor radionuclide therapy (PRRT) is also important in the targeting of specific receptors which are overexpressed in cancer cells. In this review, we provide insights into the development of radionuclides and functional radiolabelled peptides, give a brief background, and describe their transition into clinical application.
Collapse
Affiliation(s)
- Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jagannath Mondal
- Department of Green Bio Engineering, Graduate School, Korea National University of Transportation, Chungju 27469, Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jooho Park
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Research Institute for Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (J.P.); (Y.-K.L.); Tel.: +82-43-841-5224 (Y.-K.L.)
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Graduate School, Korea National University of Transportation, Chungju 27469, Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
- Correspondence: (J.P.); (Y.-K.L.); Tel.: +82-43-841-5224 (Y.-K.L.)
| |
Collapse
|
3
|
Holik HA, Ibrahim FM, Elaine AA, Putra BD, Achmad A, Kartamihardja AHS. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022; 27:3062. [PMID: 35630536 PMCID: PMC9143622 DOI: 10.3390/molecules27103062] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic radiopharmaceuticals have been researched extensively in the last decade as a result of the growing research interest in personalized medicine to improve diagnostic accuracy and intensify intensive therapy while limiting side effects. Radiometal-based drugs are of substantial interest because of their greater versatility for clinical translation compared to non-metal radionuclides. This paper comprehensively discusses various components commonly used as chemical scaffolds to build radiopharmaceutical agents, i.e., radionuclides, pharmacokinetic-modifying linkers, and chelators, whose characteristics are explained and can be used as a guide for the researcher.
Collapse
Affiliation(s)
- Holis Abdul Holik
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Faisal Maulana Ibrahim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Angela Alysia Elaine
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Bernap Dwi Putra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Arifudin Achmad
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Achmad Hussein Sundawa Kartamihardja
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
| |
Collapse
|
4
|
Yitbarek D, Dagnaw GG. Application of Advanced Imaging Modalities in Veterinary Medicine: A Review. Vet Med (Auckl) 2022; 13:117-130. [PMID: 35669942 PMCID: PMC9166686 DOI: 10.2147/vmrr.s367040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
Veterinary anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, now represent an enormous resource that allows for fast non-invasive visualizations in living animals for clinical and research purposes. In this review, advanced anatomical imaging modalities and their applications, safety issues, challenges, and future prospects of the techniques commonly employed for animal imaging would be highlighted. The quality of diagnostic imaging equipment in veterinary practice has greatly improved. Recent advances made in veterinary advanced imaging specifically about cross-sectional modalities (CT and MRI), nuclear medicine (PET, SPECT), and dual imaging modalities (PET/CT, PET/MR, and SPECT/CT) have become widely available, leading to greater demands and expectations from veterinary clients. These modalities allow for the creation of three-dimensional representations that can be of considerable value in the dissemination of clinical diagnosis and anatomical studies. Despite, the modern imaging modalities well established in developed countries across the globe, it is yet to remain in its infancy stage in veterinary practice in developing countries due to heavy initial investment and maintenance costs, lack of expert interpretation, a requirement of specialized technical staff and need of adjustable machines to accommodate the different range of animal sizes. Therefore, veterinarians should take advantage of these imaging techniques in designing future experiments by considering the availability of these varied imaging modalities and the creation of three-dimensional graphical representations of internal structures.
Collapse
Affiliation(s)
| | - Gashaw Getaneh Dagnaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
- Correspondence: Gashaw Getaneh Dagnaw, Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, P.O. Box: 196, Gondar, Ethiopia, Email
| |
Collapse
|
5
|
Drescher R, Seifert P, Gühne F, Aschenbach R, Kühnel C, Freesmeyer M. Radioembolization With Holmium-166 Polylactic Acid Microspheres: Distribution of Residual Activity in the Delivery Set and Outflow Dynamics During Planning and Treatment Procedures. J Endovasc Ther 2021; 28:452-462. [PMID: 33629598 PMCID: PMC8129462 DOI: 10.1177/1526602821996719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose: To evaluate the microsphere outflow dynamics and residual Ho-166 activity during and after transarterial radioembolization planning and treatment procedures, and to assess the distribution and predilection sites of residual activity in the proprietary delivery set and the microcatheter. Materials and Methods: Fifteen planning and 12 therapeutic radioembolization procedures were performed with poly-l-lactic acid microspheres loaded with Ho-166. The amount and distribution of residual activity was assessed by dose calibrator measurements and SPECT imaging. The activity flow profile from the microcatheter was assessed dynamically. For planning procedures, different injection methods were evaluated in order to attempt to decrease the residual activity. Results: The median residual activities for planning and treatment procedures using standard injection methods were 31.2% (range 17.3%–44.1%) and 4.3% (range 3.5%–6.9%), respectively. Planning residual activities could be decreased significantly with 2 injection methods similar to treatment procedures, to 17.5% and 10.9%, respectively (P = 0.002). Main predilection sites of residual microspheres were the 3-way stopcock and the outflow needle connector. During treatment procedures, more than 80% of the injected activity is transferred during the first 3 injection cycles. Conclusion: After treatment procedures with holmium-loaded microspheres, mean residual activity in the delivery set is reproducibly low and between reported values for glass and resin microspheres. The majority of microspheres is transferred to the patient during the second and third injection cycle. An estimated residual waste of 3% to 4% may be included in the treatment activity calculation. For planning procedures, a modified injection technique should be used to avoid high residual activities.
