1
|
Martin AR, Tetreault L, Nouri A, Curt A, Freund P, Rahimi-Movaghar V, Wilson JR, Fehlings MG, Kwon BK, Harrop JS, Davies BM, Kotter MRN, Guest JD, Aarabi B, Kurpad SN. Imaging and Electrophysiology for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 9]. Global Spine J 2022; 12:130S-146S. [PMID: 34797993 PMCID: PMC8859711 DOI: 10.1177/21925682211057484] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVE The current review aimed to describe the role of existing techniques and emerging methods of imaging and electrophysiology for the management of degenerative cervical myelopathy (DCM), a common and often progressive condition that causes spinal cord dysfunction and significant morbidity globally. METHODS A narrative review was conducted to summarize the existing literature and highlight future directions. RESULTS Anatomical magnetic resonance imaging (MRI) is well established in the literature as the key imaging tool to identify spinal cord compression, disc herniation/bulging, and inbuckling of the ligamentum flavum, thus facilitating surgical planning, while radiographs and computed tomography (CT) provide complimentary information. Electrophysiology techniques are primarily used to rule out competing diagnoses. However, signal change and measures of cord compression on conventional MRI have limited utility to characterize the degree of tissue injury, which may be helpful for diagnosis, prognostication, and repeated assessments to identify deterioration. Early translational studies of quantitative imaging and electrophysiology techniques show potential of these methods to more accurately reflect changes in spinal cord microstructure and function. CONCLUSION Currently, clinical management of DCM relies heavily on anatomical MRI, with additional contributions from radiographs, CT, and electrophysiology. Novel quantitative assessments of microstructure, perfusion, and function have the potential to transform clinical practice, but require robust validation, automation, and standardization prior to uptake.
Collapse
Affiliation(s)
- Allan R Martin
- Department of Neurological Surgery, 8789University of California Davis, Davis, CA, USA
| | - Lindsay Tetreault
- Department of Neurology, 5894New York University, Langone Health, Graduate Medical Education, New York, NY, USA
| | - Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, 27230University of Geneva, Geneva, Switzerland
| | - Armin Curt
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - James S Harrop
- Department of Neurological Surgery, 6529Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin M Davies
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - James D Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, 12235University of Miami, Miami, FL, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, 1479University of Maryland, Baltimore, MD, USA
| | - Shekar N Kurpad
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| |
Collapse
|
2
|
Jaiswal S, Brabazon F, von Leden R, Acs D, Collier S, Allison N, Dardzinski B, Byrnes KR. Spinal cord injury chronically depresses glucose uptake in the rodent model. Neurosci Lett 2021; 771:136416. [PMID: 34954116 DOI: 10.1016/j.neulet.2021.136416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
The pathophysiology following spinal cord injury (SCI) progresses from its lesion epicenter resulting in cellular and systemic changes acutely, sub-acutely and chronically. The symptoms of the SCI depend upon the severity of the injury and its location in the spinal cord. However, there is lack of studies that have longitudinally assessed acute through chronic in vivo changes following SCI. In this combinatorial study we fill this gap by evaluating acute to chronic effects of moderate SCI in rats. We have used fluorodeoxyglucose (FDG) imaging with positron emission tomography (PET) as a marker to assess glucose metabolism, motor function, and immunohistochemistry to examine changes following moderate SCI. Our results demonstrate decreased FDG uptake at the injury site chronically at days 28 and 90 post injury compared to baseline. This alteration in glucose uptake was not restricted to the lesion site, showing depressed FDG uptake in non-injured areas (cervical spinal cord and cerebellum). The alteration in glucose uptake was correlated with reductions in neuronal cell viability and increases in glial cell activation at 90 days at the lesion site, as well as chronic impairments in motor function. These data demonstrate the chronic effects of SCI on glucose metabolism both within the lesion and distally within the spinal cord and brain.
