1
|
Ulas ST, Diekhoff T. Computed tomography-current status and future directions for arthritis imaging. Ther Adv Musculoskelet Dis 2024; 16:1759720X241287373. [PMID: 39444595 PMCID: PMC11497529 DOI: 10.1177/1759720x241287373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
Applications of computed tomography (CT) in arthritis imaging have rapidly expanded in recent years due to ongoing technical developments. Dual-energy CT (DECT) has become indispensable in clinical practice, particularly for diagnosing gouty arthritis and assessing bony structural changes. Technological innovations such as low-dose CT and state-of-the-art reconstruction algorithms reduce radiation exposure while maintaining image quality and short acquisition times. This review explores the growing role of CT in arthritis imaging. Recent innovations have extended DECT's utility beyond gout diagnosis to the detection of inflammatory changes in various arthritic conditions. Postprocessing techniques such as the generation of subtraction images and iodine maps provide valuable insights into tissue perfusion and inflammatory activity, crucial for arthritis management. DECT can distinguish calcium from uric acid crystals, facilitating the differential diagnosis of various crystal arthropathies in a variety of clinical settings. This ability is particularly valuable in distinguishing between different clinical conditions in patients with inflammatory joint changes within a single imaging examination. Moreover, the advent of four-dimensional CT promises a better assessment of dynamic joint instabilities and ligament injuries, especially in the wrist. Overall, DECT offers a comprehensive approach to arthritis imaging, from the detection of structural changes to the assessment of active inflammation in joints and tendons. Continuous advances in CT technology, including photon-counting CT, hold promise for further improving diagnostic accuracy and expanding the role of CT in arthritis imaging and therapy monitoring.
Collapse
Affiliation(s)
- Sevtap Tugce Ulas
- Department of Radiology, Charité—Universitätsmedizin Berlin, Campus Mitte, Humboldt—Universität zu Berlin, Freie Universität Berlin, Charitéplatz 1, Berlin 10117, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Diekhoff
- Department of Radiology, Charité—Universitätsmedizin Berlin, Campus Mitte, Humboldt—Universität zu Berlin, Freie Universität Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Jaruvongvanich V, Muangsomboon K, Teerasamit W, Suvannarerg V, Komoltri C, Thammakittiphan S, Lornimitdee W, Ritsamrej W, Chaisue P, Pongnapang N, Apisarnthanarak P. Optimizing computed tomography image reconstruction for focal hepatic lesions: Deep learning image reconstruction vs iterative reconstruction. Heliyon 2024; 10:e34847. [PMID: 39170325 PMCID: PMC11336302 DOI: 10.1016/j.heliyon.2024.e34847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Background Deep learning image reconstruction (DLIR) is a novel computed tomography (CT) reconstruction technique that minimizes image noise, enhances image quality, and enables radiation dose reduction. This study aims to compare the diagnostic performance of DLIR and iterative reconstruction (IR) in the evaluation of focal hepatic lesions. Methods We conducted a retrospective study of 216 focal hepatic lesions in 109 adult participants who underwent abdominal CT scanning at our institution. We used DLIR (low, medium, and high strength) and IR (0 %, 10 %, 20 %, and 30 %) techniques for image reconstruction. Four experienced abdominal radiologists independently evaluated focal hepatic lesions based on five qualitative aspects (lesion detectability, lesion border, diagnostic confidence level, image artifact, and overall image quality). Quantitatively, we measured and compared the level of image noise for each technique at the liver and aorta. Results There were significant differences (p < 0.001) among the seven reconstruction techniques in terms of lesion borders, image artifacts, and overall image quality. Low-strength DLIR (DLIR-L) exhibited the best overall image quality. Although high-strength DLIR (DLIR-H) had the least image noise and fewest artifacts, it also had the lowest scores for lesion borders and overall image quality. Image noise showed a weak to moderate positive correlation with participants' body mass index and waist circumference. Conclusions The optimal-strength DLIR significantly improved overall image quality for evaluating focal hepatic lesions compared to the IR technique. DLIR-L achieved the best overall image quality while maintaining acceptable levels of image noise and quality of lesion borders.
Collapse
Affiliation(s)
- Varin Jaruvongvanich
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kobkun Muangsomboon
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanwarang Teerasamit
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Voraparee Suvannarerg
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chulaluk Komoltri
- Division of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sastrawut Thammakittiphan
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wimonrat Lornimitdee
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Witchuda Ritsamrej
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parinya Chaisue
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Napapong Pongnapang
- Department of Radiological Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyaporn Apisarnthanarak
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Ayoub B, Sinan O, Gabriela H, Lionel A, Romain G, Alain B, Teixeira Pedro Augusto G. Post-processing of quantitative 4D-CT for initial evaluation of scapholunate Instability: Assessment of simplified approaches to data analysis. Eur J Radiol 2024; 177:111544. [PMID: 38917580 DOI: 10.1016/j.ejrad.2024.111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVES To evaluate the diagnostic performance of simplified post-processing approaches for quantitative wrist 4D-CT in the assessment of scapholunate instability (SLI). METHODS A prospective monocentric case-control study included 60 patients with suspected post-traumatic scapholunate ligament (SLL) tears and persistent pain. Of these, 40 patients exhibited SLL tears, subdivided into two groups of 20 each: one group with completely torn ligaments and the other with partially torn ligaments. The remaining 20 patients, whose SLLs were intact, served as controls. 4D-CT and CT arthrography were performed, and post-processed by two readers using three approaches: the standard method with full data assessment and dedicated software, partial data assessment with post-processing software (bone locking), and partial data assessment without post-processing software (no bone locking). The scapholunate gap (SLG) parameter was measured in millimeters to evaluate scapholunate diastasis during radioulnar deviation (RUD). The scapholunate ligament status on CT arthrography was considered the gold standard. RESULTS The SLG-derived parameters (range, mean, and maximal values) were significantly increased in patients with both intact and torn scapholunate ligaments across all post-processing approaches (P values ranging from 0.001 to 0.004). SLG range was the best parameter for diagnosing SLL tears, with ROC AUC values ranging from 0.7 to 0.88 across the three post-processing methods. The interobserver reproducibility was better with the alternative approaches (ICC values 0.93-0.96) compared to the standard approach (ICC values 0.65-0.72). Additionally, post-processing time was shorter with the alternative approaches, especially when specific software was not used (reduced from 10 to three minutes). CONCLUSION Simpler approaches to wrist 4D-CT data analysis yielded acceptable diagnostic performances and improved interobserver reproducibility compared to the standard approach.
Collapse
Affiliation(s)
- Benfaris Ayoub
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035 Nancy cedex, France.
| | - Orkut Sinan
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035 Nancy cedex, France.
| | - Hossu Gabriela
- Université de Lorraine, Inserm, IADI, F-54000 Nancy, France.
| | - Athlani Lionel
- Department of Hand Surgery, Plastic and Reconstructive Surgery, Centre Chirurgical Emile Gallé, CHU de Nancy, Nancy, France.
| | - Gillet Romain
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035 Nancy cedex, France; Université de Lorraine, Inserm, IADI, F-54000 Nancy, France.
| | - Blum Alain
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035 Nancy cedex, France.
| | - Gondim Teixeira Pedro Augusto
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035 Nancy cedex, France; Université de Lorraine, Inserm, IADI, F-54000 Nancy, France.
| |
Collapse
|
4
|
Ulas ST, Deppe D, Ziegeler K, Diekhoff T. New Bone Formation in Axial Spondyloarthritis: A Review. ROFO-FORTSCHR RONTG 2024; 196:550-559. [PMID: 37944938 PMCID: PMC11111289 DOI: 10.1055/a-2193-1970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/06/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Sevtap Tugce Ulas
- Department of Radiology (Campus Charité Mitte), Charité Universitätsmedizin Berlin, Germany
- Charité - Universitätsmedizin, Berlin Institute of Health at Charite, Berlin, Germany
| | - Dominik Deppe
- Department of Radiology (Campus Charité Mitte), Charité Universitätsmedizin Berlin, Germany
| | - Katharina Ziegeler
- Department of Radiology (Campus Charité Mitte), Charité Universitätsmedizin Berlin, Germany
| | - Torsten Diekhoff
- Department of Radiology (Campus Charité Mitte), Charité Universitätsmedizin Berlin, Germany
- Charité - Universitätsmedizin, Berlin Institute of Health at Charite, Berlin, Germany
| |
Collapse
|
5
|
Klempka A, Schröder A, Neumayer P, Groden C, Clausen S, Hetjens S. Cranial Computer Tomography with Photon Counting and Energy-Integrated Detectors: Objective Comparison in the Same Patients. Diagnostics (Basel) 2024; 14:1019. [PMID: 38786317 PMCID: PMC11119038 DOI: 10.3390/diagnostics14101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
This study provides an objective comparison of cranial computed tomography (CT) imaging quality and radiation dose between photon counting detectors (PCCTs) and energy-integrated detectors (EIDs). We retrospectively analyzed 158 CT scans from 76 patients, employing both detector types on the same individuals to ensure a consistent comparison. Our analysis focused on the Computed Tomography Dose Index and the Dose-Length Product together with the contrast-to-noise ratio and the signal-to-noise ratio for brain gray and white matter. We utilized standardized imaging protocols and consistent patient positioning to minimize variables. PCCT showed a potential for higher image quality and lower radiation doses, as highlighted by this study, thus achieving diagnostic clarity with reduced radiation exposure, underlining its significance in patient care, particularly for patients requiring multiple scans. The results demonstrated that while both systems were effective, PCCT offered enhanced imaging and patient safety in neuroradiological evaluations.
Collapse
Affiliation(s)
- Anna Klempka
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Alexander Schröder
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Philipp Neumayer
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Sven Clausen
- Department of Radiation Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Svetlana Hetjens
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
6
|
Camoni L, Santos A, Luporsi M, Grilo A, Pietrzak A, Gear J, Zucchetta P, Bar-Sever Z. EANM procedural recommendations for managing the paediatric patient in diagnostic nuclear medicine. Eur J Nucl Med Mol Imaging 2023; 50:3862-3879. [PMID: 37555902 PMCID: PMC10611649 DOI: 10.1007/s00259-023-06357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE The manuscript aims to characterize the principles of best practice in performing nuclear medicine procedures in paediatric patients. The paper describes all necessary technical skills that should be developed by the healthcare professionals to ensure the best possible care in paediatric patients, as it is particularly challenging due to psychological and physical conditions of children. METHODS We performed a comprehensive literature review to establish the most relevant elements of nuclear medicine studies in paediatric patients. We focused the attention to the technical aspects of the study, such as patient preparation, imaging protocols, and immobilization techniques, that adhere to best practice principles. Furthermore, we considered the psychological elements of working with children, including comforting and distraction strategies. RESULTS The extensive literature review combined with practical conclusions and recommendations presented and explained by the authors summarizes the most important principles of the care for paediatric patient in the nuclear medicine field. CONCLUSION Nuclear medicine applied to the paediatric patient is a very special and challenging area, requiring proper education and experience in order to be performed at the highest level and with the maximum safety for the child.
Collapse
Affiliation(s)
- Luca Camoni
- University of Brescia, 25123, Brescia, Italy.
- Nuclear Medicine Department, University of Brescia, ASST Spedali Civili Di Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Marie Luporsi
- Department of Nuclear Medicine, Institut Curie, PSL Research University, 75005, Paris, France
- LITO Laboratory INSERM U1288, Institut Curie, 91440, Orsay, France
| | - Ana Grilo
- H&TRC - Health and Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, Lisbon, Portugal
| | - Agata Pietrzak
- Electroradiology Department, Poznan University of Medical Sciences, Poznan, Poland
- Nuclear Medicine Department, Greater Poland Cancer Centre, Poznan, Poland
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Sutton, UK
| | - Pietro Zucchetta
- Nuclear Medicine Department, Padova University Hospital, 35128, Padua, Italy
| | - Zvi Bar-Sever
- Department of Nuclear Medicine, Schneider Children's Medical Center, Tel-Aviv University, Petach Tikva, Israel
| |
Collapse
|
7
|
Fukuda T, Yonenaga T, Miyasaka T, Kimura T, Jinzaki M, Ojiri H. CT in osteoarthritis: its clinical role and recent advances. Skeletal Radiol 2023; 52:2199-2210. [PMID: 36287235 DOI: 10.1007/s00256-022-04217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 02/02/2023]
Abstract
Computed tomography (CT) is a widely available imaging method and considered as one of the most reliable techniques in bone assessment. Although CT has limited tissue contrast and needs radiation exposure, it has several advantages like fast scanning time and high spatial resolution. In this regard, CT has unique roles in osteoarthritis (OA) and its variable utilities have been reported. Hence, this review highlights the clinical role of CT in OA of representative joints. In addition, CT showed the several technical advancements recently, for example, acquiring the CT image with standing, obtaining the dual-energy data, and novel photon-counting detector development. Therefore, the recent studies and potential utility of these new CT systems in OA are also discussed.