Collapse
Affiliation(s)
- Robert Drescher
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
| | - Philipp Seifert
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
| | - Falk Gühne
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
| | - René Aschenbach
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Christian Kühnel
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
6
|
Khoshnevis M, Carozzo C, Brown R, Bardiès M, Bonnefont-Rebeix C, Belluco S, Nennig C, Marcon L, Tillement O, Gehan H, Louis C, Zahi I, Buronfosse T, Roger T, Ponce F. Feasibility of intratumoral 165Holmium siloxane delivery to induced U87 glioblastoma in a large animal model, the Yucatan minipig. PLoS One 2020; 15:e0234772. [PMID: 32555746 PMCID: PMC7302492 DOI: 10.1371/journal.pone.0234772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is the most aggressive primary brain tumor leading to death in most of patients. It comprises almost 50-55% of all gliomas with an incidence rate of 2-3 per 100,000. Despite its rarity, overall mortality of glioblastoma is comparable to the most frequent tumors. The current standard treatment combines surgical resection, radiotherapy and chemotherapy with temozolomide. In spite of this aggressive multimodality protocol, prognosis of glioblastoma is poor and the median survival remains about 12-14.5 months. In this regard, new therapeutic approaches should be developed to improve the life quality and survival time of the patient after the initial diagnosis. Before switching to clinical trials in humans, all innovative therapeutic methods must be studied first on a relevant animal model in preclinical settings. In this regard, we validated the feasibility of intratumoral delivery of a holmium (Ho) microparticle suspension to an induced U87 glioblastoma model. Among the different radioactive beta emitters, 166Ho emits high-energy β(-) radiation and low-energy γ radiation. β(-) radiation is an effective means for tumor destruction and γ rays are well suited for imaging (SPECT) and consequent dosimetry. In addition, the paramagnetic Ho nucleus is a good asset to perform MRI imaging. In this study, five minipigs, implanted with our glioblastoma model were used to test the injectability of 165Ho (stable) using a bespoke injector and needle. The suspension was produced in the form of Ho microparticles and injected inside the tumor by a technique known as microbrachytherapy using a stereotactic system. At the end of this trial, it was found that the 165Ho suspension can be injected successfully inside the tumor with absence or minimal traces of Ho reflux after the injections. This injection technique and the use of the 165Ho suspension needs to be further assessed with radioactive 166Ho in future studies.
Collapse
Affiliation(s)
- Mehrdad Khoshnevis
- ICE (Interactions Cellules Environnement), UPSP 2016.A104, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| | - Claude Carozzo
- ICE (Interactions Cellules Environnement), UPSP 2016.A104, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| | | | | | - Catherine Bonnefont-Rebeix
- ICE (Interactions Cellules Environnement), UPSP 2016.A104, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| | - Sara Belluco
- ICE (Interactions Cellules Environnement), UPSP 2016.A104, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| | | | - Lionel Marcon
- Institut Lumière Matière, UMR CNRS 5306, UCBL, Campus LyonTech—La Doua, Villeurbanne, France
| | - Olivier Tillement
- Institut Lumière Matière, UMR CNRS 5306, UCBL, Campus LyonTech—La Doua, Villeurbanne, France
| | | | | | - Ilyes Zahi
- Advanced Accelerator Applications, Saint-Genis Pouilly, France
| | - Thierry Buronfosse
- Department of Endocrinology, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| | - Thierry Roger
- ICE (Interactions Cellules Environnement), UPSP 2016.A104, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| | - Frédérique Ponce
- ICE (Interactions Cellules Environnement), UPSP 2016.A104, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
- Clinical Oncology Unit, VetAgro Sup, University of Lyon1, Marcy l’Etoile, France
| |
Collapse
|
7
|
Arranja AG, Hennink WE, Chassagne C, Denkova AG, Nijsen JFW. Preparation and characterization of inorganic radioactive holmium-166 microspheres for internal radionuclide therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110244. [PMID: 31753348 DOI: 10.1016/j.msec.2019.110244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/30/2022]
Abstract
Microspheres with high specific activities of radionuclides are very interesting for internal radiotherapy treatments. This work focuses on the formulation and characterization of inorganic microspheres with a high content of holmium and therefore a high specific radioactivity of holmium-166. Two novel formulations of inorganic microspheres were obtained by dispersing solid holmium acetylacetonate microspheres (Ho2(AcAc)3-ms) in NaH2PO4 or NaOH solutions followed by 2 h incubation at room temperature. By exchange of acetylacetonate with phosphate or hydroxyl ions, holmium phosphate microspheres (HoPO4-ms) and holmium hydroxide microspheres (Ho(OH)3-ms) were formed respectively. The inorganic microspheres had a significantly smaller diameter (28.5 ± 4.4 μm (HoPO4-ms) and 25.1 ± 3.5 μm (Ho(OH)3-ms)) than those of Ho2(AcAc)3-ms (32.6 ± 5.2 μm). The weight percentage of holmium-165 in the microspheres increased significantly from 47% (Ho2(AcAc)3-ms) to 55% (HoPO4-ms) and 73% (Ho(OH)3-ms). After preparation of both HoPO4-ms and Ho(OH)3-ms, the stable holmium-165 isotope was partly converted by neutron activation into radioactive holmium-166 to yield radioactive microspheres. High specific activities were achieved ranging from 21.7 to 59.9 MBq/mg (166HoPO4-ms) and from 28.8 to 79.9 MBq/mg (166Ho(OH)3-ms) depending on the neutron activation time. The structure of both microspheres was preserved up to neutron activations of 6 h in a thermal neutron flux of 4.72 × 1016 n m-2 s-1. After activation, both microspheres revealed excellent stability in administration fluids (saline and phosphate buffer) having less than 0.05% of holmium released after 72 h incubation. Finally, the hemocompatibility of these inorganic microspheres was evaluated and it was shown that the microspheres did cause neither hemolysis nor depletion or inhibition of the coagulation factors of the intrinsic blood coagulation pathway meaning that the microspheres have a good hemocompatibility. Overall, this work shows that radioactive inorganic microspheres with high specific activities of holmium-166 can be prepared which potentially can be used for internal radionuclide therapy.