Collapse
Affiliation(s)
- Shalini Jaiswal
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, USA; Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
| | - Fiona Brabazon
- Neuroscience Program, Uniformed Services University, Bethesda, MD, USA
| | - Ramona von Leden
- Neuroscience Program, Uniformed Services University, Bethesda, MD, USA
| | - Deanna Acs
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Sean Collier
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Nathanael Allison
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
| | - Bernard Dardzinski
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
| | - Kimberly R Byrnes
- Neuroscience Program, Uniformed Services University, Bethesda, MD, USA; Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
3
|
Shaughness M, Acs D, Brabazon F, Hockenbury N, Byrnes KR. Role of Insulin in Neurotrauma and Neurodegeneration: A Review. Front Neurosci 2020; 14:547175. [PMID: 33100956 PMCID: PMC7546823 DOI: 10.3389/fnins.2020.547175] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin is a hormone typically associated with pancreatic release and blood sugar regulation. The brain was long thought to be “insulin-independent,” but research has shown that insulin receptors (IR) are expressed on neurons, microglia and astrocytes, among other cells. The effects of insulin on cells within the central nervous system are varied, and can include both metabolic and non-metabolic functions. Emerging data suggests that insulin can improve neuronal survival or recovery after trauma or during neurodegenerative diseases. Further, data suggests a strong anti-inflammatory component of insulin, which may also play a role in both neurotrauma and neurodegeneration. As a result, administration of exogenous insulin, either via systemic or intranasal routes, is an increasing area of focus in research in neurotrauma and neurodegenerative disorders. This review will explore the literature to date on the role of insulin in neurotrauma and neurodegeneration, with a focus on traumatic brain injury (TBI), spinal cord injury (SCI), Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Michael Shaughness
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Deanna Acs
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fiona Brabazon
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Nicole Hockenbury
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kimberly R Byrnes
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
4
|
Zhou F, Huang M, Wu L, Tan Y, Guo J, Zhang Y, He L, Gong H. Altered perfusion of the sensorimotor cortex in patients with cervical spondylotic myelopathy: an arterial spin labeling study. J Pain Res 2018; 11:181-190. [PMID: 29391824 PMCID: PMC5769569 DOI: 10.2147/jpr.s148076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective Advanced magnetic resonance imaging studies have shown functional plasticity or reorganization and metabolite alterations of N-acetyl aspartate in the sensorimotor cortex (SMC), a hallmark region and key brain network, in patients with cervical spondylotic myelopathy (CSM). However, the nature of perfusion in the SMC and the relationship between regional cerebral blood flow (CBF), motor function scores, and structural damage of the cervical cord in patients with CSM are not fully understood. Materials and methods All right-handed participants underwent pseudo-continuous arterial spin labeling pulse sequence scanning, and CBF was then calculated and compared between CSM and healthy groups. Clinical and structural associations were assessed in the SMC. Receiver operating characteristic (ROC) and leave-one-out cross-validation analyses were used to estimate the sensitivity and specificity of the significantly altered CBF in the SMC to distinguish myelopathy-related impairment. Results A total of 18 pairs of CSM patients and well-matched healthy subjects were included in the analyses. Compared with healthy subjects, CSM patients exhibited significantly decreased CBF in the left premotor ventral/precentral operculum (PMv/PrCO) and the bilateral dorsal anterior cingulate cortex (dACC); and increased CBF in the left paracentral lobule (PCL), the right PCL/supplementary motor area (PCL/SMA), and the right postcentral gyrus (PoCG; Gaussian random field correction at P<0.01). In the CSM group, the CBF values in the right PoCG were negatively correlated with Japanese Orthopaedic Association scores, and the CBF values in several regions were negatively correlated with Neck Disability Index scores. Finally, the ROC analysis revealed that significantly increased CBF in the left PCL, the right PCL/SMA, and the right PoCG discriminated patients with myelopathy-related impairment from healthy subjects. Conclusion Regional CBF was reduced in operculum-integrated (PMv/PrCO) and motor control (dACC) regions but increased in sensory (PoCG) and motor-sensory processing (PCL/SMA) regions in patients with CSM.