Collapse
Affiliation(s)
- Takeshi Fukuda
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, Japan.
| | - Takenori Yonenaga
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| | - Teruyuki Miyasaka
- Department of Orthopedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| | - Tadashi Kimura
- Department of Orthopedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, Japan
| | - Hiroya Ojiri
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, Japan
| |
Collapse
|
8
|
Yasui K, Saito Y, Ito A, Douwaki M, Ogawa S, Kasugai Y, Ooe H, Nagake Y, Hayashi N. Validation of deep learning-based CT image reconstruction for treatment planning. Sci Rep 2023; 13:15413. [PMID: 37723226 PMCID: PMC10507027 DOI: 10.1038/s41598-023-42775-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023] Open
Abstract
Deep learning-based CT image reconstruction (DLR) is a state-of-the-art method for obtaining CT images. This study aimed to evaluate the usefulness of DLR in radiotherapy. Data were acquired using a large-bore CT system and an electron density phantom for radiotherapy. We compared the CT values, image noise, and CT value-to-electron density conversion table of DLR and hybrid iterative reconstruction (H-IR) for various doses. Further, we evaluated three DLR reconstruction strength patterns (Mild, Standard, and Strong). The variations of CT values of DLR and H-IR were large at low doses, and the difference in average CT values was insignificant with less than 10 HU at doses of 100 mAs and above. DLR showed less change in CT values and smaller image noise relative to H-IR. The noise-reduction effect was particularly large in the low-dose region. The difference in image noise between DLR Mild and Standard/Strong was large, suggesting the usefulness of reconstruction intensities higher than Mild. DLR showed stable CT values and low image noise for various materials, even at low doses; particularly for Standard or Strong, the reduction in image noise was significant. These findings indicate the usefulness of DLR in treatment planning using large-bore CT systems.
Collapse
Affiliation(s)
- Keisuke Yasui
- Division of Medical Physics, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan.
| | - Yasunori Saito
- Department of Radiology, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Azumi Ito
- Faculty of Radiological Technology, School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Momoka Douwaki
- Department of Radiology, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Shuta Ogawa
- Department of Radiology, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Yuri Kasugai
- Faculty of Radiological Technology, School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiromu Ooe
- Faculty of Radiological Technology, School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Yuya Nagake
- Faculty of Radiological Technology, School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Naoki Hayashi
- Division of Medical Physics, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
9
|
Koo SA, Jung Y, Um KA, Kim TH, Kim JY, Park CH. Clinical Feasibility of Deep Learning-Based Image Reconstruction on Coronary Computed Tomography Angiography. J Clin Med 2023; 12:jcm12103501. [PMID: 37240607 DOI: 10.3390/jcm12103501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
This study evaluated the feasibility of deep-learning-based image reconstruction (DLIR) on coronary computed tomography angiography (CCTA). By using a 20 cm water phantom, the noise reduction ratio and noise power spectrum were evaluated according to the different reconstruction methods. Then 46 patients who underwent CCTA were retrospectively enrolled. CCTA was performed using the 16 cm coverage axial volume scan technique. All CT images were reconstructed using filtered back projection (FBP); three model-based iterative reconstructions (MBIR) of 40%, 60%, and 80%; and three DLIR algorithms: low (L), medium (M), and high (H). Quantitative and qualitative image qualities of CCTA were compared according to the reconstruction methods. In the phantom study, the noise reduction ratios of MBIR-40%, MBIR-60%, MBIR-80%, DLIR-L, DLIR-M, and DLIR-H were 26.7 ± 0.2%, 39.5 ± 0.5%, 51.7 ± 0.4%, 33.1 ± 0.8%, 43.2 ± 0.8%, and 53.5 ± 0.1%, respectively. The pattern of the noise power spectrum of the DLIR images was more similar to FBP images than MBIR images. In a CCTA study, CCTA yielded a significantly lower noise index with DLIR-H reconstruction than with the other reconstruction methods. DLIR-H showed a higher SNR and CNR than MBIR (p < 0.05). The qualitative image quality of CCTA with DLIR-H was significantly higher than that of MBIR-80% or FBP. The DLIR algorithm was feasible and yielded a better image quality than the FBP or MBIR algorithms on CCTA.
Collapse
Affiliation(s)
- Seul Ah Koo
- Department of Radiology and The Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Yunsub Jung
- Research Team, GE Healthcare Korea, Seoul 04637, Republic of Korea
| | - Kyoung A Um
- Research Team, GE Healthcare Korea, Seoul 04637, Republic of Korea
| | - Tae Hoon Kim
- Department of Radiology and The Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Ji Young Kim
- Department of Radiology and The Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Chul Hwan Park
- Department of Radiology and The Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
10
|
Watanabe R, Zensho A, Ohishi Y, Funama Y. Image-quality characteristics in the longitudinal direction from different image-reconstruction algorithms during single-rotation volume acquisition on head computed tomography: A phantom study. Acta Radiol Open 2023; 12:20584601231168986. [PMID: 37089818 PMCID: PMC10116848 DOI: 10.1177/20584601231168986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Background A multi detector computed tomography (CT) scanner with wide-area coverage enables whole-brain volumetric scanning in a single rotation. Purpose To investigate variations in image-quality characteristics in the longitudinal direction for different image-reconstruction algorithms and strengths with phantoms. Material and methods Single-rotation volume scans were performed on a 320-row multidetector CT volume scanner using three types of phantoms. Tube current was set to 200 mA (standard dose) and 50 mA (low dose). All images were reconstructed with filtered back projection (FBP), mild and strong levels with hybrid iterative reconstruction (HIR), and model-based IR (MBIR). Computed tomography numbers, image noise, noise power spectrum (NPS), task-based transfer function (TTF), and visual spatial resolution were used to evaluate uniformity of image quality in the longitudinal direction ( Z-axis). Results The MBIR images showed smaller variation in CT numbers in the Z-axis. The difference in the highest and lowest CT numbers was smaller (5.0 Hounsfield units [HU]) for MBIR than for FBP (6.6 HU) and HIR (6.8 HU). The variations in image noise were the smallest for strong MBIR and the largest for FBP. The low-frequency component at NPS0.2 was lower for strong MBIR than for other algorithms. The high-frequency component at NPS0.8 was low in all reconstructions. For MBIR, the image resolution and TTFs were higher in the outer portion than in the center. Conclusion Model-based IR is the optimal image-reconstruction algorithm for single-volume scan of spherical subjects owing to its high in-plane resolution and uniformity of CT numbers, image noise, and NPS in the Z-axis.
Collapse
Affiliation(s)
- Ryo Watanabe
- Department of Radiology, Hospital of the University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ayako Zensho
- Department of Radiology, Hospital of the University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshitaka Ohishi
- Department of Radiology, Hospital of the University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshinori Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
11
|
Guido G, Polici M, Nacci I, Bozzi F, De Santis D, Ubaldi N, Polidori T, Zerunian M, Bracci B, Laghi A, Caruso D. Iterative Reconstruction: State-of-the-Art and Future Perspectives. J Comput Assist Tomogr 2023; 47:244-254. [PMID: 36728734 DOI: 10.1097/rct.0000000000001401] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Image reconstruction processing in computed tomography (CT) has evolved tremendously since its creation, succeeding at optimizing radiation dose while maintaining adequate image quality. Computed tomography vendors have developed and implemented various technical advances, such as automatic noise reduction filters, automatic exposure control, and refined imaging reconstruction algorithms.Focusing on imaging reconstruction, filtered back-projection has represented the standard reconstruction algorithm for over 3 decades, obtaining adequate image quality at standard radiation dose exposures. To overcome filtered back-projection reconstruction flaws in low-dose CT data sets, advanced iterative reconstruction algorithms consisting of either backward projection or both backward and forward projections have been developed, with the goal to enable low-dose CT acquisitions with high image quality. Iterative reconstruction techniques play a key role in routine workflow implementation (eg, screening protocols, vascular and pediatric applications), in quantitative CT imaging applications, and in dose exposure limitation in oncologic patients.Therefore, this review aims to provide an overview of the technical principles and the main clinical application of iterative reconstruction algorithms, focusing on the strengths and weaknesses, in addition to integrating future perspectives in the new era of artificial intelligence.
Collapse
Affiliation(s)
- Gisella Guido
- From the Department of Surgical Medical Sciences and Translational Medicine, Sapienza University of Rome - Radiology Unit, Sant'Andrea University Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Orkut S, Gillet R, Hossu G, Lombard C, Blum A, Athlani L, Gondim Teixeira PA. Kinematic 4D CT case-control study of wrist in dart throwing motion "in vivo": comparison with other maneuvers. Eur Radiol 2022; 32:7590-7600. [PMID: 35445824 DOI: 10.1007/s00330-022-08746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To compare the diagnostic performance of scapholunate gap (SLG) measurements acquired with dart throwing (DT), radio-ulnar deviation (RUD), and clenching fist (CF) maneuvers on 4D CT for the identification of scapholunate instability. METHODS In this prospective study, 47 patients with suspected scapholunate interosseous ligament (SLIL) tears were evaluated from March 2015 to March 2020 with semiautomatic quantitative analysis on 4D CT. Five parameters (median, maximal value, range, and coefficient of variation) for SLG, lunocapitate angle (LCA), and radioscaphoid angle (RSA) obtained during DT maneuver were evaluated in patients with and without SLIL tears. CT arthrography was used as the gold standard for the SLIL status. The SLG values obtained were also compared with those obtained during CF and RUD maneuvers. RESULTS Significant differences in all SLG- and LCA-derived parameters are found between patients with and without SLIL tears with DT (p < 0.003). The best diagnostic performance for the diagnosis of SLIL tears was obtained with median and maximal SLG values (sensitivity and specificity of 86-89% and 95%) and with maximal and range LCA values (sensitivity and specificity of 86% and 74%). No significant differences were observed for RSA values (p > 0.275). The SLG range obtained with DT maneuver was the only dynamic parameter statistically different between patients with partial and complete torn SLIL (p = 0.037). CONCLUSION 4D CT of the wrist during DT showed a similar performance than RUD and a better performance than CF for the differentiation between patients with and without SLIL tears. KEY POINTS • Four-dimensional computed tomography can dynamically assess scapholunate instability. • The best results for differentiating between patients with and without SLIL tears were obtained with SLG median and maximal values. • The dart throwing and radio-ulnar deviation maneuvers yielded the best results for the dynamic evaluation of scapholunate instability.
Collapse
Affiliation(s)
- Sinan Orkut
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, Cedex, France.
| | - Romain Gillet
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, Cedex, France
| | - Gabriela Hossu
- Université de Lorraine, Inserm, IADI, F-54000, Nancy, France
| | - Charles Lombard
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, Cedex, France
| | - Alain Blum
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, Cedex, France
| | - Lionel Athlani
- Department of Hand Surgery, Plastic and Reconstructive Surgery, Centre Chirurgical Emile Gallé, CHU de Nancy, Nancy, France
| | - Pedro Augusto Gondim Teixeira
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, Cedex, France.,Université de Lorraine, Inserm, IADI, F-54000, Nancy, France
| |
Collapse
|
13
|
Virtual Monochromatic Images from Dual-Energy Computed Tomography Do Not Improve the Detection of Synovitis in Hand Arthritis. Diagnostics (Basel) 2022; 12:diagnostics12081891. [PMID: 36010241 PMCID: PMC9406820 DOI: 10.3390/diagnostics12081891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to investigate subtraction images from different polychromatic and virtual monochromatic reconstructions of dual-energy computed tomography (CT) for the detection of inflammation (synovitis/tenosynovitis or peritendonitis) in patients with hand arthritis. In this IRB-approved prospective study, 35 patients with acute hand arthritis underwent contrast-enhanced dual-energy CT and musculoskeletal ultrasound (MSUS) of the clinically dominant hand. CT subtractions (CT-S) were calculated from 80 and 135 kVp source data and monochromatic 50 and 70 keV images. CT-S and MSUS were scored for synovitis and tenosynovitis/peritendonitis. Specificity, sensitivity and diagnostic accuracy were assessed by using MSUS as a reference. Parameters of objective image quality were measured. Thirty-three patients were analyzed. MSUS was positive for synovitis and/or tenosynovitis/peritendonitis in 28 patients. The 70 keV images had the highest diagnostic accuracy, with 88% (vs. 50 keV, 82%; 80 kVp, 85%; and 135 kVp, 82%), and superior sensitivity, with 96% (vs. 50 keV: 86%, 80 kVp: 93% and 135 kVp: 79%). The 80 kVp images showed the highest signal- and contrast-to-noise ratio, while the 50 keV images provided the lowest image quality. While all subtraction methods of contrast-enhanced dual-energy CT proved to be able to detect inflammation with sufficient diagnostic accuracy, virtual monochromatic images with low keV showed no significant improvement over conventional subtraction techniques and lead to a loss of image quality.