Collapse
Affiliation(s)
- A G Arranja
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, 3508 TB, Utrecht, the Netherlands; Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, the Netherlands; Radboudumc, Department of Radiology and Nuclear Medicine, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - W E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - C Chassagne
- Department of Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands
| | - A G Denkova
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, the Netherlands
| | - J F W Nijsen
- Radboudumc, Department of Radiology and Nuclear Medicine, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands; Quirem Medical B.V, Zutphenseweg 55, 7418 AH, Deventer, the Netherlands.
| |
Collapse
|
8
|
de Azevedo MDBM, Melo VHS, Soares CRJ, Gamarra LF, Barros CHN, Tasic L. Poly(3-hydroxi-butyrate-co-3-hydroxy-valerate) (PHB-HV) microparticles loaded with holmium acetylacetonate as potential contrast agents for magnetic resonance images. Int J Nanomedicine 2019; 14:6869-6889. [PMID: 31507318 PMCID: PMC6718972 DOI: 10.2147/ijn.s191274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/11/2019] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Biodegradable polymers that contain radioactive isotopes such as Holmium 166 have potential applications as beta particle emitters in tumor tissues. Also, Ho(III) is paramagnetic, which makes it suitable as a contrast agent for magnetic resonance (MR) images. METHODS Holmium acetylacetonate (Ho(acac)3) loaded poly(3-hydroxy-butyrate-co-3-hydroxy-valerate) microspheres, with 5% or 8% of 3-hydroxy-valerate (HV), were prepared by emulsification/evaporation process within 20-53 μm size. Microspheres characterization was done using scanning electron microscopy, energy-dispersive X-ray, and infrared spectroscopies. The release of holmium(III) in sodium phosphate buffer (pH 7.4) was followed for 9 days with inductively coupled plasma. Finally, T2 and T2* magnetic resonance images (MRI) were acquired and compared with the MRI of the inclusion complex of holmium acetylacetonate in some β-cyclodextrins. RESULTS Holmium acetylacetonate loading, evaluated by thermogravimetry, was up to 20 times higher for copolymer with 5% of HV. It was shown that microspheres loaded with Ho(acac)3 exhibited an accumulation of Ho(III) on their surfaces but were stable over time, as no expressive release of holmium(III) was detected in 9-day exposition to sodium phosphate buffer. Holmium acetylacetonate in both microspheres or inclusion complexes was very efficient in obtaining T2 and T2* weighted images in magnetic resonance, thus, might be used as contrast agents. CONCLUSION This is the first description of the use of inclusion complexes of holmium acetylacetonate in biodegradable polymers as contrast agents. New investigations are underway to evaluate the resistance of PHB-HV polymer microparticles to nuclear activation to assess their potential for use as radiopharmaceuticals for the treatment of liver cancer.
