1
|
Wáng YXJ, Schroeder J, Siegmund H, Idée JM, Fretellier N, Jestin-Mayer G, Factor C, Deng M, Kang W, Morcos SK. Total gadolinium tissue deposition and skin structural findings following the administration of structurally different gadolinium chelates in healthy and ovariectomized female rats. Quant Imaging Med Surg 2015; 5:534-45. [PMID: 26435917 DOI: 10.3978/j.issn.2223-4292.2015.05.03] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To assess the retention of gadolinium (Gd) in skin, liver, and bone following gadodiamide or gadoteric acid administration. METHODS Gd was measured in skin, liver and femur bone in female rats 10 weeks after administration of 17.5 mmol Gd/kg over 5 days of Gd agents. Rat skin microscopy, energy filtering transmission electron microscopy and elemental analysis were performed, and repeated after receiving the same dosage of gadodiamide in rats with osteoporosis induced with bilateral ovariectomy (OVX). The OVX was performed 60 days after the last injection of gadodiamide and animals sacrificed 3 weeks later. RESULTS Gd concentration was 180-fold higher in the skin, 25-fold higher in the femur, and 30-fold higher in the liver in rats received gadodiamide than rats received gadoteric acid. The retention of Gd in the skin with gadodiamide was associated with an increase in dermal cellularity, and Gd encrustation of collagen fibers and deposition inside the fibroblasts and other cells. No differences in Gd concentration in liver, skin, and femur were observed between rats receiving gadodiamide with or without OVX. CONCLUSIONS Gd tissue retention with gadodiamide was higher than gadoteric acid. Tissues Gd deposition did not alter following gadodiamide administration to ovariectomized rats.
Collapse
Affiliation(s)
- Yì-Xiáng J Wáng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Joseph Schroeder
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Heiko Siegmund
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Jean-Marc Idée
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Nathalie Fretellier
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Gaëlle Jestin-Mayer
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Cecile Factor
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Min Deng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Wei Kang
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| | - Sameh K Morcos
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 2 Central EM Laboratory, Institute of Pathology, Uniklinikum Regensburg, The University of Regensburg, Germany ; 3 Guerbet, Research and Innovation Division, BP 57400, 95943 Roissy-Charles de Gaulle cedex, France ; 4 Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China ; 5 Department of Diagnostic Imaging, The University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Wang Y, Xu C, Zhai J, Gao F, Liu R, Gao L, Zhao Y, Chai Z, Gao X. Label-Free Au Cluster Used for in Vivo 2D and 3D Computed Tomography of Murine Kidneys. Anal Chem 2014; 87:343-5. [DOI: 10.1021/ac503887c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yaling Wang
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Xu
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College
of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiao Zhai
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuping Gao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ru Liu
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Gao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifang Chai
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School
of Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xueyun Gao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Reiter T, Ritter O, Prince MR, Nordbeck P, Wanner C, Nagel E, Bauer WR. Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012; 14:31. [PMID: 22607376 PMCID: PMC3409035 DOI: 10.1186/1532-429x-14-31] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/20/2012] [Indexed: 02/08/2023] Open
Abstract
Nephrogenic Systemic Fibrosis is a rare condition appearing only in patients with severe renal impairment or failure and presents with dermal lesions and involvement of internal organs. Although many cases are mild, an estimated 5% have a progressive debilitating course. To date, there is no known effective treatment thus stressing the necessity of ample prevention measures. An association with the use of Gadolinium based contrast agents (GBCA) makes Nephrogenic Systemic Fibrosis a potential side effect of contrast enhanced magnetic resonance imaging and offers the opportunity for prevention by limiting use of gadolinium based contrast agents in renal failure patients. In itself toxic, Gadolinium is embedded into chelates that allow its safe use as a contrast agent. One NSF theory is that Gadolinium chelates distribute into the extracellular fluid compartment and set Gadolinium ions free, depending on multiple factors among which the duration of chelates exposure is directly related to the renal function. Major medical societies both in Europe and in North America have developed guidelines for the usage of GBCA. Since the establishment of these guidelines and the increased general awareness of this condition, the occurrence of NSF has been nearly eliminated. Giving an overview over the current knowledge of NSF pathobiochemistry, pathogenesis and treatment options this review focuses on the guidelines of the European Medicines Agency, the European Society of Urogenital Radiology, the FDA and the American College of Radiology from 2008 up to 2011 and the transfer of this knowledge into every day practice.
Collapse
Affiliation(s)
- Theresa Reiter
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Oliver Ritter
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martin R Prince
- Department of Radiology, Cornell & Columbia Universities, New York, USA
| | - Peter Nordbeck
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christoph Wanner
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Eike Nagel
- Division of Imaging Sciences, King’s College London, London, UK
| | - Wolfgang Rudolf Bauer
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|