Collapse
|
14
|
Lenfant M, Comby PO, Guillen K, Galissot F, Haioun K, Thay A, Chevallier O, Ricolfi F, Loffroy R. Deep Learning-Based Reconstruction vs. Iterative Reconstruction for Quality of Low-Dose Head-and-Neck CT Angiography with Different Tube-Voltage Protocols in Emergency-Department Patients. Diagnostics (Basel) 2022; 12:1287. [PMID: 35626442 PMCID: PMC9142122 DOI: 10.3390/diagnostics12051287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
Objective: To compare the image quality of computed tomography angiography of the supra-aortic arteries (CTSA) at different tube voltages in low doses settings with deep learning-based image reconstruction (DLR) vs. hybrid iterative reconstruction (H-IR). Methods: We retrospectively reviewed 102 patients who underwent CTSA systematically reconstructed with both DLR and H-IR. We assessed the image quality both quantitatively and qualitatively at 11 arterial segmental levels and 3 regional levels. Radiation-dose parameters were recorded and the effective dose was calculated. Eighty-six patients were eligible for analysis Of these patients, 27 were imaged with 120 kVp, 30 with 100 kVp, and 29 with 80 kVp. Results: The effective dose in 120 kVp, 100 kVp and 80 kVp was 1.5 ± 0.4 mSv, 1.1 ± 0.3 mSv and 0.68 ± 0.1 mSv, respectively (p < 0.01). Comparing 80 kVp + DLR vs. 120 and 100 kVp + H-IR CT scans, the mean overall arterial attenuation was about 64% and 34% higher (625.9 ± 118.5 HU vs. 382.3 ± 98.6 HU and 468 ± 118.5 HU; p < 0.01) without a significant difference in terms of image noise (17.7 ± 4.9 HU vs. 17.5 ± 5.2; p = 0.7 and 18.1 ± 5.4; p = 0.3) and signal-to-ratio increased by 59% and 33%, respectively (37.9 ± 12.3 vs. 23.8 ± 9.7 and 28.4 ± 12.5). This protocol also provided superior image quality in terms of qualitative parameters, compared to standard-kVp protocols with H-IR. Highest subjective image-quality grades for vascular segments close to the aorta were obtained with the 100 kVp + DLR protocol. Conclusions: DLR significantly reduced image noise and improved the overall image quality of CTSA with both low and standard tube voltages and at all vascular segments. CT that was acquired with 80 kVp and reconstructed with DLR yielded better overall image quality compared to higher kVp values with H-IR, while reducing the radiation dose by half, but it has limitations for arteries that are close to the aortic arch.
Collapse
Affiliation(s)
- Marc Lenfant
- Department of Neuroradiology and Emergency Radiology, François-Mitterrand University Hospital, 14 Rue 7 Paul Gaffarel, BP 77908, 21079 Dijon, France; (M.L.); (P.-O.C.); (F.G.); (F.R.)
- Imaging and Artificial Vision (ImViA) Laboratory-EA 7535, University of Bourgogne/Franche-Comté, 9 10 Avenue Alain Savary, BP 47870, 21078 Dijon, France; (K.G.); (O.C.)
| | - Pierre-Olivier Comby
- Department of Neuroradiology and Emergency Radiology, François-Mitterrand University Hospital, 14 Rue 7 Paul Gaffarel, BP 77908, 21079 Dijon, France; (M.L.); (P.-O.C.); (F.G.); (F.R.)
- Imaging and Artificial Vision (ImViA) Laboratory-EA 7535, University of Bourgogne/Franche-Comté, 9 10 Avenue Alain Savary, BP 47870, 21078 Dijon, France; (K.G.); (O.C.)
| | - Kevin Guillen
- Imaging and Artificial Vision (ImViA) Laboratory-EA 7535, University of Bourgogne/Franche-Comté, 9 10 Avenue Alain Savary, BP 47870, 21078 Dijon, France; (K.G.); (O.C.)
- Department of Vascular and Interventional Radiology, Image-Guided Therapy Center, François-Mitterrand 13 University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France
| | - Felix Galissot
- Department of Neuroradiology and Emergency Radiology, François-Mitterrand University Hospital, 14 Rue 7 Paul Gaffarel, BP 77908, 21079 Dijon, France; (M.L.); (P.-O.C.); (F.G.); (F.R.)
| | - Karim Haioun
- Computed Tomography Division, Canon Medical Systems France, 24 Quai Gallieni, 92150 Suresnes, France; (K.H.); (A.T.)
| | - Anthony Thay
- Computed Tomography Division, Canon Medical Systems France, 24 Quai Gallieni, 92150 Suresnes, France; (K.H.); (A.T.)
| | - Olivier Chevallier
- Imaging and Artificial Vision (ImViA) Laboratory-EA 7535, University of Bourgogne/Franche-Comté, 9 10 Avenue Alain Savary, BP 47870, 21078 Dijon, France; (K.G.); (O.C.)
- Department of Vascular and Interventional Radiology, Image-Guided Therapy Center, François-Mitterrand 13 University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France
| | - Frédéric Ricolfi
- Department of Neuroradiology and Emergency Radiology, François-Mitterrand University Hospital, 14 Rue 7 Paul Gaffarel, BP 77908, 21079 Dijon, France; (M.L.); (P.-O.C.); (F.G.); (F.R.)
| | - Romaric Loffroy
- Imaging and Artificial Vision (ImViA) Laboratory-EA 7535, University of Bourgogne/Franche-Comté, 9 10 Avenue Alain Savary, BP 47870, 21078 Dijon, France; (K.G.); (O.C.)
- Department of Vascular and Interventional Radiology, Image-Guided Therapy Center, François-Mitterrand 13 University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France
| |
Collapse
|
15
|
Donato S, Brombal L, Arana Peña LM, Arfelli F, Contillo A, Delogu P, Di Lillo F, Di Trapani V, Fanti V, Longo R, Oliva P, Rigon L, Stori L, Tromba G, Golosio B. Optimization of a customized simultaneous algebraic reconstruction technique algorithm for phase-contrast breast computed tomography. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac65d4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/08/2022] [Indexed: 12/22/2022]
Abstract
Abstract
Objective. To introduce the optimization of a customized GPU-based simultaneous algebraic reconstruction technique (cSART) in the field of phase-contrast breast computed tomography (bCT). The presented algorithm features a 3D bilateral regularization filter that can be tuned to yield optimal performance for clinical image visualization and tissues segmentation. Approach. Acquisitions of a dedicated test object and a breast specimen were performed at Elettra, the Italian synchrotron radiation (SR) facility (Trieste, Italy) using a large area CdTe single-photon counting detector. Tomographic images were obtained at 5 mGy of mean glandular dose, with a 32 keV monochromatic x-ray beam in the free-space propagation mode. Three independent algorithms parameters were optimized by using contrast-to-noise ratio (CNR), spatial resolution, and noise texture metrics. The results obtained with the cSART algorithm were compared with conventional SART and filtered back projection (FBP) reconstructions. Image segmentation was performed both with gray scale-based and supervised machine-learning approaches. Main results. Compared to conventional FBP reconstructions, results indicate that the proposed algorithm can yield images with a higher CNR (by 35% or more), retaining a high spatial resolution while preserving their textural properties. Alternatively, at the cost of an increased image ‘patchiness’, the cSART can be tuned to achieve a high-quality tissue segmentation, suggesting the possibility of performing an accurate glandularity estimation potentially of use in the realization of realistic 3D breast models starting from low radiation dose images. Significance. The study indicates that dedicated iterative reconstruction techniques could provide significant advantages in phase-contrast bCT imaging. The proposed algorithm offers great flexibility in terms of image reconstruction optimization, either toward diagnostic evaluation or image segmentation.
Collapse
|
16
|
Barreto IL, Tuna IS, Rajderkar DA, Ching JA, Governale LS. Pediatric craniosynostosis computed tomography: an institutional experience in reducing radiation dose while maintaining diagnostic image quality. Pediatr Radiol 2022; 52:85-96. [PMID: 34731286 DOI: 10.1007/s00247-021-05205-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/15/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Children with craniosynostosis may undergo multiple computed tomography (CT) examinations for diagnosis and post-treatment follow-up, resulting in cumulative radiation exposure. OBJECTIVE To reduce the risks associated with radiation exposure, we evaluated the compliance, radiation dose reduction and clinical image quality of a lower-dose CT protocol for pediatric craniosynostosis implemented at our institution. MATERIALS AND METHODS The standard of care at our institution was modified to replace pediatric head CT protocols with a lower-dose CT protocol utilizing 100 kV, 5 mAs and iterative reconstruction. Study-ordered, protocol-utilized and radiation-dose indices were collected for studies performed with routine pediatric brain protocols (n=22) and with the lower-dose CT protocol (n=135). Two pediatric neuroradiologists evaluated image quality in a subset (n=50) of the lower-dose CT studies by scoring visualization of cranial structures, confidence of diagnosis and the need for more radiation dose. RESULTS During the 30-month period, the lower-dose CT protocol had high compliance, with 2/137 studies performed with routine brain protocols. With the lower-dose CT protocol, volume CT dose index (CTDIvol) was 1.1 mGy for all patients (0-9 years old) and effective dose ranged from 0.06 to 0.22 mSv, comparable to a 4-view skull radiography examination. CTDIvol was reduced by 98% and effective dose was reduced up to 67-fold. Confidence in diagnosing craniosynostosis was high and more radiation dose was considered unnecessary in all studies (n=50) by both radiologists. CONCLUSION Replacing the routine pediatric brain CT protocol with a lower-dose CT craniosynostosis protocol substantially reduced radiation exposure without compromising image quality or diagnostic confidence.
Collapse
Affiliation(s)
- Izabella L Barreto
- Division of Medical Physics, Department of Radiology, University of Florida, P.O. Box 100374, Gainesville, FL, 32610, USA.
| | - Ibrahim S Tuna
- Department of Radiology, University of Florida, Gainesville, FL, USA
| | | | - Jessica A Ching
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, FL, USA.,Craniofacial Center, UF Health Shands Children's Hospital, Gainesville, FL, USA
| | - Lance S Governale
- Craniofacial Center, UF Health Shands Children's Hospital, Gainesville, FL, USA.,Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Contrast-enhanced CT techniques and MRI perform equally well in arthritis imaging of the hand: a prospective diagnostic accuracy study. Eur Radiol 2022; 32:6376-6383. [PMID: 35359165 PMCID: PMC9381445 DOI: 10.1007/s00330-022-08744-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To investigate the performance of dual-energy CT (DECT)-generated iodine maps (iMap) and CT subtraction (CT-S) in the detection of synovitis, tenosynovitis, and peritendonitis/paratenonitis compared to magnetic resonance imaging (MRI) using musculoskeletal ultrasound (MSUS) as standard of reference. METHODS This IRB-approved prospective study consecutively investigated patients with undifferentiated arthritis. All patients underwent MSUS, MRI and contrast-enhanced DECT of the hand; from the latter conventional CT-S, image-based iMap (iMap-I) and raw data-based iMap (iMap-RD) were reconstructed. CT and MRI datasets were scored for synovitis and tenosynovitis/paratenonitis applying the modified Rheumatoid Arthritis MRI Score (RAMRIS). Sensitivity, specificity, and diagnostic accuracy were calculated. Non-inferiority was tested using the one-tailed McNemar test. Correlation of sum scores was assessed using Pearson's test. Interreader reliability was assessed using Cohen's kappa. RESULTS Overall, 33 patients were included. MSUS was positive for synovitis and tenosynovitis/paratenonitis in 28 patients with a sum score of 6.91. Excellent correlation with MSUS was shown for CT-S (sum score 6.38; r = 0.91), iMap-RD (sum score 9.74; r = 0.82), MRI (sum score 12.70; r = 0.85), and iMap-I (sum score 6.94; r = 0.50). CT-S had the highest diagnostic accuracy of 83%, followed by iMap-I (78%), MRI (75%), and iMap-RD (74%). All modalities showed non-inferiority. Reader agreement was good for CT-S and MRI (κ = 0.62; 0.64) and fair for iMap-RD and iMap-I (κ = 0.31; 0.37). CONCLUSION CT-S and iMap allow highly standardized arthritis imaging and are suitable for clinical practice. MSUS still has the highest availability for arthritis imaging and served as gold standard for this study. KEY POINTS • CT subtraction, iodine map with dual-energy CT, and MRI showed non-inferiority to musculoskeletal ultrasound. • MRI was the most sensitive but least specific imaging technique compared with CT subtraction and dual-energy CT. • CT subtraction showed the best correlation with musculoskeletal ultrasound.