Collapse
Affiliation(s)
- Fuqing Zhou
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, People's Republic of China
| | - Muhua Huang
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, People's Republic of China
| | - Lin Wu
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, People's Republic of China
| | - Yongming Tan
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, People's Republic of China
| | - Jianqiang Guo
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, People's Republic of China
| | - Yong Zhang
- Department of Pain Clinic, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Laichang He
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, People's Republic of China
| | - Honghan Gong
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
5
|
A Large Cohort Study of 18F Fluoro-Deoxy-Glucose Uptake in Normal Spinal Cord: Quantitative Assessment of the Contamination From Adjacent Vertebral Marrow Uptake and Validity of Normalizing the Cord Uptake Against the Lumbar Thecal Sac. J Comput Assist Tomogr 2016; 41:125-130. [PMID: 27560019 DOI: 10.1097/rct.0000000000000479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed (1) to assess the influence of age, sex, blood glucose, and body mass index on the F fluoro-deoxy-glucose (F-FDG) uptake in normal spinal cord; (2) to quantitatively evaluate contamination of the spinal cord SUVmax by the adjacent vertebral marrow activity; and (3) to investigate the validity of normalizing spinal cord SUVmax against lumbar thecal sac SUVmax. METHODS Two hundred positron emission tomography-computed tomography examinations of subjects with normal spinal cord were retrospectively reviewed. SUVmax of spinal cord and vertebral body was obtained at C2, C5, T6, T12, and L3 levels. Pearson correlation coefficients (r) were obtained at each level between spinal cord SUVmax and vertebral marrow SUVmax, age, body mass index, and blood glucose. Cord to background ratio (CTB) was calculated as the ratio between SUVmax of spinal cord and SUVmax of L3 thecal sac. The coefficient of variation (CV) of spinal cord SUVmax was compared with the CV of CTB. RESULTS Spinal cord SUVmax was highest at C2 (mean, 1.76) and lowest at T6 (mean, 1.37) with SD of 0.32 to 0.36 SUV. Sex (P > 0.45), age (r: -0.25 to -0.06), body mass index (r: 0.19 to 0.27), and blood glucose (r: -0.17 to 0.22) had no impact on the spinal cord SUVmax. A moderate to strong positive correlation (r: 0.66-0.80) was found between spinal cord SUVmax and the corresponding vertebral marrow SUVmax. The CV of CTB was greater (0.28-0.32) than the CV of spinal cord SUVmax (0.19-0.25) across all levels. CONCLUSIONS Of the variables studied, only contamination from adjacent vertebral marrow activity significantly affected the SUVmax of spinal cord. This contamination should be corrected for when reporting spinal cord FDG uptake. Lumbar thecal sac is not a valid reference for normalizing spinal cord FDG uptake.
Collapse
|
6
|
von Leden RE, Selwyn RG, Jaiswal S, Wilson CM, Khayrullina G, Byrnes KR. (18)F-FDG-PET imaging of rat spinal cord demonstrates altered glucose uptake acutely after contusion injury. Neurosci Lett 2016; 621:126-132. [PMID: 27084688 DOI: 10.1016/j.neulet.2016.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/25/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) results in an acute reduction in neuronal and glial cell viability, disruption in axonal tract integrity, and prolonged increases in glial activity and inflammation, all of which can influence regional metabolism and glucose utilization. To date, the understanding of glucose uptake and utilization in the injured spinal cord is limited. Positron emission tomography (PET)-based measurements of glucose uptake may therefore serve as a novel biomarker for SCI. This study aimed to determine the acute and sub-acute glucose uptake pattern after SCI to determine its potential as a novel non-invasive tool for injury assessment and to begin to understand the glucose uptake pattern following acute SCI. Briefly, adult male Sprague-Dawley rats were subjected to moderate contusion SCI, confirmed by locomotor function and histology. PET imaging with [(18)F] Fluorodeoxyglucose (FDG) was performed prior to injury and at 6 and 24h and 15days post-injury (dpi). FDG-PET imaging revealed significantly depressed glucose uptake at 6h post-injury at the lesion epicenter that returned to sham/naïve levels at 24h and 15 dpi after moderate injury. FDG uptake at 15 dpi was likely influenced by a combination of elevated glial presence and reduced neuronal viability. These results show that moderate SCI results in acute depression in glucose uptake followed by an increase in glucose uptake that may be related to neuroinflammation. This acute and sub-acute uptake, which is dependent on cellular responses, may represent a therapeutic target.