Collapse
Affiliation(s)
| | - Vitor HS Melo
- Centro de Biotecnologia, IPEN/CNEN-SP, São Paulo, Brazil
| | | | | | - Caio HN Barros
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
- Instituto de Química, UNICAMP, SP, Campinas, Brazil
| | | |
Collapse
|
9
|
Pandey U, Subramanian S, Shaikh S, Gamre N, Kumar S, Dash A. Synthesis and Preliminary Biological Evaluation of 177Lu-Labeled Polyhydroxamic Acid Microparticles Toward Therapy of Hepatocellular Carcinoma. Cancer Biother Radiopharm 2019; 34:306-315. [PMID: 31188652 DOI: 10.1089/cbr.2018.2747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Transarterial radioembolization (TARE) represents an effective targeted therapeutic option for hepatocellular carcinoma (HCC), a cancer with high mortality and poor prognosis. The aim of this study was the preparation and preliminary biological evaluation of 177Lu-labeled polyhydroxamic acid (PHA) microparticles toward possible use in the therapy of HCC. Materials and Methods: PHA microparticles were synthesized starting from polyacrylamide. They were characterized by Fourier-transform infrared spectroscopy (FT-IR), visual color test, and laser diffraction particle size analysis. Experimental variables such as reaction pH, amount of PHA microparticles, carrier Lu content, and incubation time were optimized for maximum uptake of 177Lu on PHA microparticles. Stability of 177Lu-PHA microparticles was tested in the presence of competing Fe(III) ions in solution. In vitro stability of 177Lu-PHA microparticles was evaluated in 0.05 M sodium phosphate solution (pH 7.5), saline, and serum. Bioevaluation studies were performed in normal Wistar rats by intrahepatic artery injection of the 177Lu-PHA microparticles. Results: Successful synthesis of PHA microparticles could be confirmed from the results of FT-IR analysis and visual color test. Laser diffraction-based particle size analysis confirmed median particle size to be 54 μm, suitable for TARE. Under the optimized conditions, >99% loading of 177Lu on PHA microparticles could be achieved. Even in the presence of high concentration of Fe(III) ions, 177Lu binding to PHA microparticles was stable. 177Lu-PHA microparticles exhibited excellent in vitro stability in sodium phosphate solution, saline, and serum up to 5 d at 37°C. In the bioevaluation studies performed in normal Wistar rats, 92.8% ± 3.1% of 177Lu-PHA microparticles were retained in the liver at 96 h postinjection without any significant leakage to other organs. Conclusion: This preliminary study demonstrates the potential of synthesized PHA microparticles as carriers of therapeutic radioisotopes such as 177Lu for treatment of HCC.
Collapse
Affiliation(s)
- Usha Pandey
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,2 Homi Bhabha National Institute, Mumbai, India
| | - Suresh Subramanian
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,2 Homi Bhabha National Institute, Mumbai, India
| | - Samina Shaikh
- 2 Homi Bhabha National Institute, Mumbai, India.,3 Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Naresh Gamre
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sanjukta Kumar
- 2 Homi Bhabha National Institute, Mumbai, India.,3 Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,2 Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
10
|
Bouvry C, Palard X, Edeline J, Ardisson V, Loyer P, Garin E, Lepareur N. Transarterial Radioembolization (TARE) Agents beyond 90Y-Microspheres. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1435302. [PMID: 30687734 PMCID: PMC6330886 DOI: 10.1155/2018/1435302] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Liver malignancies, either primary tumours (mainly hepatocellular carcinoma and cholangiocarcinoma) or secondary hepatic metastases, are a major cause of death, with an increasing incidence. Among them, hepatocellular carcinoma (HCC) presents with a dark prognosis because of underlying liver diseases and an often late diagnosis. A curative surgical treatment can therefore only be proposed in 20 to 30% of the patients. However, new treatment options for intermediate to advanced stages, such as internal radionuclide therapy, seem particularly attractive. Transarterial radioembolization (TARE), which consists in the use of intra-arterial injection of a radiolabelled embolising agent, has led to very promising results. TARE with 90Y-loaded microspheres is now becoming an established procedure to treat liver tumours, with two commercially available products (namely, SIR-Sphere® and TheraSphere®). However, this technology remains expensive and is thus not available everywhere. The aim of this review is to describe TARE alternative technologies currently developed and investigated in clinical trials, with special emphasis on HCC.
Collapse
Affiliation(s)
- C. Bouvry
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - X. Palard
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inserm, LTSI (Laboratoire Traitement du Signal et de l'Image), UMR_S 1099, 35000 Rennes, France
| | - J. Edeline
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| | - V. Ardisson
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
| | - P. Loyer
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| | - E. Garin
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| | - N. Lepareur
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| |
Collapse
|
11
|
Radioactive holmium phosphate microspheres for cancer treatment. Int J Pharm 2018; 548:73-81. [PMID: 29913219 DOI: 10.1016/j.ijpharm.2018.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/21/2022]
Abstract
The aim of this study was the development of radioactive holmium phosphate microspheres (HoPO4-MS) with a high holmium content and that are stable in human serum for selective internal radiation therapy (SIRT) of liver cancer. To this end, holmium acetylacetonate microspheres (HoAcAc-MS) were prepared (34.2 ± 1.0 µm in diameter, holmium content of 46.2 ± 0.8 and density of 1.7 g/cm3) via an emulsification and solvent evaporation method. The concentration of HoAcAc in the organic solvent, the temperature of emulsification and the stirring speed were varied for the preparation of the HoAcAc-MS to obtain microspheres with different diameters ranging from 11 to 35 µm. Subsequently, the AcAc ligands of the HoAcAc-MS were replaced by phosphate ions by simply incubating neutron irradiated HoAcAc-MS in a phosphate buffer solution (0.116 M, pH 4.2) to yield radioactive HoPO4-MS. The obtained microspheres were analyzed using different techniques such as SEM-EDS, ICP-OES and HPLC. The prepared HoPO4-MS (29.5 ± 1.2 µm in diameter and a density of 3.1 g/cm3) present an even higher holmium content (52 wt%) than the HoAcAc-MS precursor (46 wt%). Finally, the stability of the HoPO4-MS was tested by incubation in human serum at 37 °C which showed no visible changes of the microspheres morphology and only 0.1% of holmium release was observed during the 2 weeks period of incubation. In conclusion, this study shows that stable radioactive HoPO4-MS can be prepared with suitable properties to be used for cancer therapy.