Collapse
|
18
|
Zhang FL, Li RC, Zhang XL, Zhang ZH, Ma L, Ding L. Reduction of metal artifacts from knee tumor prostheses on CT images: value of the single energy metal artifact reduction (SEMAR) algorithm. BMC Cancer 2021; 21:1288. [PMID: 34856926 PMCID: PMC8638139 DOI: 10.1186/s12885-021-09029-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background To evaluate the effect of the single energy metal artifact reduction (SEMAR) algorithm with a multidetector CT (MDCT) for knee tumor prostheses. Methods First, a phantom of knee tumor prosthesis underwent a MDCT scan. The raw data was reconstructed by iterative reconstruction (IR) alone and IR plus SEMAR. The mean value of the CT number and the image noise were measured around the prosthesis at the stem level and articular level. Second, 95 consecutive patients with knee tumor prostheses underwent MDCT scans. The raw data were also reconstructed by the two methods. Periprosthetic structures were selected at the similar two levels. Four radiologists visually graded the image quality on a scale from 0 to 5. Additionally, the readers also assessed the presence of prosthetic complication and tumor recurrence on a same scale. Results In the phantom, when the SEMAR was used, the CT numbers were closer to normal value and the noise of images using soft and sharper kernel were respectively reduced by up to 77.1% and 43.4% at the stem level, and by up to 82.2% and 64.5% at the articular level. The subjective scores increased 1 ~ 3 points and 1 ~ 4 points at the two levels, respectively. Prosthetic complications and tumor recurrence were diagnosed in 66 patients. And the SEMAR increased the diagnostic confidence of prosthetic complications and tumor recurrence (4 ~ 5 vs. 1 ~ 1.5). Conclusions The SEMAR algorithm can significantly reduce the metal artifacts and increase diagnostic confidence of prosthetic complications and tumor recurrence in patients with knee tumor prostheses.
Collapse
Affiliation(s)
- Fang-Ling Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, 510080, Guangzhou, Guangdong Province, People's Republic of China
| | - Ruo-Cheng Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, 510080, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiao-Ling Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, 510080, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhao-Hui Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, 510080, Guangzhou, Guangdong Province, People's Republic of China
| | - Ling Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, 510080, Guangzhou, Guangdong Province, People's Republic of China.
| | - Lei Ding
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, 510080, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
19
|
Yeoh H, Hong SH, Ahn C, Choi JY, Chae HD, Yoo HJ, Kim JH. Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT. Korean J Radiol 2021; 22:1850-1857. [PMID: 34431248 PMCID: PMC8546130 DOI: 10.3348/kjr.2021.0140] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Objective The purpose of this study was to assess whether a deep learning (DL) algorithm could enable simultaneous noise reduction and edge sharpening in low-dose lumbar spine CT. Materials and Methods This retrospective study included 52 patients (26 male and 26 female; median age, 60.5 years) who had undergone CT-guided lumbar bone biopsy between October 2015 and April 2020. Initial 100-mAs survey images and 50-mAs intraprocedural images were reconstructed by filtered back projection. Denoising was performed using a vendor-agnostic DL model (ClariCT.AI™, ClariPI) for the 50-mAS images, and the 50-mAs, denoised 50-mAs, and 100-mAs CT images were compared. Noise, signal-to-noise ratio (SNR), and edge rise distance (ERD) for image sharpness were measured. The data were summarized as the mean ± standard deviation for these parameters. Two musculoskeletal radiologists assessed the visibility of the normal anatomical structures. Results Noise was lower in the denoised 50-mAs images (36.38 ± 7.03 Hounsfield unit [HU]) than the 50-mAs (93.33 ± 25.36 HU) and 100-mAs (63.33 ± 16.09 HU) images (p < 0.001). The SNRs for the images in descending order were as follows: denoised 50-mAs (1.46 ± 0.54), 100-mAs (0.99 ± 0.34), and 50-mAs (0.58 ± 0.18) images (p < 0.001). The denoised 50-mAs images had better edge sharpness than the 100-mAs images at the vertebral body (ERD; 0.94 ± 0.2 mm vs. 1.05 ± 0.24 mm, p = 0.036) and the psoas (ERD; 0.42 ± 0.09 mm vs. 0.50 ± 0.12 mm, p = 0.002). The denoised 50-mAs images significantly improved the visualization of the normal anatomical structures (p < 0.001). Conclusion DL-based reconstruction may enable simultaneous noise reduction and improvement in image quality with the preservation of edge sharpness on low-dose lumbar spine CT. Investigations on further radiation dose reduction and the clinical applicability of this technique are warranted.
Collapse
Affiliation(s)
- Hyunjung Yeoh
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hwan Hong
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
| | - Chulkyun Ahn
- Department of Transdisciplinary Studies, Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Ja-Young Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Hee-Dong Chae
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Jin Yoo
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Hyo Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Transdisciplinary Studies, Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Center for Medical-IT Convergence Technology Research, Advanced Institutes of Convergence Technology, Suwon, Korea
| |
Collapse
|
20
|
Tozakidou M, Meister RL, Well L, Petersen KU, Schindera S, Jopp-van Well E, Püschel K, Herrmann J. CT of the medial clavicular epiphysis for forensic age estimation: hands up? Int J Legal Med 2021; 135:1581-1587. [PMID: 33625576 PMCID: PMC8206049 DOI: 10.1007/s00414-021-02516-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/27/2021] [Indexed: 11/30/2022]
Abstract
Purpose The aim of this study was to assess the impact of arm position in computed tomography (CT) of the clavicle performed for forensic age estimation on clavicular position, image noise, and radiation dose. Methods and materials Forty-seven CT scans of the medial clavicular epiphysis performed for forensic age estimation were conducted with either hands and arms held upwards (CTHU, 28 persons) or positioned at the body (CTHD, 19 persons). Presets were identical for both positions (70 mAs/140 kVp; Brilliance iCT, Philips). Each CT scan was reconstructed with an iterative algorithm (i-Dose 4) and evaluated at the middle of the sternoclavicular joint. Clavicular angle was measured on a.p. topograms in relation to a horizontal line. Quantitative image noise was measured in air at the level of medial clavicular epiphysis. Effective dose and scan length were recorded. Results Hands-up position compared with hands-down position resulted in a lower lateral body diameter (CTHU 41.1 ± 3.6 cm vs. CTHD 44.6 ± 3.1 cm; P = 0.03), a reduced quantitative image noise (CTHU: 39.5 ± 9.2; CTHD: 46.2 ± 8.3; P = 0.02), and lower CTDIvol (5.1 ± 1.4 mGy vs. 6.7 ± 1.8 mGy; P = 0.001). Scan length was longer in patients examined with hands up (HU: 8.5 ± 3.4 cm; HD: 6.2 ± 2.1 cm; P = 0.006). Mean effective dose for CTHU was 0.79 ± 0.32 mSv compared with 0.95 ± 0.38 mSv in CTHD (P = 0.12). Clavicular angle was 17° ± 6° in patients with hands down and 32° ± 7° in patients with hands up (P < 0.001). Conclusion By elevated arm positioning, the image quality of clavicular CT scans can be improved while maintaining radiation dose compared with hands down. Clavicular position differs according to the hand position. Thus, positioning patients with elevated hands is advisable for forensic clavicular CT examinations, but multiplanar CT reconstructions should be adjusted to clavicular position and scan length should be reduced to a minimum.
Collapse
Affiliation(s)
- Magdalini Tozakidou
- Section of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Rieke L Meister
- Section of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Lennart Well
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kay U Petersen
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | | | - Eilin Jopp-van Well
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Herrmann
- Section of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
21
|
Perfusion in hand arthritis on dynamic contrast-enhanced computed tomography: a randomized prospective study using MRI as a standard of reference. Skeletal Radiol 2021; 50:59-68. [PMID: 32607803 PMCID: PMC7677157 DOI: 10.1007/s00256-020-03526-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the performance of dynamic contrast-enhanced CT (DCE-CT) in detecting and quantitatively assessing perfusion parameters in patients with arthritis of the hand compared with dynamic contrast-enhanced MRI (DCE-MRI) as a standard of reference. MATERIALS AND METHODS In this IRB-approved randomized prospective single-centre study, 36 consecutive patients with suspected rheumatoid arthritis underwent DCE-CT (320-row, tube voltage 80 kVp, tube current 8.25 mAs) and DCE-MRI (1.5 T) of the hand. Perfusion maps were calculated separately for mean transit time (MTT), time to peak (TTP), relative blood volume (rBV), and relative blood flow (rBF) using four different decomposition techniques. Region of interest (ROI) analysis was performed in metacarpophalangeal joints II-V and in the wrist. Pairs of perfusion parameters in DCE-CT and DCE-MRI were compared using a two-tailed t test for paired samples and interpreted for effect size (Cohen's d). According to the Rheumatoid Arthritis Magnetic Resonance Imaging Score (RAMRIS) scoring results, differentiation of synovitis-positive and synovitis-negative joints with both modalities was assessed with the independent t test. RESULTS The two modalities yielded similar perfusion parameters. Identified differences had small effects (d 0.01-0.4). DCE-CT additionally differentiates inflamed and noninflamed joints based on rBF and rBV but tends to underestimate these parameters in severe inflammation. The total dose-length product (DLP) was 48 mGy*cm with an estimated effective dose of 0.038 mSv. CONCLUSION DCE-CT is a promising imaging technique in arthritis. In patients with a contraindication to MRI or when MRI is not available, DCE-CT is a suitable alternative to detect and assess arthritis.
Collapse
|
22
|
Bernard A, Comby PO, Lemogne B, Haioun K, Ricolfi F, Chevallier O, Loffroy R. Deep learning reconstruction versus iterative reconstruction for cardiac CT angiography in a stroke imaging protocol: reduced radiation dose and improved image quality. Quant Imaging Med Surg 2021; 11:392-401. [PMID: 33392038 DOI: 10.21037/qims-20-626] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background To assess the radiation dose and image quality of cardiac computed tomography angiography (CCTA) in an acute stroke imaging protocol using a deep learning reconstruction (DLR) method compared to a hybrid iterative reconstruction algorithm. Methods Retrospective analysis of 296 consecutive patients admitted to the emergency department for stroke suspicion. All patients underwent a stroke CT imaging protocol including a non-enhanced brain CT, a brain perfusion CT imaging if necessary, a CT angiography (CTA) of the supra-aortic vessels, a CCTA and a post-contrast brain CT. The CCTA was performed with a prospectively ECG-gated volume acquisition. Among all CT scans performed, 143 were reconstructed with an iterative reconstruction algorithm (AIDR 3D, adaptive iterative dose reduction three dimensional) and 146 with a DLR algorithm (AiCE, advanced intelligent clear-IQ engine). Image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and subjective image quality (IQ) scored from 1 to 4 were assessed. Dose-length product (DLP), volume CT dose index (CTDIvol) and effective dose (ED) were obtained. Results The radiation dose was significantly lower with AiCE than with AIDR 3D (DLP =106.4±50.0 vs. 176.1±37.1 mGy·cm, CTDIvol =6.9±3.2 vs. 11.5±2.2 mGy, and ED =1.5±0.7 vs. 2.5±0.5 mSv) (P<0.001). The median SNR and CNR were higher [9.9 (IQR, 8.1-12.3); and 12.6 (IQR, 10.5-15.5), respectively], with AiCE than with AIDR 3D [6.5 (IQR, 5.2-8.5); and 8.4 (IQR, 6.7-11.0), respectively] (P<0.001). SNR and CNR were increased by 51% and 49%, respectively, with AiCE compared to AIDR 3D. The image quality was significantly better with AiCE (mean IQ score =3.4±0.7) than with AIDR 3D (mean IQ score =3±0.9) (P<0.001). Conclusions The use of a DLR algorithm for cardiac CTA in an acute stroke imaging protocol reduced the radiation dose by about 40% and improved the image quality by about 50% compared to an iterative reconstruction algorithm.