Collapse
Affiliation(s)
- Ramona E von Leden
- Neuroscience Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Reed G Selwyn
- Department of Radiology, University of New Mexico, Albuquerque, NM 87131, United States; Department of Radiology and Radiological Sciences, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Shalini Jaiswal
- Translational Imaging Core, Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Colin M Wilson
- Translational Imaging Core, Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Guzal Khayrullina
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Kimberly R Byrnes
- Neuroscience Program, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| |
Collapse
|
7
|
Ling ZM, Tang Y, Li YQ, Luo HX, Liu LL, Tu QQ, Zhou LH. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT. PLoS One 2015; 10:e0127685. [PMID: 26010770 PMCID: PMC4444271 DOI: 10.1371/journal.pone.0127685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/17/2015] [Indexed: 01/10/2023] Open
Abstract
Brachial plexus root avulsion (BPRA) leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av) treated with normal saline), Av+GM1 (treated with monosialoganglioside), and control. At time points of 3 day (d), 1 week (w), 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA.
Collapse
Affiliation(s)
- Ze-Min Ling
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Ying-Qin Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Hao-Xuan Luo
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Lin-Lin Liu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Qing-Qiang Tu
- Small Animal Molecular Imaging Center, Laboratories of Translational Medicine and Clinical Research, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Li-Hua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, P.R. China
- * E-mail:
| |
Collapse
|
8
|
Floeth FW, Galldiks N, Eicker S, Stoffels G, Herdmann J, Steiger HJ, Antoch G, Rhee S, Langen KJ. Hypermetabolism in 18F-FDG PET Predicts Favorable Outcome Following Decompressive Surgery in Patients with Degenerative Cervical Myelopathy. J Nucl Med 2013; 54:1577-83. [DOI: 10.2967/jnumed.112.113183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Eicker SO, Langen KJ, Galldiks N, Stoffels G, Herdmann J, Steiger HJ, Floeth FW. Clinical value of 2-deoxy-[18F]fluoro-d-glucose positron emission tomography in patients with cervical spondylotic myelopathy. Neurosurg Focus 2013; 35:E2. [DOI: 10.3171/2013.3.focus1379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cervical spondylotic myelopathy (CSM) is one of the most common spinal cord disorders in the elderly. It is usually diagnosed by MRI, but in a significant number of patients the clinical course of CSM does not correlate with the extent of the spinal cord compression. Recent studies have suggested that a distinct metabolic pattern of the cervical cord, as assessed by PET with 2-deoxy-[18F]fluoro-d-glucose (18F-FDG) may predict a patient's clinical outcome after decompressive surgery for cervical spine stenosis. The authors provide an overview of the recent literature regarding the value of PET with 18F-FDG of the cervical cord in patients with CSM, paying attention to prognostic aspects and the potential role of inflammatory processes in the acute phase of the disease.
Collapse
Affiliation(s)
- Sven O. Eicker
- 1Department of Neurosurgery, University of Düsseldorf
- 5Department of Neurosurgery, University of Hamburg-Eppendorf, Germany
| | | | - Norbert Galldiks
- 2Institute of Neuroscience and Medicine, Research Center Jülich
- 3Department of Neurology, University of Cologne
| | | | - Jörg Herdmann
- 4Department of Spine and Pain, St.-Vinzenz-Hospital, Düsseldorf; and
| | | | - Frank W. Floeth
- 1Department of Neurosurgery, University of Düsseldorf
- 4Department of Spine and Pain, St.-Vinzenz-Hospital, Düsseldorf; and
| |
Collapse
|
10
|
Chong A, Song HC, Byun BH, Hong SP, Min JJ, Bom HS, Ha JM, Lee JK. Changes in (18)f-fluorodeoxyglucose uptake in the spinal cord in a healthy population on serial positron emission tomography/computed tomography. Chonnam Med J 2013; 49:38-42. [PMID: 23678476 PMCID: PMC3651985 DOI: 10.4068/cmj.2013.49.1.38] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 11/11/2022] Open
Abstract
We aimed to determine the changes in 18F-fluorodeoxyglucose (FDG) uptake in the spinal cord on two serial positron emission tomography/computed tomography (PET/CT) scans in a healthy population. We retrospectively enrolled healthy people who underwent PET/CT twice for cancer screening. We excluded those who had degenerative vertebral disease, neurologic disease, or a history of a vertebral operation. The standardized uptake value (SUVmax) of the spinal cord of each mid-vertebral body was obtained by drawing a region of interest on an axial image of PET/CT. For analysis, the cord-to-background ratio (CTB) was used (CTB=SUVmax of each level/SUVmax of L5 level). Differences in pattern, sex, age, and intervals of the two serial PET/CT scans were analyzed. A total of 60 PET/CT images of 30 people were analyzed. The mean interval between the two PET/CT imaging studies was 2.80±0.94 years. On the follow-up PET/CT, significant change was shown only at the level of the C6 and T10 vertebrae (p<0.005). Mean CTB showed a decreasing pattern from cervical to lumbar vertebrae. There were two peaks at the lower cervical level (C4-6) and at the lower thoracic level (T12). Neither sex nor age significantly affected CTB. The FDG uptake of the spinal cord changed significantly on follow-up PET/CT only at the level of the C6 and T10 vertebrae. This finding is valuable as a baseline reference in the follow-up of metabolic changes in the spinal cord.