Collapse
|
12
|
Chakravarty R, Hong H, Cai W. Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature. Curr Drug Targets 2016; 16:592-609. [PMID: 25182469 DOI: 10.2174/1389450115666140902125657] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022]
Abstract
Tremendous resources are being invested all over the world for prevention, diagnosis, and treatment of various types of cancer. Successful cancer management depends on accurate diagnosis of the disease along with precise therapeutic protocol. The conventional systemic drug delivery approaches generally cannot completely remove the competent cancer cells without surpassing the toxicity limits to normal tissues. Therefore, development of efficient drug delivery systems holds prime importance in medicine and healthcare. Also, molecular imaging can play an increasingly important and revolutionizing role in disease management. Synergistic use of molecular imaging and targeted drug delivery approaches provides unique opportunities in a relatively new area called 'image-guided drug delivery' (IGDD). Single-photon emission computed tomography (SPECT) is the most widely used nuclear imaging modality in clinical context and is increasingly being used to guide targeted therapeutics. The innovations in material science have fueled the development of efficient drug carriers based on, polymers, liposomes, micelles, dendrimers, microparticles, nanoparticles, etc. Efficient utilization of these drug carriers along with SPECT imaging technology have the potential to transform patient care by personalizing therapy to the individual patient, lessening the invasiveness of conventional treatment procedures and rapidly monitoring the therapeutic efficacy. SPECT-IGDD is not only effective for the treatment of cancer but might also find utility in the management of several other diseases. Herein, we provide a concise overview of the latest advances in SPECT-IGDD procedures and discuss the challenges and opportunities for advancement of the field.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | |
Collapse
|
13
|
O' Doherty J. A review of 3D image-based dosimetry, technical considerations and emerging perspectives in 90Y microsphere therapy. ACTA ACUST UNITED AC 2015; 2:1-34. [PMID: 27182449 DOI: 10.17229/jdit.2015-0428-016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Yttrium-90 radioembolization (90Y-RE) is a well-established therapy for the treatment of hepatocellular carcinoma (HCC) and also of metastatic liver deposits from other malignancies. Nuclear Medicine and Cath Lab diagnostic imaging takes a pivotal role in the success of the treatment, and in order to fully exploit the efficacy of the technique and provide reliable quantitative dosimetry that are related to clinical endpoints in the era of personalized medicine, technical challenges in imaging need to be overcome. In this paper, the extensive literature of current 90Y-RE techniques and challenges facing it in terms of quantification and dosimetry are reviewed, with a focus on the current generation of 3D dosimetry techniques. Finally, new emerging techniques are reviewed which seek to overcome these challenges, such as high-resolution imaging, novel surgical procedures and the use of other radiopharmaceuticals for therapy and pre-therapeutic planning.
Collapse
Affiliation(s)
- Jim O' Doherty
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
14
|
Foltys D, Kaths M, Strempel M, Weiler N, Heimann A, Knaak JM, Weyer V, Hansen T, Kempski O, Otto G. Comparative analysis of in situ versus ex situ perfusion on micro circulation in liver procurement--an experimental trial in a porcine model. Transplant Proc 2014; 45:1693-9. [PMID: 23769026 DOI: 10.1016/j.transproceed.2013.02.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/08/2013] [Accepted: 02/01/2013] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The Achilles heel of liver transplantation remains the biliary system. The crucial step for liver preservation is effective rinsing and perfusion of the peribiliary plexus (PBP). Due to the physiology of the vascular tree, it seems almost impossible to achieve the necessary physiologic ranges of pressure and flow by the in situ perfusion technique. We investigated the role of additional ex situ perfusion via the hepatic artery in this animal model. MATERIALS AND METHODS Fifteen German Landrace pigs underwent standardized multiorgan procurement. In situ perfusion and additional ex situ perfusion were performed consecutively. Meanwhile the external pressure applied to the perfusion system was increased stepwise. To visualize the effects on the liver parenchyma and PBP, we administered colored microparticles (MPs; 10 μm). Frozen sections of the explanted liver were studied histologically by quantitative evaluation of the MPs. RESULTS Ex situ perfusion was able to build up significantly higher values of pressure (P < .001) and flow (P < .001) than in situ perfusion. Those of ex situ perfusion reached physiological levels under application of an external pressure of 200 mm Hg. Considering the liver parenchyma, significantly higher amounts of MPs originating from ex situ perfusion were evident (P < .001) and PBP (P < .001). CONCLUSION MPs provide an appropriate tool to determine organ perfusion quantitatively in experimental models. Considering flow, pressure, and microcirculation, we consider that additional ex situ perfusion of the liver is more effective than in situ perfusion.