Collapse
Affiliation(s)
- Angélique Bernard
- Department of Neuroradiology and Emergency Radiology, François-Mitterrand University Hospital, Dijon, France
| | - Pierre-Olivier Comby
- Department of Neuroradiology and Emergency Radiology, François-Mitterrand University Hospital, Dijon, France
| | - Brivaël Lemogne
- Department of Neuroradiology and Emergency Radiology, François-Mitterrand University Hospital, Dijon, France
| | - Karim Haioun
- Computed Tomography Division, Canon Medical Systems France, Suresnes, France
| | - Frédéric Ricolfi
- Department of Neuroradiology and Emergency Radiology, François-Mitterrand University Hospital, Dijon, France
| | - Olivier Chevallier
- Department of Cardiovascular and Interventional Radiology, ImViA Laboratory-EA 7535, François-Mitterrand University Hospital, Dijon, France
| | - Romaric Loffroy
- Department of Cardiovascular and Interventional Radiology, ImViA Laboratory-EA 7535, François-Mitterrand University Hospital, Dijon, France
| |
Collapse
|
23
|
The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting. Clin Radiol 2020; 76:155.e15-155.e23. [PMID: 33220941 DOI: 10.1016/j.crad.2020.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
AIM To assess the image quality of deep-learning image reconstruction (DLIR) of chest computed tomography (CT) images on a mediastinal window setting in comparison to an adaptive statistical iterative reconstruction (ASiR-V). MATERIALS AND METHODS Thirty-six patients were evaluated retrospectively. All patients underwent contrast-enhanced chest CT and thin-section images were reconstructed using filtered back projection (FBP); ASiR-V (60% and 100% blending setting); and DLIR (low, medium, and high settings). Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were evaluated objectively. Two independent radiologists evaluated ASiR-V 60% and DLIR subjectively, in comparison with FBP, on a five-point scale in terms of noise, streak artefact, lymph nodes, small vessels, and overall image quality on a mediastinal window setting (width 400 HU, level 60 HU). In addition, image texture of ASiR-Vs (60% and 100%) and DLIR-high was analysed subjectively. RESULTS Compared with ASiR-V 60%, DLIR-med and DLIR-high showed significantly less noise, higher SNR, and higher CNR (p<0.0001). DLIR-high and ASiR-V 100% were not significantly different regarding noise (p=0.2918) and CNR (p=0.0642). At a higher DLIR setting, noise was lower and SNR and CNR were higher (p<0.0001). DLIR-high showed the best subjective scores for noise, streak artefact, and overall image quality (p<0.0001). Compared with ASiR-V 60%, DLIR-med and DLIR-high scored worse in the assessment of small vessels (p<0.0001). The image texture of DLIR-high was significantly finer than that of ASIR-Vs (p<0.0001). CONCLUSIONS DLIR-high improved the objective parameters and subjective image quality by reducing noise and streak artefacts and providing finer image texture.
Collapse
|
24
|
Blum A, Gillet R, Rauch A, Urbaneja A, Biouichi H, Dodin G, Germain E, Lombard C, Jaquet P, Louis M, Simon L, Gondim Teixeira P. 3D reconstructions, 4D imaging and postprocessing with CT in musculoskeletal disorders: Past, present and future. Diagn Interv Imaging 2020; 101:693-705. [PMID: 33036947 DOI: 10.1016/j.diii.2020.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
Three-dimensional (3D) imaging and post processing are common tasks used daily in many disciplines. The purpose of this article is to review the new postprocessing tools available. Although 3D imaging can be applied to all anatomical regions and used with all imaging techniques, its most varied and relevant applications are found with computed tomography (CT) data in musculoskeletal imaging. These new applications include global illumination rendering (GIR), unfolded rib reformations, subtracted CT angiography for bone analysis, dynamic studies, temporal subtraction and image fusion. In all of these tasks, registration and segmentation are two basic processes that affect the quality of the results. GIR simulates the complete interaction of photons with the scanned object, providing photorealistic volume rendering. Reformations to unfold the rib cage allow more accurate and faster diagnosis of rib lesions. Dynamic CT can be applied to cinematic joint evaluations a well as to perfusion and angiographic studies. Finally, more traditional techniques, such as minimum intensity projection, might find new applications for bone evaluation with the advent of ultra-high-resolution CT scanners. These tools can be used synergistically to provide morphologic, topographic and functional information and increase the versatility of CT.
Collapse
Affiliation(s)
- A Blum
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France; Unité INSERM U1254 Imagerie Adaptative Diagnostique et Interventionnelle (IADI), CHRU of Nancy, 54511 Vandœuvre-lès-Nancy, France.
| | - R Gillet
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - A Rauch
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - A Urbaneja
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - H Biouichi
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - G Dodin
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - E Germain
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - C Lombard
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - P Jaquet
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - M Louis
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - L Simon
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France
| | - P Gondim Teixeira
- Guilloz Imaging Department, CHRU of Nancy, 54000 Nancy, France; Unité INSERM U1254 Imagerie Adaptative Diagnostique et Interventionnelle (IADI), CHRU of Nancy, 54511 Vandœuvre-lès-Nancy, France
| |
Collapse
|
25
|
Kubo Y, Ito K, Sone M, Nagasawa H, Onishi Y, Umakoshi N, Hasegawa T, Akimoto T, Kusumoto M. Diagnostic Value of Model-Based Iterative Reconstruction Combined with a Metal Artifact Reduction Algorithm during CT of the Oral Cavity. AJNR Am J Neuroradiol 2020; 41:2132-2138. [PMID: 32972957 DOI: 10.3174/ajnr.a6767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Metal artifacts reduce the quality of CT images and increase the difficulty of interpretation. This study compared the ability of model-based iterative reconstruction and hybrid iterative reconstruction to improve CT image quality in patients with metallic dental artifacts when both techniques were combined with a metal artifact reduction algorithm. MATERIALS AND METHODS This retrospective clinical study included 40 patients (men, 31; women, 9; mean age, 62.9 ± 12.3 years) with oral and oropharyngeal cancer who had metallic dental fillings or implants and underwent contrast-enhanced ultra-high-resolution CT of the neck. Axial CT images were reconstructed using hybrid iterative reconstruction and model-based iterative reconstruction, and the metal artifact reduction algorithm was applied to all images. Finally, hybrid iterative reconstruction + metal artifact reduction algorithms and model-based iterative reconstruction + metal artifact reduction algorithm data were obtained. In the quantitative analysis, SDs were measured in ROIs over the apex of the tongue (metal artifacts) and nuchal muscle (no metal artifacts) and were used to calculate the metal artifact indexes. In a qualitative analysis, 3 radiologists blinded to the patients' conditions assessed the image-quality scores of metal artifact reduction and structural depictions. RESULTS Hybrid iterative reconstruction + metal artifact reduction algorithms and model-based iterative reconstruction + metal artifact reduction algorithms yielded significantly different metal artifact indexes of 82.2 and 73.6, respectively (95% CI, 2.6-14.7; P < .01). The latter algorithms resulted in significant reduction in metal artifacts and significantly improved structural depictions(P < .01). CONCLUSIONS Model-based iterative reconstruction + metal artifact reduction algorithms significantly reduced the artifacts and improved the image quality of structural depictions on neck CT images.
Collapse
Affiliation(s)
- Y Kubo
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan .,Department of Cancer Medicine (Y.K., T.A.), Jikei University Graduate School of Medicine, Tokyo, Japan
| | - K Ito
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| | - M Sone
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| | - H Nagasawa
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| | - Y Onishi
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| | - N Umakoshi
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| | - T Hasegawa
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| | - T Akimoto
- Department of Cancer Medicine (Y.K., T.A.), Jikei University Graduate School of Medicine, Tokyo, Japan.,Division of Radiation Oncology and Particle Therapy (T.A.), National Cancer Center Hospital East, Kashiwa, Japan
| | - M Kusumoto
- From the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
26
|
Guleng A, Bolstad K, Dalehaug I, Flatabø S, Aadnevik D, Pettersen HES. Spatial Distribution of Noise Reduction in Four Iterative Reconstruction Algorithms in CT—A Technical Evaluation. Diagnostics (Basel) 2020; 10:diagnostics10090647. [PMID: 32872274 PMCID: PMC7555695 DOI: 10.3390/diagnostics10090647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 11/24/2022] Open
Abstract
Iterative reconstruction (IR) is a computed tomgraphy (CT) reconstruction algorithm aiming at improving image quality by reducing noise in the image. During this process, IR also changes the noise properties in the images. To assess how IR algorithms from four vendors affect the noise properties in CT images, an anthropomorphic phantom was scanned and images reconstructed with filtered back projection (FBP), and a medium and high level of IR. Each image acquisition was performed 30 times at the same slice position, to create noise maps showing the inter-image pixel standard deviation through the 30 images. We observed that IR changed the noise properties in the CT images by reducing noise more in homogeneous areas than at anatomical edges between structures of different densities. This difference increased with increasing IR level, and with increasing difference in density between two adjacent structures. Each vendor’s IR algorithm showed slightly different noise reduction properties in how much noise was reduced at different positions in the phantom. Users need to be aware of these differences when working with optimization of protocols using IR across scanners from different vendors.
Collapse
Affiliation(s)
- Anette Guleng
- Department of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway; (K.B.); (I.D.); (S.F.); (D.A.); (H.E.S.P.)
- Correspondence:
| | - Kirsten Bolstad
- Department of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway; (K.B.); (I.D.); (S.F.); (D.A.); (H.E.S.P.)
| | - Ingvild Dalehaug
- Department of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway; (K.B.); (I.D.); (S.F.); (D.A.); (H.E.S.P.)
- Department of Diagnostic Physics, Oslo University Hospital, 0424 Oslo, Norway
| | - Silje Flatabø
- Department of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway; (K.B.); (I.D.); (S.F.); (D.A.); (H.E.S.P.)
| | - Daniel Aadnevik
- Department of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway; (K.B.); (I.D.); (S.F.); (D.A.); (H.E.S.P.)
| | - Helge E. S. Pettersen
- Department of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway; (K.B.); (I.D.); (S.F.); (D.A.); (H.E.S.P.)
| |
Collapse
|
27
|
Evaluation of Dorsal Subluxation of the Scaphoid in Patients With Scapholunate Ligament Tears: A 4D CT Study. AJR Am J Roentgenol 2020; 216:141-149. [PMID: 32755179 DOI: 10.2214/ajr.20.22855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. The purpose of this study was to evaluate the variation of the posterior radioscaphoid (RS) angle in patients with and without scapholunate ligament (SLL) tears during wrist radioulnar deviation. SUBJECTS AND METHODS. Seventy-three patients with clinically suspected scapholunate instability were prospectively evaluated with 4D CT and CT arthrography from February 2015 to April 2018. The posterior RS angle is formed between the articular surface of the scaphoid fossa of the radius and the most posterior point of the scaphoid in the sagittal plane. Two independent radiologists calculated this angle during radioulnar deviation. Posterior RS angles were correlated with the SLL status and the presence of a scapholunate diastasis on conventional stress radiographs. RESULTS. Readers 1 and 2 found mean posterior RS angles of 99° and 98°, respectively, in patients without and 107° and 111°, respectively, in patients with a scapholunate diastasis. The posterior RS angle amplitude varied 7.6-9.3° in the subgroups studied. The reproducibility of posterior RS angle measurement was considered good (intraclass correlation coefficient, 0.73). Mean posterior RS angles increased 6-10% and 12-14% when patients with an intact SLL were compared with those with partial tears and full tears, respectively (p < 0.001). These values also increased 8-13% when patients with diastasis were compared with those without (p < 0.0001). A dynamic acquisition was not necessary to assess this angle, with neutral posterior RS angles yielding a sensitivity of 64% and 72% and specificity of 79% and 94% for the diagnosis of SLL tears by readers 1 and 2, respectively. CONCLUSION. Posterior RS angle tended to increase with the severity of SLL tears and with the presence of scapholunate instability and yielded high sensitivity and specificity for the detection of SLL tears.
Collapse
|
28
|
Nestler K, Becker BV, Majewski M, Veit DA, Krull BF, Waldeck S. Additional CTA-Subtraction Technique in Detection of Pulmonary Embolism-a Benefit for Patients or Only an Increase in Dose? HEALTH PHYSICS 2020; 119:148-152. [PMID: 32371851 DOI: 10.1097/hp.0000000000001274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Latest advantages in computed tomography (CT) come with enhanced diagnostic imaging and also sophisticated dose reduction techniques. However, overall exposure to ionizing radiation of patients in Germany rises slightly, which is mainly based on the growing number of performed CT scans. Furthermore, new possibilities in modern imaging, including 4D scans or perfusion protocols, offer new medical insights but require additional scans.In this study, we reevaluated data sets from patients undergoing CT examinations because of suspected pulmonary embolism and compared doses and diagnostic results of the standard protocol to the additional modern CT subtraction technique. Two groups of single-blinded radiologists were provided with CT data sets from 50 patients. One group (G1) had access to full datasets including CT subtraction with perfusion map. The other group (G2) only evaluated conventional CT angiography. Results were compared to final clinical diagnosis. Dose length product (DLP) of CT angiography was compared to CT subtraction technique, which consists of an additional non-contrast-enhanced scan and perfusion map. Effective dose was calculated using a Monte Carlo simulation-based software tool (ImpactDose). Inter-rater agreement of both groups was strong in G1 with κ = .896 and minimal in G2 (κ = .307). Agreement to final diagnosis was strong in both groups (G1, κ = .848; G2, κ = .767). Doses applied using the CT subtraction technique were 34.8% higher than for CT angiography alone (G1 DLP 337.6 ± 171.3 mGy x cm; G2 DLP 220.2 ± 192.8 mGy x cm; p < .001). Calculated effective dose was therefore significantly higher for G1 (G1 4.82 ± 2.20 mSv; G2 3.04 ± 1.33 mSv; p < .001). Our results indicate a benefit of the CT subtraction technique for the detection of pulmonary embolisms in clinical routine, accompanied by an increase in the dose administered. Although CT protocols should always be applied carefully to specific clinical indications in order to maximize the potential for dose reduction and keep the administered dose as low as reasonably achievable, one should never lose sight of the diagnostic benefit, especially in vital clinical indications.