Collapse
Affiliation(s)
- Ari Chong
- Department of Nuclear Medicine, Chosun University Hospital, School of Medicine, Chosun University, Gwangju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Uchida K, Nakajima H, Okazawa H, Kimura H, Kudo T, Watanabe S, Yoshida A, Baba H. Clinical significance of MRI/(18)F-FDG PET fusion imaging of the spinal cord in patients with cervical compressive myelopathy. Eur J Nucl Med Mol Imaging 2012; 39:1528-37. [PMID: 22854985 PMCID: PMC3458200 DOI: 10.1007/s00259-012-2192-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/10/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE (18)F-FDG PET is used to investigate the metabolic activity of neural tissue. MRI is used to visualize morphological changes, but the relationship between intramedullary signal changes and clinical outcome remains controversial. The present study was designed to evaluate the use of 3-D MRI/(18)F-FDG PET fusion imaging for defining intramedullary signal changes on MRI scans and local glucose metabolic rate measured on (18)F-FDG PET scans in relation to clinical outcome and prognosis. METHODS We studied 24 patients undergoing decompressive surgery for cervical compressive myelopathy. All patients underwent 3-D MRI and (18)F-FDG PET before surgery. Quantitative analysis of intramedullary signal changes on MRI scans included calculation of the signal intensity ratio (SIR) as the ratio between the increased lesional signal intensity and the signal intensity at the level of the C7/T1 disc. Using an Advantage workstation, the same slices of cervical 3-D MRI and (18)F-FDG PET images were fused. On the fused images, the maximal count of the lesion was adopted as the standardized uptake value (SUV(max)). In a similar manner to SIR, the SUV ratio (SUVR) was also calculated. Neurological assessment was conducted using the Japanese Orthopedic Association (JOA) scoring system for cervical myelopathy. RESULTS The SIR on T1-weighted (T1-W) images, but not SIR on T2-W images, was significantly correlated with preoperative JOA score and postoperative neurological improvement. Lesion SUV(max) was significantly correlated with SIR on T1-W images, but not with SIR on T2-W images, and also with postoperative neurological outcome. The SUVR correlated better than SIR on T1-W images and lesion SUV(max) with neurological improvement. Longer symptom duration was correlated negatively with SIR on T1-W images, positively with SIR on T2-W images, and negatively with SUV(max). CONCLUSION Our results suggest that low-intensity signal on T1-W images, but not on T2-W images, is correlated with a poor postoperative neurological outcome. SUV(max) of lesions showing increased signal intensity and SUVR measured on fusion MRI/PET scans are more sensitive parameters for predicting clinical outcome than signal intensity on the MRI scan.
Collapse
Affiliation(s)
- Kenzo Uchida
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23, Eiheiji, Fukui, 910-1193, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Physiological 18F-FDG uptake by the spinal cord: is it a point of consideration for cancer patients? J Neurooncol 2012; 107:609-15. [DOI: 10.1007/s11060-011-0785-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/26/2011] [Indexed: 11/25/2022]
|
13
|
Floeth FW, Stoffels G, Herdmann J, Eicker S, Galldiks N, Steiger HJ, Langen KJ. Prognostic Value of 18F-FDG PET in Monosegmental Stenosis and Myelopathy of the Cervical Spinal Cord. J Nucl Med 2011; 52:1385-91. [DOI: 10.2967/jnumed.111.091801] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|