Collapse
Affiliation(s)
- D Foltys
- Department of Transplantation and Hepatobiliopancreatic Surgery, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vente MAD, Zonnenberg BA, Nijsen JFW. Microspheres for radioembolization of liver malignancies. Expert Rev Med Devices 2014; 7:581-3. [DOI: 10.1586/erd.10.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Taleb J, Janier M, Bonazza P, Roux P, Miladi I, Goutain-Majorel C, Billotey C, Kryza D. Radiation dose measurements for staff members involved in holmium-166 preclinical trial. RADIAT MEAS 2013. [DOI: 10.1016/j.radmeas.2013.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Smits MLJ, Elschot M, van den Bosch MAAJ, van de Maat GH, van het Schip AD, Zonnenberg BA, Seevinck PR, Verkooijen HM, Bakker CJ, de Jong HWAM, Lam MGEH, Nijsen JFW. In vivo dosimetry based on SPECT and MR imaging of 166Ho-microspheres for treatment of liver malignancies. J Nucl Med 2013; 54:2093-100. [PMID: 24136931 DOI: 10.2967/jnumed.113.119768] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED (166)Ho-poly(l-lactic acid) microspheres allow for quantitative imaging with MR imaging or SPECT for microsphere biodistribution assessment after radioembolization. The purpose of this study was to evaluate SPECT- and MR imaging-based dosimetry in the first patients treated with (166)Ho radioembolization. METHODS Fifteen patients with unresectable, chemorefractory liver metastases of any origin were enrolled in this phase 1 study and were treated with (166)Ho radioembolization according to a dose escalation protocol (20-80 Gy). The contours of all liver segments and all discernible tumors were manually delineated on T2-weighted posttreatment MR images and registered to the posttreatment SPECT images (n = 9) or SPECT/CT images (n = 6) and MR imaging-based R2* maps (n = 14). Dosimetry was based on SPECT (n = 15) and MR imaging (n = 9) for all volumes of interest, tumor-to-nontumor (T/N) activity concentration ratios were calculated, and correlation and agreement of MR imaging- and SPECT-based measurements were evaluated. RESULTS The median overall T/N ratio was 1.4 based on SPECT (range, 0.9-2.8) and 1.4 based on MR imaging (range, 1.1-3.1). In 6 of 15 patients (40%), all tumors had received an activity concentration equal to or higher than the normal liver (T/N ratio ≥ 1). Analysis of SPECT and MR imaging measurements for dose to liver segments yielded a high correlation (R(2) = 0.91) and a moderate agreement (mean bias, 3.7 Gy; 95% limits of agreement, -11.2 to 18.7). CONCLUSION With the use of (166)Ho-microspheres, in vivo dosimetry is feasible on the basis of both SPECT and MR imaging, which enables personalized treatment by selective targeting of inadequately treated tumors.
Collapse
Affiliation(s)
- Maarten L J Smits
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Comparative analysis of in situ versus ex situ perfusion on flow and microcirculation in kidney procurement: research on a porcine model. Transplant Res 2013; 2:13. [PMID: 23837545 PMCID: PMC3748828 DOI: 10.1186/2047-1440-2-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/18/2013] [Indexed: 11/13/2022] Open
Abstract
Background The first crucial step in transplantation appears to be the effective rinsing
of the graft during organ procurement. Even though there is strong suspicion
that ex situ perfusion results in better rinsing of the graft,
there is no proof for this hypothesis. The aim of this study was to analyse
the differences of in situ and ex situ kidney perfusion in
a porcine model. Methods Standardised multiorgan procurement was performed in 15 German landrace pigs.
Perfusion was carried out using
histidine–tryptophan–ketoglutarate solution (HTK) under the
application of pressure. In one kidney, in situ perfusion via the
aorta was carried out while the second kidney received ex situ
perfusion via the renal artery (RA). Perfusate flow inside the aorta and the
RA was recorded at different pressure steps. In order to visualise the
effect on the microcirculation, different coloured microparticles (MPs; 10
μm) were administered via the aorta or RA. Subsequently, frozen
sections of the explanted kidneys were analysed histologically and MPs were
evaluated quantitatively. Results Ex situ kidney perfusion resulted in significantly improved flow
rates (P<0.0001) compared with in situ perfusion. By
applying ex situ perfusion it was even possible to attain
physiological flow levels on the RA under the application of external
pressure of 150 to 200 mmHg. The amount of MPs was able to highlight the
positive impact of ex situ perfusion on microcirculation of the
kidney graft (P<0.0001). Conclusions The use of MPs represents a valuable tool for quantitative investigation and
illustration of kidney perfusion in experimental setups. Additional ex
situ perfusion is able to improve the quality of kidney
perfusion.
Collapse
|
19
|
Hosseini SH, Enferadi M, Sadeghi M. Dosimetric aspects of 166Ho brachytherapy biodegradable glass seed. Appl Radiat Isot 2012; 73:109-15. [PMID: 23313765 DOI: 10.1016/j.apradiso.2012.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/27/2012] [Accepted: 12/04/2012] [Indexed: 11/20/2022]
Abstract
The purpose of this study is to perform absorbed dose calculations based on Monte Carlo simulations for a novel beta emitter bioglass Ho-166 seed which is proposed for treating small hepatocellular carcinomas (HCCs). The bioactive glass seed has been developed by use of the sol-gel method. Monte Carlo simulations were carried out for the seed using the version 5 of the (MCNP) Monte Carlo radiation transport code to investigate the dosimetric parameters recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were obtained at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 6.71 ± 0.4 cGy h(-1) μCi(-1). The anisotropy function values ranging from 0.745 to 1.928 were obtained for radial distances of 0.3-8 mm and polar angles of 0°-90°. The (166)Ho seed source can deliver high radiation doses to the tumor, while the short range of the beta particles limits damage to the adjacent normal tissue.