Collapse
Affiliation(s)
| | - Benjamin Valentin Becker
- German Federal Armed Forces Central Hospital Koblenz, Department for Radiology and Neuroradiology, Koblenz, Germany
| | - Matthäus Majewski
- Bundeswehr Institute for Radiobiology affiliated to Ulm University, Munich, Germany
| | - Daniel Anton Veit
- German Federal Armed Forces Central Hospital Koblenz, Department for Radiology and Neuroradiology, Koblenz, Germany
| | - Bastian Felix Krull
- German Federal Armed Forces Central Hospital Koblenz, Department for Radiology and Neuroradiology, Koblenz, Germany
| | - Stephan Waldeck
- German Federal Armed Forces Central Hospital Koblenz, Department for Radiology and Neuroradiology, Koblenz, Germany
| |
Collapse
|
29
|
Funama Y, Takahashi H, Goto T, Aoki Y, Yoshida R, Kumagai Y, Awai K. Improving Low-contrast Detectability and Noise Texture Pattern for Computed Tomography Using Iterative Reconstruction Accelerated with Machine Learning Method: A Phantom Study. Acad Radiol 2020; 27:929-936. [PMID: 31918961 DOI: 10.1016/j.acra.2019.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 11/15/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the performance of iterative reconstruction (IR) and filtered back projection (FBP) images in terms of low-contrast detectability at different radiation doses, IR levels, and slice thickness using the mathematical model observer with a focus on low-contrast detectability. MATERIALS AND METHODS The CCT189 MITA CT IQ Low-Contrast Phantom was used and helical scans were performed using a 64-detector CT scanner. Tube voltage was set at 120 kVp and tube current was adjusted from 45 to 600 mA. Images were reconstructed at slice thicknesses of 0.625 and 5.0 mm with FBP and five types of iterative progressive reconstruction with visual modeling (IPV) algorithms. The noise power spectrum (NPS) and normalized NPS were calculated. To evaluate low-contrast detectability, the model observer with the channelized Hotelling observer model was applied using low-contrast modules in the phantom. RESULTS The NPS and normalized NPS for IPV images had similar curves as that for FBP images. At a slice thickness of 0.625 mm and equivalent radiation dose level, the mean improvement of low-contrast detectability for IPV images was 1.19-2.15-fold greater than FBP images with corresponding noise reduction levels. At equivalent noise levels of 5.0-8.0 HU, low-contrast detectability of the IPVstd2 to IPVstr2 images as almost the same or better than that of the FBP images. However, the detectability of the IPVstr4 image was lower than that of the FBP image (p = 0.02). CONCLUSION Low-contrast detectability of the IPV images was improved with a similar normalized NPS as with FBP images. Furthermore, a radiation reduction of >50% was achieved for the IPV images, while maintaining similar low-contrast detectability.
Collapse
Affiliation(s)
- Yoshinori Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto 862-0976, Japan.
| | | | - Taiga Goto
- Hitachi Ltd. Healthcare Business Unit, Kashiwa, Chiba, Japan
| | - Yuko Aoki
- Hitachi Ltd. Healthcare Business Unit, Kashiwa, Chiba, Japan
| | - Ryo Yoshida
- Hitachi Ltd. Healthcare Business Unit, Kashiwa, Chiba, Japan
| | - Yukio Kumagai
- Hitachi Ltd. Healthcare Business Unit, Kashiwa, Chiba, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
30
|
Engelhard N, Hermann KG, Greese J, Fuchs M, Pumberger M, Putzier M, Diekhoff T. Single-source dual-energy computed tomography for the detection of bone marrow lesions: impact of iterative reconstruction and algorithms. Skeletal Radiol 2020; 49:765-772. [PMID: 31822941 DOI: 10.1007/s00256-019-03330-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare the diagnostic performance of different reconstruction algorithms of single-source dual-energy computed tomography (DECT) for the detection of bone marrow lesions (BML) in patients with vertebral compression fracture using MRI as the standard of reference. MATERIAL AND METHODS Seventeen patients with an age over 50 who underwent single-source DECT of the spine were included. The raw data (RD) were reconstructed using filtered back-projection (FBP) and iterative reconstruction (IR) with three iteration levels (IR1-IR3). Bone marrow images were generated using a three-material decomposition (3MD) and a two-material decomposition (2MD) algorithm and an RD-based approach. Three blinded readers scored the images for image quality and the presence of bone marrow lesions (BML). Only vertebrae with height loss were included. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The different reconstructions were compared using Dunn's multiple comparison test. RESULTS Thirty-nine vertebrae were included. IR(1-3) showed superior sensitivity (87.5%) compared to FBP (75%) using 3MD but was comparable to RD (83.3%). All 2MD images were inferior (sensitivity < 38%). The image quality score was significantly higher for 3MD-IR(1-3) compared to 3MD-FBP (p < 0.0001) and all 2MD data sets (p < 0.03). This pattern was also supported by the SNR and CNR measurements. RD showed no significant improvement compared to IR. CONCLUSION The image quality of bone marrow images acquired with DECT can be improved by using IR compared with FBP. RD-based reconstruction does not offer significant improvement over image data-based reconstruction. 2MD algorithms are not suitable for BML detection.
Collapse
Affiliation(s)
- N Engelhard
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany
| | - K G Hermann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany
| | - J Greese
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany
| | - M Fuchs
- Department for Orthopaedic Surgery, RKU, University of Ulm, Ulm, Germany
| | - M Pumberger
- Department of Spine Surgery, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - M Putzier
- Department of Spine Surgery, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - T Diekhoff
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
31
|
Tozakidou M, Apine I, Petersen KU, Weinrich JM, Schindera S, Jopp-van Well E, Püschel K, Herrmann J. Comparison of different iterative CT reconstruction techniques and filtered back projection for assessment of the medial clavicular epiphysis in forensic age estimation. Int J Legal Med 2019; 134:355-361. [PMID: 31773319 DOI: 10.1007/s00414-019-02214-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/13/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE To assess the impact of iterative reconstruction and filtered back projection (FBP) on image quality in computed tomography (CT)-based forensic age estimation of the medial clavicular epiphysis. METHODS AND MATERIALS CT of the clavicle was performed in 19 patients due to forensic reasons (70 mAs/140 kVp). Raw data were reconstructed with FBP and with an iterative algorithm at level 4 and 6. Clavicular ossification stage was determined by two radiologists in consensus, firstly on FBP reconstructed images and secondly after reviewing all reconstructions including iDose 4 and 6. In addition, the 3 reconstructions were compared regarding artefacts and delineation of the meta-/epiphyseal interface. Quantitative image noise was measured. RESULTS Quantitative noise was lower in iDose 6 reconstructed images than in FBP (P < 0.042), but not significantly lower between iDose 4 and FBP (P = 0.127). Side by side comparison revealed lesser qualitative image noise on both iDose reconstructed images than for FBP. The meta-/epiphyseal interface delineation was rated better on both iDose levels than with FBP. In 3 of 19 patients, the clavicular ossification stage was reclassified after iterative reconstructions had been additionally reviewed. CONCLUSION Using iterative CT reconstruction algorithms, a reduction of image noise and an enhancement of image quality regarding the meta-/epiphyseal clavicular interface can be achieved. The study highlights the importance of image standardization as variation of reconstruction technique has impact on forensic age estimation.
Collapse
Affiliation(s)
- Magdalini Tozakidou
- Department of Diagnostic and Interventional Radiology and Nuclear medicine, Section of Pediatric Radiology, University Hospital Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Ilze Apine
- Children Clinical University Hospital, Riga, Latvia
| | - Kay U Petersen
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Julius Matthias Weinrich
- Department of Diagnostic and Interventional Radiology and Nuclear medicine, University Hospital Hamburg-Eppendorf, 20246, Hamburg, Germany
| | | | - Eilin Jopp-van Well
- Department of Forensic Medicine, University Hospital Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - Klaus Püschel
- Department of Forensic Medicine, University Hospital Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - Jochen Herrmann
- Department of Diagnostic and Interventional Radiology and Nuclear medicine, Section of Pediatric Radiology, University Hospital Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
32
|
Dissaux B, Ognard J, Cheddad El Aouni M, Nonent M, Haioun K, Magro E, Gentric JC. Volume variation may be a relevant metric in the study of aneurysm pulsatility: a study using ECG-gated 4D-CTA (PULSAN). J Neurointerv Surg 2019; 12:632-636. [DOI: 10.1136/neurintsurg-2019-015336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/28/2019] [Indexed: 11/04/2022]
Abstract
Background and purposeIntracranial aneurysms are a frequently occurring disease, with an estimated prevalence of 2–5% in the general population. They usually remain silent until rupture occurs, with a mortality rate of 35–50% and a high rate of morbidity, including long-term disability. However, preventative treatments have their own risk of complications and morbi-mortality rates, including stroke and hemorrhage. ECG-gated four-dimensional CT angiography (4D-CTA) allows the acquisition of time-resolved three-dimensional reconstructions. The aim of our study was to evaluate different intracranial aneurysm metrics over the cardiac cycle using ECG-gated 4D-CTA.Materials and methodsECG-gated 4D-CTA datasets were acquired in patients presenting with intracranial aneurysms. Seven aneurysm metrics, including aneurysm height, aneurysm length, ostium width, aspect ratio, ostium area, volume, and volume-to-ostium ratio, were analysed over different cardiac phases. Intra-reader agreement, inter-reader agreement, and inter-cycle agreement were calculated through the intraclass correlation coefficient.ResultsTwenty-one aneurysms from 11 patients were considered for inclusion. Post-processing failed for three aneurysms, and 18 aneurysms were finally analysed. There was good intra-reader agreement for each metric (ICC >0.9). Agreements among three consecutive cardiac cycles were calculated for six aneurysms and were especially good for the volume metric (ICC >0.9). Volume variation appears to be the most relevant metric and seems especially perceptible for aneurysms larger than 5 mm.ConclusionsQuantification of aneurysm volume changes during the cardiac cycle seems quantitatively possible and reproducible, especially for aneurysms larger than 5 mm. Further studies need to be conducted to validate this parameter for intracranial aneurysm assessment.
Collapse
|
33
|
Pirimoglu B, Sade R, Sakat MS, Polat G, Kantarci M. Low-dose non-contrast examination of the temporal bone using volumetric 320-row computed tomography. Acta Radiol 2019; 60:908-916. [PMID: 30249112 DOI: 10.1177/0284185118802597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Berhan Pirimoglu
- Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Recep Sade
- Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Muhammed Sedat Sakat
- Department of Otorhinolaryngology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Gokhan Polat
- Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Mecit Kantarci
- Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
34
|
Effect of a New Model-Based Reconstruction Algorithm for Evaluating Early Peripheral Lung Cancer With Submillisievert Chest Computed Tomography. J Comput Assist Tomogr 2019; 43:428-433. [PMID: 31082948 DOI: 10.1097/rct.0000000000000858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to compare a new model-based iterative reconstruction algorithm with either spatial and density resolution balance (MBIRSTND) or spatial resolution preference (MBIRRP20) with the adaptive statistical iterative reconstruction (ASIR) in evaluating early small peripheral lung cancer (SPLC) with submillisievert chest computed tomography (CT). METHODS Low-contrast and spatial resolutions were assessed in a phantom and with 30 pathologically confirmed SPLC patients. Images were reconstructed using 40% ASIR, MBIRSTND, and MBIRRP20. Computed tomography value and image noise were measured by placing the regions of interest on back muscle and subcutaneous fat at 3 levels. Two radiologists used a 4-point scale (1, worst, and 4, best) to rate subjective image quality in 3 aspects: image noise, nodule imaging signs, and nodule internal clarity. RESULTS The phantom study revealed an improved detectability of low-contrast targets and small objects for MBIRSTND and MBIRRP20 compared with ASIR. The effective dose for patient scans was 0.88 ± 0.83 mSv. There was no significant difference in CT value between the 3 reconstructions (P > 0.05), but MBIRSTND and MBIRRP20 significantly reduced image noise compared with ASIR (P < 0.05): 15.69 ± 1.83 HU and 29.97 ± 3.84 HU versus 51.06 ± 11.02 HU in the back muscle, and 15.96 ± 3.07 HU and 27.37 ± 3.88 HU versus 38.04 ± 8.87 HU in subcutaneous fat, respectively. Among the 3 reconstructions, MBIRSTND was the best in reducing image noise and identifying the internal compositions of cancer nodules, and MBIRRP20 was the best in analyzing the internal and external signs of pulmonary nodules. CONCLUSIONS Submillisievert chest CT reconstructed with MBIRSTND and MBIRRP20 provides superior images for the detailed analyses of SPLC compared with ASIR.