Collapse
Affiliation(s)
- S Hamed Hosseini
- Department of Biomedical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | | |
Collapse
|
20
|
Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol 2012; 13:1025-34. [DOI: 10.1016/s1470-2045(12)70334-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Bult W, Vente MAD, Vandermeulen E, Gielen I, Seevinck PR, Saunders J, van Het Schip AD, Bakker CJG, Krijger GC, Peremans K, Nijsen JFW. Microbrachytherapy using holmium-166 acetylacetonate microspheres: a pilot study in a spontaneous cancer animal model. Brachytherapy 2012; 12:171-7. [PMID: 22999975 DOI: 10.1016/j.brachy.2012.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/29/2011] [Accepted: 03/13/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Holmium-166 acetylacetonate microspheres ((166)Ho-AcAc-MS) are proposed as an intratumoral radioablation device. This article presents a pilot study in housecats with unresectable liver cancer. Feasibility and tolerability of intratumoral administrations of (166)Ho-AcAc-MS was investigated. METHODS AND MATERIALS Three cats with unresectable liver tumors of different histotype were included. One cat had hepatocellular carcinoma (HCC), one had cholangiocarcinoma (CC), and one had a malignant epithelial liver tumor (MELT) of unspecified histotype. (166)Ho-AcAc-MS were injected percutaneously under ultrasound guidance into the tumors. Followup consisted of physical examinations and hematologic and biochemical analyses. RESULTS (166)Ho-AcAc-MS were administered to three liver tumor-bearing cats. The treatment was well tolerated and the clinical condition, that is body weight, alertness, mobility, and coat condition of the animals improved markedly. Most biochemical and hematologic parameters normalized shortly after treatment. Life of all cats was extended and associated with a good quality of life. The HCC cat that received 33-Gy tumor-absorbed dose was euthanized 6 months after the first administration owing to disease progression. The MELT cat received 99-Gy tumor dose and was euthanized 3 months posttreatment owing to bacterial meningitis. The CC cat received 333Gy and succumbed 4 months after the first treatment owing to the formation of a pulmonary embolism. CONCLUSIONS Percutaneous intratumoral injection of radioactive (166)Ho-AcAc-MS is feasible in liver tumor-bearing cats. The findings of this pilot study indicate that (166)Ho-AcAc-MS may constitute safe brachytherapeutic microspheres and warrant studies to confirm the clinical utility of this novel brachytherapy device.
Collapse
Affiliation(s)
- Wouter Bult
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Magnetic Resonance Imaging-Based Radiation-Absorbed Dose Estimation of 166Ho Microspheres in Liver Radioembolization. Int J Radiat Oncol Biol Phys 2012; 83:e437-44. [DOI: 10.1016/j.ijrobp.2011.12.085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 01/17/2023]
|
23
|
|
24
|
Interventional radiology and the care of the oncology patient. Radiol Res Pract 2011; 2011:160867. [PMID: 22091374 PMCID: PMC3196980 DOI: 10.1155/2011/160867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 01/27/2011] [Indexed: 12/21/2022] Open
Abstract
Interventional Radiology (IR) is occupying an increasingly prominent role in the care of patients with cancer, with involvement from initial diagnosis, right through to minimally invasive treatment of the malignancy and its complications. Adequate diagnostic samples can be obtained under image guidance by percutaneous biopsy and needle aspiration in an accurate and minimally invasive manner. IR techniques may be used to place central venous access devices with well-established safety and efficacy. Therapeutic applications of IR in the oncology patient include local tumour treatments such as transarterial chemo-embolisation and radiofrequency ablation, as well as management of complications of malignancy such as pain, organ obstruction, and venous thrombosis.
Collapse
|
25
|
Elschot M, Nijsen JFW, Dam AJ, de Jong HWAM. Quantitative evaluation of scintillation camera imaging characteristics of isotopes used in liver radioembolization. PLoS One 2011; 6:e26174. [PMID: 22073149 PMCID: PMC3207835 DOI: 10.1371/journal.pone.0026174] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/21/2011] [Indexed: 02/07/2023] Open
Abstract
Background Scintillation camera imaging is used for treatment planning and post-treatment dosimetry in liver radioembolization (RE). In yttrium-90 (90Y) RE, scintigraphic images of technetium-99m (99mTc) are used for treatment planning, while 90Y Bremsstrahlung images are used for post-treatment dosimetry. In holmium-166 (166Ho) RE, scintigraphic images of 166Ho can be used for both treatment planning and post-treatment dosimetry. The aim of this study is to quantitatively evaluate and compare the imaging characteristics of these three isotopes, in order that imaging protocols can be optimized and RE studies with varying isotopes can be compared. Methodology/Principal Findings Phantom experiments were performed in line with NEMA guidelines to assess the spatial resolution, sensitivity, count rate linearity, and contrast recovery of 99mTc, 90Y and 166Ho. In addition, Monte Carlo simulations were performed to obtain detailed information about the history of detected photons. The results showed that the use of a broad energy window and the high-energy collimator gave optimal combination of sensitivity, spatial resolution, and primary photon fraction for 90Y Bremsstrahlung imaging, although differences with the medium-energy collimator were small. For 166Ho, the high-energy collimator also slightly outperformed the medium-energy collimator. In comparison with 99mTc, the image quality of both 90Y and 166Ho is degraded by a lower spatial resolution, a lower sensitivity, and larger scatter and collimator penetration fractions. Conclusions/Significance The quantitative evaluation of the scintillation camera characteristics presented in this study helps to optimize acquisition parameters and supports future analysis of clinical comparisons between RE studies.