Collapse
|
35
|
Sato K, Kageyama R, Tomita Y, Takane Y, Saito H. Estimation and validation of the frequency responses of a scanner system and an image reconstruction system in X-ray computed tomography. Radiol Phys Technol 2019; 12:201-209. [DOI: 10.1007/s12194-019-00506-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 11/28/2022]
|
36
|
Submillisievert CT angiography for carotid arteries using wide array CT scanner and latest iterative reconstruction algorithm in comparison with previous generations technologies: Feasibility and diagnostic accuracy. J Cardiovasc Comput Tomogr 2019; 13:41-47. [PMID: 30639115 DOI: 10.1016/j.jcct.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/05/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To assess evaluability and diagnostic accuracy of a low dose CT angiography (CTA) protocol for carotid arteries using latest Iterative Reconstruction (IR) algorithm in comparison with standard 100 kVp protocol using previous generation CT and IR. MATERIALS AND METHODS 105 patients, referred for CTA of the carotid arteries were prospectively enrolled in our study and underwent CTA with 80 kVp and latest IR algorithm (group 1). Data were retrospectively compared with 100 consecutive patients with similar examination indications that had previously undergone CTA of carotid arteries with a standard 100 kVp protocol and a first generation IR algorithm (group 2). Image quality was evaluated with a 4-point Likert-scale. For each exam CT number, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) at level of common carotid artery (CCA), internal carotid artery (ICA) and at level of Circle of Willis and Effective Dose (ED) were evaluated. 62 Group 1 patients underwent a clinically indicated DSA and results were compared with CTA. RESULTS No exams reported as not diagnostic. The overall mean CT number value of all arterial segments was above 450 HU in both groups. Significant lower noise, and higher SNR and CNR values were found in group 1 in comparison with group 2 despite the use of 80 kVp. In 62-group 1 patients studied by DSA, CTA showed in a segment-based analysis a sensitivity, negative predictive value and accuracy of 100%, 100% and 99% respectively. Mean ED in group 1 was 0.54 ± 0.1 mSv with a dose reduction up to 86%. CONCLUSIONS CTA for carotid arteries using latest IR algorithm allows to perform exams with submillisievert radiation exposure maintaining good image quality, overall evaluability and diagnostic accuracy.
Collapse
|
37
|
Seo N, Chung YE, An C, Choi JY, Park MS, Kim MJ. Feasibility of radiation dose reduction with iterative reconstruction in abdominopelvic CT for patients with inappropriate arm positioning. PLoS One 2018; 13:e0209754. [PMID: 30596739 PMCID: PMC6312263 DOI: 10.1371/journal.pone.0209754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/10/2018] [Indexed: 02/04/2023] Open
Abstract
Background The arms-down position increases computed tomography (CT) radiation dose. Iterative reconstruction (IR) could enhance image quality without increasing radiation dose in patients with arms-down position. Aim To investigate the feasibility of reduced-dose CT with IR for patients with inappropriate arm positioning Methods Twenty patients who underwent two-phase abdominopelvic CT including standard-dose and reduced-dose CT (performed with 80% of the radiation dose of the standard protocol) with their arms positioned in the abdominal area were included in this study. Reduced-dose CT images were reconstructed using filtered back projection (FBP), hybrid IR, and iterative model reconstruction (IMR). These images were compared with standard-dose CT images reconstructed with FBP. Objective image noise in the liver and subcutaneous fat was measured by standard deviation for the quantitative analysis. Then, two radiologists qualitatively assessed beam hardening artifacts, artificial texture, noise, sharpness, and overall image quality in consensus. Results Reduced-dose CT with all IR levels had lower objective image noise compared to standard-dose CT with FBP reconstruction (P < 0.05). Quantitatively measured beam hardening artifacts were similar in reduced-dose CT with iDose levels 5–6 and fewer with IMR compared to standard-dose CT. In the qualitative analysis, beam hardening artifacts and noise decreased as the IR levels increased. However, artificial texture was significantly aggravated with iDose 5–6 and IMR, and overall image quality significantly worsened with IMR. Conclusions IR algorithms can reduce beam hardening artifacts in a reduced-dose CT setting in patients with arms-down position, and an intermediate level of hybrid IR allows radiologists to obtain the best image quality. Because the retrospective and single-center nature of our study limited the number of patients, multicenter prospective clinical studies are required to validate our results.
Collapse
Affiliation(s)
- Nieun Seo
- Department of Radiology, Yonsei University Health System, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - Yong Eun Chung
- Department of Radiology, Yonsei University Health System, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
- * E-mail:
| | - Chansik An
- Department of Radiology, Yonsei University Health System, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - Jin-Young Choi
- Department of Radiology, Yonsei University Health System, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - Mi-Suk Park
- Department of Radiology, Yonsei University Health System, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - Myeong-Jin Kim
- Department of Radiology, Yonsei University Health System, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
38
|
Böning G, Rotzinger RA, Kahn JF, Freyhardt P, Renz DM, Maurer M, Streitparth F. Tailored CT angiography in follow-up after endovascular aneurysm repair (EVAR): combined dose reduction techniques. Acta Radiol 2018; 59:1316-1325. [PMID: 29430936 DOI: 10.1177/0284185118756952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Endovascular aneurysm repair (EVAR) requires lifelong surveillance by computed tomography angiography (CTA). This is attended by a substantial accumulation of radiation exposure. Iterative reconstruction (IR) has been introduced to approach dose reduction. Purpose To evaluate adaptive statistical iterative reconstruction (ASIR) at different levels of tube voltage concerning image quality and dose reduction potential in follow-up post EVAR. Material and Methods One hundred CTAs in 67 patients with EVAR were examined using five protocols: protocol A (n = 40) as biphasic standard using filtered back projection (FBP) at 120 kV; protocols B (n = 40), C (n = 10), and D1 (n = 5) biphasic using ASIR at 120, 100, and 80 kV, respectively; and protocol D2 (n = 5) with a monophasic splitbolus ASIR protocol at 80 kV. Image quality was assessed quantitatively and qualitatively. Applied doses were determined. Results Applied doses in ASIR protocols were significantly lower than FBP standard (up to 75%). Compared to protocol A, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) (e.g. arterial CNR intra-/extra-stent lumen: A = 35.4 ± 13.5, B = 34.2 ± 10.0, C = 29.6 ± 6.8, D1 = 32.1 ± 6.3, D2 = 40.8 ± 23.1) in protocol B were equal and in protocols C and D equal to partially inferior, however not decisive for diagnostic quality. Subjective image quality ratings in all protocols were good to excellent without impairments of diagnostic confidence (A-D2: 5), with high inter-rater agreement (60-100%). Conclusion ASIR contributes to significant dose reduction without decisive impairments of image quality and diagnostic confidence. We recommend an adapted follow-up introducing ASIR and combined low-kV in the long-term surveillance after EVAR.
Collapse
Affiliation(s)
- Georg Böning
- 1 Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roman A Rotzinger
- 1 Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes F Kahn
- 1 Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Freyhardt
- 1 Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Diane M Renz
- 2 Department of Radiology, Jena University Hospital, Jena, Germany
| | - Martin Maurer
- 3 Department of Radiology, Inselspital Bern, Bern, Switzerland
| | - Florian Streitparth
- 1 Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
39
|
Mann C, Ziegeler K, Mews J, Plaschke M, Issever AS. Bone mineral density assessment using iterative reconstruction compared with quantitative computed tomography as the standard of reference. Sci Rep 2018; 8:15095. [PMID: 30305658 PMCID: PMC6179993 DOI: 10.1038/s41598-018-33444-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
This study examines the influence of iterative reconstruction on bone mineral density (BMD) measurement by comparison with standard quantitative computed tomography (QCT; reference) and two other protocols based on filtered back projection. Ten human cadaver specimens of the lumbar spine with a hydroxyapatite calibration phantom underneath, were scanned with 4 protocols: 1. standard QCT, 2. volume scan with FBP, 3. helical scan with FBP, and 4. helical scan with IR (Adaptive Iterative Dose Reduction 3D (AIDR3D)). Radiation doses were recorded as CT dose index (CTDIvol) and BMD, signal-to-noise and contrast-to-noise ratio were calculated. Mean hydroxyapatite concentration (HOA) did not differ significantly between protocols, ranging from 98.58 ± 31.09 mg cm3 (protocol 4) to 100.47 ± 30.82 mg cm3 (protocol 2). Paired sample correlations of HOA values for protocol 4 and protocols 1, 2 and 3 were nearly perfect with coefficients of 0.980, 0.979 and 0.982, respectively (p < 0.004). CTDIvol were 7.50, 5.00, 6.82 (±2.03) and 1.72 (±0.50) mGy for protocols 1, 2, 3 and 4 respectively. Objective image quality was highest for protocol 4. The use of IR for BMD assessment significantly lowers radiation exposure compared to standard QCT and protocols with FBP while not degrading BMD measurement.
Collapse
Affiliation(s)
- Constanze Mann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Katharina Ziegeler
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Mews
- Canon Medical Systems Europe BV, Zoetermeer, Netherlands
| | - Martina Plaschke
- Department of Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ahi Sema Issever
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
40
|
Rauch A, Arab WA, Dap F, Dautel G, Blum A, Gondim Teixeira PA. Four-dimensional CT Analysis of Wrist Kinematics during Radioulnar Deviation. Radiology 2018; 289:750-758. [PMID: 30251928 DOI: 10.1148/radiol.2018180640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To determine the technical feasibility of four-dimensional (4D) CT for analysis of the variation of radioscaphoid angle (RSA) and lunocapitate angle (LCA) during wrist radioulnar deviation. Materials and Methods In this prospective study, 37 participants suspected of having scapholunate instability were evaluated from January 2015 to December 2016 with 4D CT and CT arthrography (mean age ± standard deviation, 42.3 years ± 15; range, 21-75 years; 27 men [mean age, 44 years ± 15] and 10 women [mean age, 38 years ± 14]). Five angular parameters for RSA and LCA variation during radioulnar deviation were calculated by two independent readers. CT arthrography was used as the reference standard method for scapholunate ligament tear identification. Results In the control group (n = 23), the mean values for RSA were 103° ± 8 and 104° ± 9, whereas the mean values for LCA were 86° ± 9° and 90° ± 11° with a coefficient of variation of 11% and 13% for reader 1 and reader 2, respectively. The interobserver and intraobserver agreements were excellent for RSA and substantial to excellent for LCA. In the pathologic group (n = 14), LCA amplitude, standard deviation, and maximal angle were lower for both readers with respect to the control group, measuring 36% and 44% (P = .003), 37% and 44% (P = .002), and 13% and 19% (P = .003), respectively. RSA amplitude did not show statistically significant results in the pathologic group (P > .13). LCA yielded the highest sensitivity (71%-93%), whereas RSA yielded the highest specificity (87%-100%). Conclusion Semiautomatic four-dimensional CT analysis of the wrist during radioulnar deviation is technically feasible and reproducible for evaluation of carpal kinematic abnormalities. © RSNA, 2018 Online supplemental material is available for this article .