Collapse
Affiliation(s)
- Mattijs Elschot
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
26
|
Norek M, Peters JA. MRI contrast agents based on dysprosium or holmium. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 59:64-82. [PMID: 21600356 DOI: 10.1016/j.pnmrs.2010.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/31/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Małgorzata Norek
- Biocatalysis and Organic Chemistry, Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | |
Collapse
|
27
|
Cacaina D, Areva S, Laaksonen H, Simon S, Ylänen H. Preparation and complex characterization of silica holmium sol-gel monoliths. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:29-40. [PMID: 21132520 DOI: 10.1007/s10856-010-4186-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 11/09/2010] [Indexed: 05/30/2023]
Abstract
Amorphous, sol-gel derived SiO(2) are known to biocompatible and bioresorbable materials. Biodegradable and inert materials containing radioactive isotopes have potential application as delivery vehicles of the beta radiation to the cancer tumors inside the body. Incorporation of holmium in the sol-gel derived SiO(2) could lead to the formation of a biodegradable material which could be used as carrier biomaterial for the radiation of radioactive holmium to the various cancer sites. The homogeneity of the prepared sol-gel silica holmium monoliths was investigated by Back Scattered Electron Imaging of Scanning Electron Microscope equipped with Energy Dispersive X-ray Analysis, X-ray Induced Photoelectron Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The biodegradation of the monoliths was investigated in Simulated Body Fluid and TRIS (Trizma pre-set Crystals) solution. The results show that by suitable tailoring of the sol-gel processing parameters holmium can be homogeneously incorporated in the silica matrix with a controlled biodegradation rate.
Collapse
Affiliation(s)
- D Cacaina
- Turku Biomaterials Centre, University of Turku, Turku, Finland.
| | | | | | | | | |
Collapse
|
28
|
Gates VL, Esmail AA, Marshall K, Spies S, Salem R. Internal Pair Production of 90Y Permits Hepatic Localization of Microspheres Using Routine PET: Proof of Concept. J Nucl Med 2010; 52:72-6. [DOI: 10.2967/jnumed.110.080986] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
29
|
Smits MLJ, Nijsen JFW, van den Bosch MAAJ, Lam MGEH, Vente MAD, Huijbregts JE, van het Schip AD, Elschot M, Bult W, de Jong HWAM, Meulenhoff PCW, Zonnenberg BA. Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:70. [PMID: 20550679 PMCID: PMC2903532 DOI: 10.1186/1756-9966-29-70] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/15/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND Intra-arterial radioembolization with yttrium-90 microspheres ( 90Y-RE) is an increasingly used therapy for patients with unresectable liver malignancies. Over the last decade, radioactive holmium-166 poly(L-lactic acid) microspheres ( 166Ho-PLLA-MS) have been developed as a possible alternative to 90Y-RE. Next to high-energy beta-radiation, 166Ho also emits gamma-radiation, which allows for imaging by gamma scintigraphy. In addition, Ho is a highly paramagnetic element and can therefore be visualized by MRI. These imaging modalities are useful for assessment of the biodistribution, and allow dosimetry through quantitative analysis of the scintigraphic and MR images. Previous studies have demonstrated the safety of 166Ho-PLLA-MS radioembolization ( 166Ho-RE) in animals. The aim of this phase I trial is to assess the safety and toxicity profile of 166Ho-RE in patients with liver metastases. METHODS The HEPAR study (Holmium Embolization Particles for Arterial Radiotherapy) is a non-randomized, open label, safety study. We aim to include 15 to 24 patients with liver metastases of any origin, who have chemotherapy-refractory disease and who are not amenable to surgical resection. Prior to treatment, in addition to the standard technetium-99m labelled macroaggregated albumin ( 99mTc-MAA) dose, a low radioactive safety dose of 60-mg 166Ho-PLLA-MS will be administered. Patients are treated in 4 cohorts of 3-6 patients, according to a standard dose escalation protocol (20 Gy, 40 Gy, 60 Gy, and 80 Gy, respectively). The primary objective will be to establish the maximum tolerated radiation dose of 166Ho-PLLA-MS. Secondary objectives are to assess tumour response, biodistribution, performance status, quality of life, and to compare the 166Ho-PLLA-MS safety dose and the 99mTc-MAA dose distributions with respect to the ability to accurately predict microsphere distribution. DISCUSSION This will be the first clinical study on 166Ho-RE. Based on preclinical studies, it is expected that 166Ho-RE has a safety and toxicity profile comparable to that of 90Y-RE. The biochemical and radionuclide characteristics of 166Ho-PLLA-MS that enable accurate dosimetry calculations and biodistribution assessment may however improve the overall safety of the procedure.
Collapse
Affiliation(s)
- Maarten L J Smits
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, E01,132, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|