Collapse
Affiliation(s)
- Aymeric Rauch
- From the Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035 Nancy, France (A.R., W.A.A., A.B., P.A.G.T.); and Emile Gallé Surgical Center, Nancy, France (F.D., G.D.)
| | - Waled Abou Arab
- From the Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035 Nancy, France (A.R., W.A.A., A.B., P.A.G.T.); and Emile Gallé Surgical Center, Nancy, France (F.D., G.D.)
| | - François Dap
- From the Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035 Nancy, France (A.R., W.A.A., A.B., P.A.G.T.); and Emile Gallé Surgical Center, Nancy, France (F.D., G.D.)
| | - Gilles Dautel
- From the Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035 Nancy, France (A.R., W.A.A., A.B., P.A.G.T.); and Emile Gallé Surgical Center, Nancy, France (F.D., G.D.)
| | - Alain Blum
- From the Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035 Nancy, France (A.R., W.A.A., A.B., P.A.G.T.); and Emile Gallé Surgical Center, Nancy, France (F.D., G.D.)
| | - Pedro Augusto Gondim Teixeira
- From the Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 avenue du Maréchal de Lattre de Tassigny, 54035 Nancy, France (A.R., W.A.A., A.B., P.A.G.T.); and Emile Gallé Surgical Center, Nancy, France (F.D., G.D.)
| |
Collapse
|
41
|
Comparison of radiographs, tomosynthesis and CT with metal artifact reduction for the detection of hip prosthetic loosening. Eur Radiol 2018; 29:1258-1266. [DOI: 10.1007/s00330-018-5717-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/18/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
|
42
|
da Silva Moura W, Chiqueto K, Pithon GM, Neves LS, Castro R, Henriques JFC. Factors influencing the effective dose associated with CBCT: a systematic review. Clin Oral Investig 2018; 23:1319-1330. [DOI: 10.1007/s00784-018-2561-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
43
|
Diagnosis of lumbar spinal fractures in emergency department: low-dose versus standard-dose CT using model-based iterative reconstruction. Clin Imaging 2018; 50:216-222. [DOI: 10.1016/j.clinimag.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 02/03/2023]
|
44
|
Blum A, Noël A, Regent D, Villani N, Gillet R, Gondim Teixeira P. Tomosynthesis in musculoskeletal pathology. Diagn Interv Imaging 2018; 99:423-441. [DOI: 10.1016/j.diii.2018.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023]
|
45
|
Wang X, Zhu C, Li J, Degnan AJ, Jiang T, Lu J. Knowledge-based iterative model reconstruction: Comparative image quality with low tube voltage cerebral CT angiography. Medicine (Baltimore) 2018; 97:e11514. [PMID: 30045274 PMCID: PMC6078758 DOI: 10.1097/md.0000000000011514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to compare image quality of low tube voltage cerebral computed tomography angiography (CTA) reconstructed with knowledge-based iterative model reconstruction (IMR), filtered back projection (FBP), and hybrid iterative reconstruction (HIR).A total of 101 patients with suspected cerebrovascular diseases were enrolled and randomized into 2 groups, 100 kVp tube voltage (n = 53) and reduced tube voltage (80 kVp) (n = 48). Computed tomography data were reconstructed with IMR, FBP, and HIR algorithms. The image noise, vascular attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured and calculated. Two blinded radiologists independently evaluated image quality based on diagnostic confidence on a 3-point scale. Quantitative and qualitative assessments were compared between different groups and reconstruction subgroups.Vascular attenuation was higher in the reduced tube voltage group than in 100-kVp tube voltage group, but showed no significant difference within each group. In both groups, the image noise, vascular SNR, and CNR were significantly improved by IMR as compared with FBP and HIR. Inter-group comparison indicated that IMR with reduced tube voltage showed better image quality with lower image noise and higher vascular SNR and CNR than FBP and HIR at 100 kVp, but slightly inferior to IMR at 100 kVp. IMR also yields the best qualitative image quality, and improves the diagnostic confidence of atherosclerosis and aneurysm. Compared with the standard 120-kVp protocol (1.86mSv), the radiation doses of 100 kVp (1.13mSv) and 80 kVp (0.56mSv) were 39% and 70% less, respectively.The quantitative and qualitative image quality obtained by IMR was superior to that obtained by FBP and HIR for low tube voltage cerebral CTA.
Collapse
Affiliation(s)
- Xinrui Wang
- From the Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chengcheng Zhu
- From the Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA
| | - Jing Li
- From the Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Andrew J. Degnan
- From the Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - Tao Jiang
- From the Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianping Lu
- From the Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
46
|
Elsholtz FHJ, Schaafs LA, Erxleben C, Hamm B, Niehues SM. Periradicular infiltration of the lumbar spine: is iterative reconstruction software necessary to establish ultra-low-dose protocols? A quantitative and qualitative approach. Radiol Med 2018; 123:827-832. [PMID: 29923084 DOI: 10.1007/s11547-018-0913-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/12/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Computed tomography (CT)-guided periradicular infiltration therapy has emerged as an effective treatment option for patients with low back pain. Concern about radiation exposure requires approaches allowing significant dose reduction. The purpose of this study is to evaluate the need for iterative reconstruction software in CT-guided periradicular infiltration therapy with an ultra-low-dose protocol. MATERIALS AND METHODS One hundred patients underwent CT-guided periradicular infiltration therapy of the lumbar spine using an ultra-low-dose protocol with adaptive iterative dose reduction 3D (AIDR 3D) for image reconstruction. In addition, images were reconstructed with filtered back-projection (FBP). Four experienced raters evaluated both reconstruction types for conspicuity of anatomical and instrumental features important for ensuring safe patient treatment. Image noise was measured as a quantitative marker of image quality. RESULTS Interrater agreement was good for both AIDR 3D (Kendall's W = 0.83) and FBP (0.78) reconstructions. Readers assigned the same scores for all features and both reconstruction algorithms in 81.3% of cases. Image noise was significantly lower (average SD of 60.07 vs. 99.54, p < 0.05) for AIDR 3D-reconstructed images. CONCLUSION Although it significantly lowers image noise, iterative reconstruction software is not mandatory to achieve adequate image quality with an ultra-low-dose CT protocol for guiding periradicular infiltration therapy of the lumbar spine.
Collapse
Affiliation(s)
- Fabian Henry Jürgen Elsholtz
- Klinik und Hochschulambulanz für Radiologie, Charité- Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Lars-Arne Schaafs
- Klinik und Hochschulambulanz für Radiologie, Charité- Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Christoph Erxleben
- Klinik und Hochschulambulanz für Radiologie, Charité- Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Bernd Hamm
- Klinik und Hochschulambulanz für Radiologie, Charité- Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Stefan Markus Niehues
- Klinik und Hochschulambulanz für Radiologie, Charité- Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
47
|
Chen LH, Jin C, Li JY, Wang GL, Jia YJ, Duan HF, Pan N, Guo J. Image quality comparison of two adaptive statistical iterative reconstruction (ASiR, ASiR-V) algorithms and filtered back projection in routine liver CT. Br J Radiol 2018; 91:20170655. [PMID: 29848018 DOI: 10.1259/bjr.20170655] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To compare image quality of two adaptive statistical iterative reconstruction (ASiR and ASiR-V) algorithms using objective and subjective metrics for routine liver CT, with the conventional filtered back projection (FBP) reconstructions as reference standards. METHODS This institutional review board-approved study included 52 patients with clinically suspected hepatic metastases. Patients were divided equally into ASiR and ASiR-V groups with same scan parameters. Images were reconstructed with ASiR and ASiR-V from 0 (FBP) to 100% blending percentages at 10% interval in its respective group. Mean and standard deviation of CT numbers for liver parenchyma were recorded. Two experienced radiologists reviewed all images for image quality blindly and independently. Data were statistically analyzed. RESULTS There was no difference in CT dose index between ASiR and ASiR-V groups. As the percentage of ASiR and ASiR-V increased from 10 to 100% , image noise reduced by 8.6 -57.9% and 8.9-81.6%, respectively, compared with FBP. There was substantial interobserver agreement in image quality assessment for ASiR and ASiR-V images. Compared with FBP reconstruction, subjective image quality scores of ASiR and ASiR-V improved significantly as percentage increased from 10 to 80% for ASiR (peaked at 50% with 32.2% noise reduction) and from 10 to 90% (peaked at 60% with 51.5% noise reduction) for ASiR-V. CONCLUSION Both ASiR and ASiR-V improved the objective and subjective image quality for routine liver CT compared with FBP. ASiR-V provided further image quality improvement with higher acceptable percentage than ASiR, and ASiR-V60% had the highest image quality score. Advances in knowledge: (1) Both ASiR and ASiR-V significantly reduce image noise compared with conventional FBP reconstruction. (2) ASiR-V with 60 blending percentage provides the highest image quality score in routine liver CT.
Collapse
Affiliation(s)
- Li-Hong Chen
- 1 Department of Diagnostic Radiology, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Chao Jin
- 1 Department of Diagnostic Radiology, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Jian-Ying Li
- 1 Department of Diagnostic Radiology, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Ge-Liang Wang
- 1 Department of Diagnostic Radiology, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Yong-Jun Jia
- 2 Department of Radiology, the Affiliated Hospital of Shaanxi University of Chinese Medicine , Xianyang , China
| | - Hai-Feng Duan
- 2 Department of Radiology, the Affiliated Hospital of Shaanxi University of Chinese Medicine , Xianyang , China
| | - Ning Pan
- 1 Department of Diagnostic Radiology, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | | |
Collapse
|
48
|
Gharbi S, Labidi S, Mars M, Chelli M, Meftah S, Ladeb MF. Assessment of organ dose and image quality in head and chest CT examinations: a phantom study. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:807-818. [PMID: 29869615 DOI: 10.1088/1361-6498/aac336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The purpose of this study is to assess dose for radiosensitive organs and image quality in head and chest computed tomography (CT) examinations. Our focus was in the brain, eye lens and lung organs using two protocols; one protocol with fixed mAs and filtered back projection (FBP) and another with tube current modulation (TCM) and sinogram affirmed iterative reconstruction (SAFIRE). Measurements were performed on a 128-slice CT scanner by placing thermoluminescent dosimeters (TLDs) in an anthropomorphic adult phantom. Results were compared to a CT-Expo software. Objective image quality was assessed in terms of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). SPSS software was used for data analyses. Results showed that, using TCM, doses were reduced by 22.84%-25.06% for brain, by 21.82%-23.48% for eye lens and by 54%-53.22% for lung with TLD and CT-Expo respectively. The increased SNR and CNR values achieved for scans performed with TCM combined with iterative reconstruction techniques were 38.68%-58.81% and 38.91%-43.60% respectively. We conclude that, using TCM, a significant mean organ dose reduction is achieved for brain, eye lens and lung organs. Then, combined with iterative reconstruction, image quality was well maintained in terms of SNR and CNR. Thus it is highly recommended in clinical practice optimization in head and chest CT examinations.
Collapse
Affiliation(s)
- S Gharbi
- Université Tunis EL Manar, Institut Supérieur des Technologies Médicales de Tunis, Laboratoire de recherche de Biophysique et de Technologies Médicales, 9, Avenue du Docteur Z. Essafi, Tunis 1006, Tunisia
| | | | | | | | | | | |
Collapse
|
49
|
Pirimoglu B, Sade R, Sakat MS, Ogul H, Levent A, Kantarci M. Low-Dose Noncontrast Examination of the Paranasal Sinuses Using Volumetric Computed Tomography. J Comput Assist Tomogr 2018; 42:482-486. [PMID: 29287024 DOI: 10.1097/rct.0000000000000699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate image quality of low dose in noncontrast paranasal sinus computed tomography (CT) using single volumetric 320-row multidetector CT technique. METHODS The low-dose protocol including tube voltage of 135 kV and tube current of 5 mAs was chosen based on results of the present phantom study. Forty-six patients were assigned to control group with factory standard settings (120 kVp, 75 mAs), and 46 patients were assigned to study group and underwent noncontrast CT of paranasal sinus with low-dose protocol using single volumetric 320-row multidetector CT device. Objective and subjective image qualities were performed. RESULTS Effective radiation dose calculated for control group scans was 0.45 (SD, 0.39) mSv. It was 0.038 (SD, 0.004) mSv for study group scans. The effective radiation dose of study group was statistically significant lower than control group (P < 0.001). CONCLUSIONS Noncontrast paranasal sinus CT imaging can be performed at very low radiation exposure maintaining high image quality with 135 kVp and 5 mAs.
Collapse
Affiliation(s)
| | | | - Muhammed Sedat Sakat
- Department of Otorhinolaryngology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | | | | | | |
Collapse
|
50
|
Abstract
The use of staging imaging in melanoma patients with a positive sentinel lymph node (SLN) has been reported to be of limited value. Improved accuracy resulting from the development of time-of-flight positron emission tomography (PET) and ongoing image quality improvement of computed tomography (CT) may challenge this statement. Our retrospective study assessed the clinical value of routine staging CT and PET/CT imaging in a recent cohort of asymptomatic SLN-positive patients. Between January 2011 and April 2014, 143 patients with a positive SLN were routinely staged using CT of various parts of the body or whole-body PET/CT. Scores were assigned for level of certainty for regional or distant metastases and incidental second primary malignancies. Diagnostic test performance was assessed, as well as the number and nature of ensuing additional diagnostic actions. CT was performed in 102 of 143 (71%) patients and PET/CT in 41 (29%) patients. The use of PET/CT increased over the study period. Metastases were found in two of the 143 patients (true-positive yield 1.4%). Sensitivity, specificity and positive predictive value were 11, 73 and 4% for CT and 17, 57 and 6%, respectively, for PET/CT. None of the 143 patients had a change in AJCC stage. Two other primary malignancies were found. Twenty-one (15%) patients were subjected to 37 additional investigations, referrals or procedures. Routine staging imaging with CT or PET/CT in SLN-positive patients is not useful. The yield is low and the results are often false positive, leading to unnecessary additional tests, most of which are costly and some potentially morbid.
Collapse
|